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1. Introduction. Hall's algebra (3) is an algebra over the field V(p) of 
rational functions in the indeterminate p with coefficients in the field V of 
complex numbers. The basis of the algebra consists of elements G\ which are 
in one-one correspondence with the set of all partitions (X) and whose multi
plication "constants" are the "Hall polynomials" gap(p), i-e. 

GaGp = ^2, gap(p)G\, 
x 

where (a), (/3), and (X) are partitions of m} n, and m + n respectively, gap(p) 
denotes the number of subgroups F of type (/?) in an Abelian ^>-group E of 
type (X) which have a quotient group E/F of type (a). Hall has proved the 
following important result concerning the gap(p), a result which indicates an 
interesting connection with the Schur functions {X}, {a}, and {j3}. (Hall's 
result is, in fact, stated in more general terms.) 

THEOREM 1. If e\& is the coefficient of {X} in the product {a} {/3}, then gap(p) = 0 
for all primes p if e\$ = 0. Otherwise gap(p) is a polynomial in p of degree 
n\ — na — tip, n^ denoting 

y^ M/Q*/ — 1) 
^ 2 

(/u' being the partition conjugate to /z) and the coefficient of the highest power of p 
is precisely e^p. 

The determination of the polynomial glp(p) for any given partitions (X), 
(a), and (/?) is, as yet, an unsolved problem. The author has solved the prob
lem in a particular case (1). 

Bipartitional functions arise in Hall's algebra, just as they do in the classical 
algebra of symmetric functions of which Hall's algebra is a generalization. 
The bipartitional functions with which we are concerned can best be defined 
as the bipartitional function R\p(p) satisfying 

(X) and (/x) being partitions of an integer n, the summation being taken over 
all partitions (/x) of n. R\p(p) is a generalization of the known bipartitional 
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function connecting the Schur function {X} and the monomial symmetric 
function M», given when p = 1, i.e. we can write 

The R\n(p) are polynomials in p derived from the Hall polynomials and 
consist entirely of sums of powers of p, although this is difficult to prove in 
general, and it would be of great interest to be able to find explicit expressions 
for them in general. This is slightly different from the problem stated by 
Green (3, § 3); his $xM(0 are> in effect, the elements of the matrix inverse to 
the one formed by the R\^(p) for all pairs of partitions (X), (/x) of n. 

In § 2 we discuss how the polynomials Rxn{p) can be calculated and prove 
some general results concerning them. In § 3 we prove a result which gives 
the polynomial Rxix(p) when (X) is a hook partition but whose main interest 
lies in the fact that it leads to a combinatorial rule for evaluating the poly
nomials R\n(p) in other cases. 

2. Following Hall (4), we make the following definitions: 

Ar* = Gir, i7r* = Z £x> summed over all partitions (X) of r, 
x 

Ax = AXlAM . . . , Hx = HXlHX2 . . . , when (X) = (Xi, X2, . . . ). 

Hall has identified the elements of his algebra and the elements of the algebra 
of symmetric functions by means of the relationship Ar = pr(r~1)/2Ar*, AT 

being the elementary symmetric function. From this it is easy to show that 
Ax = pnyAx*, where (X') is the partition conjugate to (X) and n^ has been 
defined in Theorem 1. Having chosen the above identification of the two 
algebras, it is necessary to relate Hr and iJ r* because of the form of the 
identity connecting the A* and the H*. We thus also have Hx = i^x*. 

We can now think of Ax as a product of terms such as GV, i.e. as a Hall 
polynomial, so that we can write 

Ax = E PMG„ 

where the polynomial Pxn(p) is derived from the Hall polynomials and P\M(1) 
is the known bipartitional function relating the elementary symmetric function 
Ax and the monomials ifM. The bipartitional functions Pxn(p) are used in the 
calculation of the Rxn(p) as follows. 

