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INEQUALITIES FOR BAER INVARIANTS OF FINITE GROUPS

JOHN BURNS AND GRAHAM ELLIS

ABSTRACT. In this note we further our investigation of Baer invariants of groups
by obtaining, as consequences of an exact sequence of A. S.-T. Lue, some numerical
inequalities for their orders, exponents, and generating sets. An interesting group theo-
retic corollary is an explicit bound for |v¢.+1(G)| given that G/Z¢(G) is afinite p-group
with prescribed order and number of generators.

In a previous paper [3] we investigated groups G of the form G = H/Z(H), where
¢ > 1 and Z;(H) isthe c-th term of the upper central series of some group H. Extending
terminology of [9], such groups G were said to be c-capable. We proved that a finitely
generated abelian group is c-capableif and only if it is 1-capable. Moreover, we showed
that this result does not extend to p-groups by exhibiting a 2-group (of order 2°) which
is 1-capable but not 2-capable. Our method for demonstrating that a particular group
G is not c-capable involved presenting it as the quotient of a free group F by a normal
subgroup R, and then computing the Baer invariant

MO(G) = (RN Ve (F)) /Vera(R F),
where
Y1(F) =F. Yo (F) = [ve(F). F.
MRF) =R V(R F) = [1(RF).F|.

The group M©(G) is well-known to be an invariant of G (see for instance [8]), and is
clearly abelian. In particular, M®(G) is the Schur multiplier of G.

A computer program for computing M©(G) islisted in [3]. Asinput data, the program
requiresafinite presentation of G, and any positiveinteger g divisible by e whereeisthe
exponent of M(©O(G). Themain aim of this noteisto give afew simple resultsfor helping
to choose such an integer g. We obtain these results (as well as results on the order of
M©(G), and on the number of generators of M©(G)) asfairly direct consequencesof an
exact sequence of Lue[13].

When ¢ = 1 our results (but not our proofs) reduce to those of M. R. Jones [10, 11]
on the Schur multiplier, and Lue's sequence reduces to the exact homology sequence of
Stallings and Ganea (cf. [8]).

In order to read the rest of this paper, onewill need to be familiar with the nonabelian
tensor and exterior product of groups; agood introductory account of these can be found
in[2].
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Let N be anormal subgroup of G. The main result of Lue[13] can be reformulated as
anatural exact sequence

ker(((N AG)AG) A~ AGL yeu(N, G)) — MOG) — MOG/N) —
N/Yer1(N, G) — G/Ve+1(G) — G/NVe1(G) — 1.

*)

Here A denotes the nonabelian exterior product of groups, and the group ((N A G) A
G) A --- A Ginvolvesone copy of N and c copiesof G; we shall henceforth denote this
iterated exterior product by ASY(N. G).

We write |G| and &(G) for the order and exponent of G. The minimum number
of elements needed to generate G is denoted by d(G). The following result is due to
M. R. R. Moghaddam [14].

PROPOSITION 1 [14]. SetH = G/N.

(i) [MO(H)| divides [MO(G)| IN N Yera(G)]/ era(N. G)]-

(i) e(MO(H)) divides e(M©(G)) x &(NNYera(G)/Vera(N. G)).
(iii) d(MO(H)) < d(MO(G)) +d(NNYera(G)/Ver1(N. G)).

ProOOF. The sequence (*) yields an exact sequence
MO(G) — MO(H) — (NNYera(G)) /Yera(N. G) — 1

from which (i), (ii) and (iii) follow. m

As pointed out in [13], the first five terms of the sequence (x) in fact hold for
Baer invariants with respect to an arbitrary variety [8]. Thus Proposition 1 (and several
subsequent results) automatically extend to these more general Baer invariants. When
¢ = 1, Proposition 1 reducesto [10, Theorem 3.1].

The structure of the nonabelian tensor product of groups has been investigated exten-
sively by several authors. (To citejust oneinstance, paper [ 7] obtains boundson the order
of G® H when G and H are finite prime-power groups acting compatibly on each other.)
Since this structure is fully understood in many instances, it is useful to obtain bounds
on M©(G) in terms of the tensor product. We obtain such boundsin Propositions 2 and 5
below.

A normal subgroup B in G is said to be k-central if v,+1(B,G) = 1. In this case
conjugation yields an action of G/Vy.1(G) on B, and an action of B on G/7V+1(G). We
can thus form theiterated nonabelian tensor product ((B@ G/"1(G)) ©G/ “/kﬂ(G)) ®
-+ @ G/M+1(G) involving ¢ copies of G/7Vk+1(G). Let us denote this iterated tensor
product by ®°+1(B. G/ Wkﬂ(G)). (Notethat for k = 1 thetensor product @ coincideswith
the usual tensor product of abelian groups.) We define the group A®* 1(B, G/ 7k+1(G)) by
a pushout square in the category of groups (in which o and 3 are the obvious quotient
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homomorphisms):

®(B,6) —— @%Y(B.G/Vw1(G))
(fl pushout
AYB.G) —— AY(B,G/k:1(G)).

