Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-02T13:26:16.012Z Has data issue: false hasContentIssue false

Frequency-dependent alterations of global signal topography in patients with major depressive disorder

Published online by Cambridge University Press:  16 February 2024

Chengxiao Yang
Affiliation:
Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
Bharat Biswal
Affiliation:
The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
Qian Cui
Affiliation:
School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu 611731, China
Xiujuan Jing
Affiliation:
Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
Yujia Ao
Affiliation:
Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
Yifeng Wang*
Affiliation:
Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
*
Corresponding author: Yifeng Wang; Email: wyf@sicnu.edu.cn

Abstract

Background

Major depressive disorder (MDD) is associated not only with disorders in multiple brain networks but also with frequency-specific brain activities. The abnormality of spatiotemporal networks in patients with MDD remains largely unclear.

Methods

We investigated the alterations of the global spatiotemporal network in MDD patients using a large-sample multicenter resting-state functional magnetic resonance imaging dataset. The spatiotemporal characteristics were measured by the variability of global signal (GS) and its correlation with local signals (GSCORR) at multiple frequency bands. The association between these indicators and clinical scores was further assessed.

Results

The GS fluctuations were reduced in patients with MDD across the full frequency range (0–0.1852 Hz). The GSCORR was also reduced in the MDD group, especially in the relatively higher frequency range (0.0728–0.1852 Hz). Interestingly, these indicators showed positive correlations with depressive scores in the MDD group and relative negative correlations in the control group.

Conclusion

The GS and its spatiotemporal effects on local signals were weakened in patients with MDD, which may impair inter-regional synchronization and related functions. Patients with severe depression may use the compensatory mechanism to make up for the functional impairments.