We can expand a Schur function {X} as a determinant of elementary sym
metric functions in the form (7) 

a 

where (X) and (a) are partitions of an integer n. We thus have 

M = E r?xaE -P^)GJ, 
a L. n J 
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where (ju) is a partition of n and the summations are taken over all partitions 
(a) and (/*) of n. By changing the orders of summation, we obtain 

M = £ TE £X^M(£)"|G, 

so that 

a 

where the sum extends over all partitions (a) of n. For n = 3, we have 

^ 3 = p Gis, 

•4*1 = pGiiGt = p[git,i(p)G!3 + Hi2 i l(^)G2i + £12,1(^)^3] 

= £[(£2 + P + DGi» + G21], 

using the result for the polynomial ga,im(p) (cf. 1), 

Aïs = G\A\i = Gi[(£ + l)Gi2 + G2]> assuming the result for A& 

= (£ + 1)G,GX. + G,G2 

= (£ + 1)(^2 + P + l)Gi» + (2/» + 1)G« + Gi. 

Now 

{1»} 
{21} 

l_{3} J - 2 1 

- 2 1 

p* . . 
p2 + p p • 

1 1 1 

Az 

An 
Av 

P(P2 + P + 1) P 
(p + l)(p> + p + l) (2p + l) IJ 

G13 

G3 

G13 

G2I 

Gz 

i.e. in tabular form, we have the polynomials R\^{p) for « = 3 as 

(1») (21) (3) 

(I3) 
(21) 
(3) 

£3 

1 
P 
1 1 

It is quite obvious that this method of calculating the polynomials R\n(p) 
is not very practicable for large values of n, so it would be advantageous to 
have some other method of finding them. Before discussing some such method, 
we shall first prove some general results about the polynomials Rx^ip). 

https://doi.org/10.4153/CJM-1963-066-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1963-066-3


644 I. J. DAVIES 

In the proof of the theorem which follows, we shall require certain defini
tions regarding the ordering of partitions. Let (a) = («i, . . . , ar) and 
(/5) = (/?i, . . . , & ) be partitions of an integer n. We shall assume that 
«i > a2 > . . . and Pi > /32 > . . . . Then in the ''natural ordering" we say 
that (a) precedes (13) (or (a) > (/3)) if the first of the parts at of (a) which 
is different from /3i is greater than (3t. Thus the partitions of 6 would have a 
natural ordering 

6, 51, 42, 4P , 32, 321, 313, 23, 2212, 214, l6. 

The partitions conjugate to these are respectively 

l6, 214, 2212, 313, 23, 321, 412, 32, 42, 51, 6, 

which are not in reversed natural order. This second order will be called the 
"conjugate ordering." For n < 6, the reversed natural order and the con
jugate order are the same. 

THEOREM 2. (i) R\ti(p) = 0 if (/z) > (X) in the natural order, 
(ii) Rxx(p) = Pn\ 

(iii) The lowest power of p in R\?(p) is pnx. 

Proof, (i) We have 

a 

By considering chains of subgroups whose quotient groups are elementary 
abelian groups of orders pXl, p*2, . . . , where (X) = (Xi, X2, . . .), it can be 
shown (3) that P\p(p) = 0 if (//) > (X) in the conjugate ordering. Kostka 
(6) has shown also that £\M = 0 if (n) > (X') in the conjugate ordering. 

Thus R\n(p) = 0 for all partitions (a) satisfying both (a) > (X') and 
(//) > (a) in the conjugate ordering. R\n(p) = 0, therefore, when (//) > (X') 
in the conjugate ordering. If (j/) > (X') in the conjugate ordering, then 
(/x) > (X) in the natural ordering, which is the required result. 

(ii) If (M) = (X), then 

^XX(^) = Z &aPak(p), 
a 

which will be non-zero only when (a) = (Xr) because if (a) > (Xr) in the 
conjugate ordering then £x« = 0, and if (X') > (a) in the conjugate ordering 
then PaX(p) = 0. 

When (a) = (X'), ?x« = 1 and R\\(p) = P\>\(p). Now, from the definition 
of PXM (p) , we see that the highest power of p in 

p^'GjXjGfa . . . 

is 
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using Theorem 1, and the lowest power of p in P\^{p) is pny. Thus the only 
power of p in P\'\{p) is pnx and, since it is clear that P\ ' \ ( l ) = 1, we have 
P\>\{p) = pnX and the result follows. 

(iii) It is clear that, if (X) > (/z) in the natural ordering, then rt\ < n^. 
Now, £x« = 0 if (ex) > (V) in the conjugate ordering. If (X') > (a) in the 
conjugate ordering, then (X) > (a) in the natural ordering. The lowest power 
of p in Pan(p) is pn<x' so that the lowest power of p in 

E &aPa»(p), 
a 

which must be given when (a') — (X), is pnx, which is the required result. 