In other words, A°*(B. G/Vk1(G)) = A°H(B. G)/3(ker(a)).

PROPOSITION 2. Let B be a k-central subgroup of Gwithk < c. Set A= G/B.
(i) IMOG)| [BNYera(G)| divides|MO(A)| |AL(B, G/Vkua(G)) -

(i) e(M(G)) divides e(MO(A))e( A"} (B. G/Y10a(C)) )-
(iii) d(M@(G)) < d(MO(@A)) + d(/\c+1(B. G/vkﬂ(e))).
PROCOF. The sequence (x) with N = B yields an exact sequence
AS(B. G) — MO(G) — MO(A) — BN Ve (G) — 1
which, thanks to the commutative triangle of homomorphisms (cf. [13])

AB,G) —— MO(G)

AYB, G/Vk1G).

implies (i), (i) and (iii). "
Proposition 2 reduces, whenc = 1 and k = 1, to [10, Theorem 4.1] sincein this case
one readily observes an exact sequence

BAB— A%(B.G/72(G)) » Bo A® — 1.

and consequently:

(i) |72(B.G/72(G))| divides|IMD(B)| [B @ A®;

(ii) e(AZ(B. G /vZ(G))) divides e(M™(B))e(B @ A®);

(iii) d(AZ(B. G /wz(e))) < d(M@(B)) +d(B © A®),

For positive integers ¢ and d let x¢(d) denote the number of generators in a basis
for the free abelian group 7¢(F) / vc+1(F) where F is the free group of rank d. Thereisa
well-known formula for x(d) due to Witt. Let u(m) be the Moebius function, defined

for all positive integers mby 1(1) = 1, u(p) = —1if pisaprime number, u(p¥) = O for
k > 1, and p(bc) = p(b)u(c) if b and c are coprime integers. Witt's formulais

Xeld) = £ 3 (myde/™

mic

where m runs through all divisors of c. Thus, for instance, y2(d) = (d? — d) /2, x3(d) =
(o — d)/3, xa(d) = (d* — ) /4.
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THEOREM 3. Suppose that G is a d-generator p-group (for some prime p). Let ®
denote the Frattini subgroup of G, and suppose that vi(P. G) has order p" for i > 1.
Then M©(G) is a p-group, and

pxc+1(d) < ||\/|(C)(G)| |/Yc+1(G)| < ch+1(d)+mcd+mc—ld2+...+m1dc‘

The upper and lower bounds are attained when G is elementary abelian: in this case
M©(G) is elementary abelian on y¢:+1(d) generators.

PrOOF. The sequence (x) with N = G yields M©(G) as a quotient of ker(y:
NG, G) — G?. It is shown in [4] that the exterior product of p-groupsis a p-group.
Consequently M©(G) is a p-group.

Note that A = G/ ® is elementary abelian of order pY. In other words, A is a vector
space of dimension d over Zp,. It is observed in [5, Theorem 5] that the free Lie ring
L (A) on Aisisomorphicto the Liering @c-o M©(A) (with the obviousL e bracket), and
in particular, that M©(A) is isomorphic to the (¢ + 1)-st term Ye.1(L(A)) of the lower
central seriesof theLiering L (A). But 7C+1(L(A)) isavector spaceover Z,, of dimension
Xc+1(d). So the lower bound of the theorem follows from Proposition 1(i) with H = A.

To prove the upper bound let us introduce the invariant (cf. [8])

Yer1(G) = "/c+l(F)/70+1(R~ F),

where F/R =~ G is any free presentation of G. The sequence (x) with N = ® and
A=G/® implies an exact sequence

@D, G) —— V541(G) — Ve (A — 1.

Thus
IMOG)| [Ver1(G)] = [721(G)| < Viur(A)] | @ (@, G)].

We know that M©(A) = pxe(d_ Gjven an arbitrary normal subgroup N in G, Corollary 3
in [7] provides an upper bound for | @1 (N, G)|. In particular, it provides the upper
bound

| @ (. G)| < prectmeadesmd

which completes the proof. ]
When ¢ = 1, Theorem 3 improves on [10, Corollary 3.2] (which in turn is a gener-

alisation of aresult of J. A. Green). The second author has pursued the above methods

further for the casec = 1, and obtained sharper upper boundsfor [M®(G)| [Y2(G)| in[6].
We remark that the inequalities

MO (Zp))] < IMO©)] ea(@)] < MO(@p)")|

were proved in [15] and [14].