3. This is as far as we can go in general at the moment but the next theorem 
does take us a little nearer to the solution of the problem of rinding the poly
nomials R\n{p) in that it gives a formula for R\^(p) when (X) is a hook par
tition. However, its interest in this context lies more in the fact that it leads 
one towards a combinatorial rule for evaluating the polynomials in other 
cases. 

THEOREM 3. If\ is a hook partition with r parts and (n) is any partition with 
s parts, (X) and (n) being partitions of an integer n, then 

P (^ - v " - » / * ( ^ - 1 - D ( ^ - 2 - i ) . . . ( ^ - r + 1 - D 
Rx"{p) - p (f-1 - D(f-2 -1)... (P -1) ' 

Proof. For convenience, we denote 

(pa -1)... (p-*1 -1) 
(pe - 1 ) . . . (p - 1 ) 

by [a, 0], putting [a, 0] = 1, and £*<*-»/* by C(x). 
By definition, 

M = X) RUP)G>. 

If (X) is of the form (k, l r _ 1) , it is known that 

(1) {X} =ArHk-1- {k- 1, H 

= ArHk-i — Ar+iHk-2 + Ar+2Hk-z — • • • 

We shall now prove that 

where (</>) is any partition of n and has t parts. 

G\rHn-r = G\rHn-T = Gir 2^, Gv, 
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where (v) is a partition of n — r. Let the different partitions of n — r be 
denoted by vu i = 1, 2, . . . , m. Then 

v 0 L t = i J 

where (<£) is a partition of n and g\^(p) is a Hall polynomial. Each subgroup 
of type (l r) in an Abelian p-group of type (</>) will have a quotient group of 
type one of the (vt) so that every subgroup of type (l r) is included in the sum 

m 

E &.„(*>). 
This sum is therefore equal to the number of subgroups of type (l r) in an 
Abelian £-group of type (<£), which, from the work of Yeh, Delsarte, and 
Kinosita (12, 2, 5), is equal to [t, r] if the partition (</>) has / parts and t > r. 
Thus 

<t> 

Using the expression (1) above, we see that the coefficient of 6> in {X} is 

8-T+l 

RM = E ( - l ) < _ 1 C(r + * - l)[s, r + * - 1] 
<=1 

s - r + 1 

E 
i= l 

= E ( - D i - 1 C ( r + i - l)[s, s-r-i+1] 

= ( - l ) ' " , Z h ( - l ) , " 1 C ( 5 - * + l ) [ 5 > * - l ] f 
1 = 1 

the last step following by reversing the order of the terms in the summation. 
Now assume that 

i ; (-iy-lc(s - i + i)[s,i-i] = i-iy-'cis -u +1)[5 - 1 , * - ij. 
z=i 

ien 
M+l 

E ( - l ) t - 1 C ( s - * + l)[s, « - 1] = ( - l ) u _ 1 C(s - u + l)[s - 1, u - 1] 
t - i 

+ (• -1 ) U C( . 5 — u)[s.. ,u] 

= ( --iyc(s — u)[s — 1, w — ! ] • 

V-
- 1 
- 1 

-p | 

= ( --iyc(s — w)[s — 1, u — ! ] • 
P : 
P -

- 1 
1 

= ( --l)«C(s — u)[s — 1, w]. 
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The result is true for u = 1, 2 and so, by induction, we have 

i f ( - l ) ' - 1 ^ - * + 1)[5, » - 1] = ( - i r r C ( r ) [ * -l,s-r] 
i=l 

= ( - l ) - ' C ( r ) [ s - l , r - l ] , 

so that R\p{p) = C(r)[s — 1, r — 1], which is the required result. 
In the Introduction, it was stated that the polynomials R\»(p) are sums of 

positive integral powers of p although the result was difficult to prove in 
general. When (X) is a hook partition, the proof of this result follows from 
Theorem 3. Sylvester (11) proved initially and, later, proofs were given by 
MacMahon (9), and Riordan (10) that C(r)[s — 1, r — 1] is the generating 
function for partitions into exactly r — 1 unequal parts, none greater than 
s — 1; i.e. the coefficient of pn in C(r)[s — 1, r — 1] is the number of parti
tions of weight n satisfying the given conditions so that this coefficient will 
necessarily be a non-negative integer. For example, if r = 4, 5 = 6, the par
titions into 3 unequal parts none greater than 5 are 

321, 421, 431, 432, 521, 531, 532, 541, 542, 543 

which are partitions of 6, 7, 8, 9, 8, 9, 10, 10, 11, 12, so that, if (X) is any hook 
partition of the form (klz) and (/x) is a partition of k + 3 with 6 parts, then 

RM = P6 + P7 + W + 2p9 + 2£10 + p11 + p™. 

This presents us with a different way of considering the polynomials R\fi(p). 
In fact, it appears that R\n(p) might be the generating function for a class 
of partitions, defined by the partition (X), subject to a "condition," defined 
by the partition (/*), and it is probable that this condition is one connected 
with the numerical values of the parts in the partitions enumerated. What 
class of partitions can we associate with the partition (X) ? When (X) is a hook 
partition (klr), we have seen that the class of partitions associated with (X) 
contains all partitions with exactly r unequal parts. What if (X) is not a hook 
partition? We can answer this to a certain extent by introducing MacMahon's 
concept of the "lesser index" of a lattice permutation (9) defined as follows. 

An arrangement of the assemblage a ^ V . . . is called a lattice permutation 
if a line can be drawn between any two letters of the arrangement so that the 
letters to the left of the line are an arrangement of aab^cy . . . , where 
« > £ > y > . . . . If, in this arrangement, the rith, r2th, r3th, . . . letters 
immediately precede letters which are later in alphabetical order, the "lesser 
index" of the lattice permutation is defined as r± + 2̂ + 3̂ + • • • = r, so 
that we can consider (r^r2r^ . . .) as a partition of r if n > r2 > r% > . . . , e.g. 
for the lattice permutation aababc of the assemblage a*b2c, the lesser index 
is 2 + 4 + 5 = 11. 

If we enumerate the partitions of the lesser indices of the lattice permuta
tions associated with a hook partition (X), say (X) = (klT), we find, in fact, 
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t h a t we have numerated the part i t ions with exactly r unequal par t s none 
greater than k + r — 1, e.g. t ake (X) = (313); we require the part i t ions of the 
lesser indices of the latt ice permuta t ions associated with the assemblage 
azbcd. These a re : 

aaabcd (543), aabacd (542), abaacd (541), aabcad (532), abacad (531), 
abcaad (521), aabcda (432), abacda (431), abcada (421), abcdaa (321). 

This , therefore, gives us a rule for finding the indices of p in the polynomials 
R\fi(p) when (X) is a hook part i t ion. We can adap t the rule for the cases in 
which (X) is not a hook part i t ion and (/x) is a hook par t i t ion. As an example , 
consider (X) = (42). T h e lattice permuta t ions and the corresponding lesser 
index part i t ions a re : 

aaaabb (4), aaabab (53), aaabba (3), aabaab (52), aababa (42), 
aabbaa (2), abaaab (51), abaaba (41), ababaa (31). 

For (n) = ( l 6 ) , we consider part i t ions with no par t greater t han 5, i.e. 

^42, i6 (p) = P2 + p* + 2p* + pb + 2p« + p7 + p\ 

For (M) = (214), we consider part i t ions with no par t greater than 4, i.e. 

Ru,2iA(p) = P2 + Ps + 2£ 4 + p* + p\ 

Similarly 

^42.813 (p) = P2 + P* + P\ 

RuAviP) = P2, 

i?42,5l(£) = 0, 

R^AP) = o. 
We thus have the following rule for evaluat ing the indices of p in the 

polynomial R\n(p) : 
Enumera t e the part i t ions of the lesser indices of the latt ice permuta t ions 

associated with the part i t ion (X). 
(a) When (X) is a hook part i t ion, consider only those part i t ions with no 

par t greater than 5 — 1 , the part i t ion (/*) having 5 par ts . Every such par t i t ion 
of an integer gives one term pn in R\fl(p). 

(b) When (X) is not a hook part i t ion, consider only those part i t ions with 
no par t greater than 5 — 1 , (/x) being a hook part i t ion with 5 par ts . Every 
such part i t ion of an integer n gives one term pn in R^p). 

There appear to be inherent difficulties in producing a rule which is success
ful for general part i t ions (X) and (/*). At the moment , the best one can hope 
to do is to obtain a rule which is correct in the greatest possible number of 
cases; the above rule appears to do this. 
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