The final assertion in Theorem 3 leads to the computation of, for instance, the Baer
invariants M©(Q,) of the quaternion group Q. of order 8. It iswell-known that M (Q,)
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is trivial. (Recall from [3] that Z;(G) is the canonical image in G of the c-th term of
the upper central series of F /V¢+1(R. F). Let us recall two properties of Z;(G) from [3,
Lemma2.1]: (i) Z;(G) liesin Z(G); (ii) for any normal subgroup N of G which lies
in Z;(G), the induced homomorphism M©(G)>-»M©(G/N) isinjective.) Now Z;(Q,) is
shownin [3] to bethe centre of Q.. But the centre of Q, isequal to the derived subgroup.
So for ¢ > 2 the sequence (x) with G = Q, and N = Z;(Q.) yields an isomorphism
M©(Q,) =~ MO(Q,/[Qz. Q2]). Since QF° = 7, @ Z», it follows from Theorem 3 that,
for ¢ > 2, M9(Q,) is elementary abelian of order 2x=1(,
Theorem 3 hasa " group-theoretic” corollary.

COROLLARY 4. (i) Let K beagroup. Set G = K/Z(K) and let ® denote the Frattini
subgroup of G. If G is a d-generator p-group with |v;(®, G)| = p™ for i > 1, then

|WC+1(K)| S pXc+1(d)+”bd+ffk;,1d2+-~+m1dc.
(i) If Gisan elementary abelian p-group of order pY, then there exists a group K
suchthat G =~ K /Z(K) and such that the bound is attained.

PROOF. (i) Thereis acanonical surjection 7%,;(G) — Ve+1(K). Thus [ven(K)| <
17:,1(G)| = IMO(G)] [Yer1(G)|, and so thebound of the corollary followsfrom Theorem 3.
(i) Supposethat G is elementary abelian of order p, and that G is freely presented
asG =F/R Itisshownin [3] that G =~ K /Z,(K) where K = F /7¢1(R, F). The bound
of the corollary is attained since [Ye+1 (K)| = [72,1(G)|. .

When ¢ = 1, Corollary 4 improves on [16, Theorem 2.1].

We remark that for [K /Z.(K)| = p" the inequality [Yera(K)| < [M@O((Zp)")| is the
principal result of [15]. (No explicit bound on | V.1 (K)| isgivenin [15].)

Suppose that G is any nilpotent group of class k. Then conjugation yields trivial
actions of G/Z_1(G) on (G), and of V«(G) on G/Z_1(G). We define the group
A*(VG, G/ Z1G) by a pushout square in the category of groups (in which « and 3
are the obvious quotient homomorphisms):

@G, G) —— @ %G, G/Z_1G)

Bl pushout
A(KG,G) —— A %G.G/Z1G).

In other words, A*(1kG,G/-1G) = @ (NG, G/Z1G)/a(ker(3)). Note that
@°*1(VG. G/Z_1G) isjust an iteration of the usual tensor product of abelian groups.

PROPOSITION 5. Let G be a nilpotent group of classk > 2. Then
(i) (G| IME(G)| divides|MO(G/G)| | A™* (G, G/ Zc-1G)|-
(i) e(M©(G)) divides e(M©(G/¥G)) x e(A“*(1G. G/ Z1G)).
(i) d(MO(G)) < d(M(G/NG)) +d(A(1G, G/ Z1G)).
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PrOOF. The sequence (x) with N = 7, (G) yields an exact sequence
A NG, G/ Z_1G) — MO(G) — MO(G/G) — G — 1

from which (i), (ii) and (iii) follow. "
When ¢ = 1, Proposition 5 reducesto [11, Proposition 2.4].
The following theorem is a particularly useful “starting key” for the computer pro-
gram [3] mentioned above.

THEOREM 6. Let G be a group of prime-power exponent p€ and nilpotency class
k > 2. Then e(M©(G)) divides p<~?.

PrRoOOF. The result follows from Proposition 5(ii) and induction on k, once we have
proved the case k = 2. So suppose k = 2. The sequence () with N = G yields M©(G)
as a quotient of @*1(G. G). We shall show that the exponent of ®°*1(G, G) divides p°.
Since G isof class 2, for any integer mand elements x, y in G the identity

x©y"=(x© )"y [xy?)

holdsin ®?(G, G) = G® Gthanksto[1, Lemma3.4]. In particular, for m = p® theinteger
(%) isdivisible by mwhen p > 3, and divisible by m/2whenp = 2. Butwhenp = 2 and
m = p° the identity

1= (xy)™ = XMyM[x, y|™M-D/2 = [, y](m/2m-1)

holdsfor all x,yin G, andimplies[x, y]™?2 = 1. Thusthe exponent of @2(G, G) dividesp®.
Since®@?(G. G) actstrivially on G, theexponent of @°*4(G, G) = (®%(G. G)2G)®- - -®G
divides the exponent of ®(G. G). .
When ¢ = 1, Theorem 6 reducesto [11, Corollaries 2.6 and 2.7].
Thereisastring of further interesting results on M(©(G) that can be deduced from the
sequence (). For instance, generalisations of Theorem 3.1 in [11], and its corollaries,
are consequences of the sequence. Details are |eft to the reader.
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