Type
Original Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, P. R. (2015). Why is depression more prevalent in women? Journal of Psychiatry & Neuroscience, 40(4), 219. doi:10.1503/jpn.150205CrossRefGoogle ScholarPubMed
Anderson, J. S., Druzgal, T. J., Lopez-Larson, M., Jeong, E. K., Desai, K., & Yurgelun-Todd, D. (2011). Network anticorrelations, global regression, and phase-shifted soft tissue correction. Human Brain Mapping, 32(6), 919934. doi:10.1002/hbm.21079CrossRefGoogle ScholarPubMed
Ao, Y., Kou, J., Yang, C., Wang, Y., Huang, L., Jing, X., … Chen, J. (2022). The temporal dedifferentiation of global brain signal fluctuations during human brain ageing. Scientific reports, 12(1), 3616. doi:10.1038/s41598-022-07578-6CrossRefGoogle ScholarPubMed
Ao, Y., Ouyang, Y., Yang, C., & Wang, Y. (2021). Global signal topography of the human brain: A novel framework of functional connectivity for psychological and pathological investigations. Frontiers in Human Neuroscience, 15, 644892. doi:10.3389/fnhum.2021.644892CrossRefGoogle Scholar
Ao, Y., Yang, C., Drewes, J., Jiang, M., Huang, L., Jing, X., … Wang, Y. (2023). Spatiotemporal dedifferentiation of the global brain signal topography along the adult lifespan. Human Brain Mapping, 44(17), 59065918. doi:10.1002/hbm.26484CrossRefGoogle ScholarPubMed
Baldi, E., & Bucherelli, C. (2005). The inverted “u-shaped” dose-effect relationships in learning and memory: Modulation of arousal and consolidation. Nonlinearity in Biology, Toxicology, Medicine, 3(1), nonlin-003. doi:10.2201/nonlin.003.01.002CrossRefGoogle ScholarPubMed
Baria, A. T., Baliki, M. N., Parrish, T., & Apkarian, A. V. (2011). Anatomical and functional assemblies of brain BOLD oscillations. Journal of Neuroscience, 31(21), 79107919. doi:10.1523/JNEUROSCI.1296-11.2011CrossRefGoogle ScholarPubMed
Benedetti, F., & Colombo, C. (2011). Sleep deprivation in mood disorders. Neuropsychobiology, 64(3), 141151. doi:10.1159/000328947CrossRefGoogle ScholarPubMed
Buzsáki, G. (2006). Rhythms of the brain. New York: Oxford University Press.CrossRefGoogle Scholar
Buzsaki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science (New York, N.Y.), 304(5679), 19261929. doi:10.1126/science.1099745CrossRefGoogle ScholarPubMed
Collaborators, G. B. D. M. D. (2022). Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. The Lancet. Psychiatry, 9(2), 137150. doi:10.1016/S2215-0366(21)00395-3Google Scholar
Dichter, G. S., Gibbs, D., & Smoski, M. J. (2015). A systematic review of relations between resting-state functional-MRI and treatment response in major depressive disorder. Journal of Affective Disorders, 172, 817. doi:10.1016/j.jad.2014.09.028CrossRefGoogle ScholarPubMed
Elias, L. R., Miskowiak, K. W., Vale, A. M., Kohler, C. A., Kjaerstad, H. L., Stubbs, B., … Carvalho, A. F. (2017). Cognitive impairment in euthymic pediatric bipolar disorder: A systematic review and meta-analysis. Journal of the American Academy of Child & Adolescent Psychiatry, 56(4), 286296. doi:10.1016/j.jaac.2017.01.008CrossRefGoogle ScholarPubMed
Falahpour, M., Wong, C. W., & Liu, T. T. (2016). The resting state fMRI global signal is negatively correlated with time-varying EEG vigilance. Paper presented at the Proceedings of the 24th Annual Meeting of the ISMRM.Google Scholar
Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., … Jiang, T. (2016). The human brainnetome atlas: A New brain atlas based on connectional architecture. Cerebral Cortex (New York, N.Y.: 1991), 26(8), 35083526. doi:10.1093/cercor/bhw157CrossRefGoogle Scholar
Fingelkurts, A. A., Fingelkurts, A. A., Rytsälä, H., Suominen, K., Isometsä, E., & Kähkönen, S. (2007). Impaired functional connectivity at EEG alpha and theta frequency bands in major depression. Human Brain Mapping, 28(3), 247261. doi:10.1002/hbm.20275CrossRefGoogle ScholarPubMed
Fisher, R. A. (1915). Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika, 10(4), 507521. doi:10.2307/2331838Google Scholar
Fredholm, B. B., Bättig, K., Holmén, J., Nehlig, A., & Zvartau, E. E. (1999). Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacological Reviews, 51(1), 83133.Google ScholarPubMed
Garrett, D. D., McIntosh, A. R., & Grady, C. L. (2014). Brain signal variability is parametrically modifiable. Cerebral cortex, 24(11), 29312940. doi:10.1093/cercor/bht150CrossRefGoogle ScholarPubMed
Garrett, D. D., Samanez-Larkin, G. R., MacDonald, S. W. S., Lindenberger, U., McIntosh, A. R., & Grady, C. L. (2013). Moment-to-moment brain signal variability: A next frontier in human brain mapping? Neuroscience & Biobehavioral Reviews, 37(4), 610624. doi:10.1016/j.neubiorev.2013.02.015CrossRefGoogle ScholarPubMed
Guo, W., Liu, F., Dai, Y., Jiang, M., Zhang, J., Yu, L., … Xiao, C. (2013). Decreased interhemispheric resting-state functional connectivity in first-episode, drug-naive major depressive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 41, 2429. doi:10.1016/j.pnpbp.2012.11.003CrossRefGoogle ScholarPubMed
Gutierrez-Barragan, D., Basson, M. A., Panzeri, S., & Gozzi, A. (2019). Infraslow state fluctuations govern spontaneous fMRI network dynamics. Current Biology, 29(14), 22952306 e2295. doi:10.1016/j.cub.2019.06.017CrossRefGoogle ScholarPubMed
Hamilton, J. P., Farmer, M., Fogelman, P., & Gotlib, I. H. (2015). Depressive rumination, the default-mode network, and the dark matter of clinical neuroscience. Biological Psychiatry, 78(4), 224230. doi:10.1016/j.biopsych.2015.02.020CrossRefGoogle ScholarPubMed
Han, S., Wang, X., He, Z., Sheng, W., Zou, Q., Li, L., … Chen, H. (2019). Decreased static and increased dynamic global signal topography in major depressive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 94, 109665. doi:10.1016/j.pnpbp.2019.109665CrossRefGoogle ScholarPubMed
He, Z., Cui, Q., Zheng, J., Duan, X., Pang, Y., Gao, Q., … Chen, H. (2016). Frequency-specific alterations in functional connectivity in treatment-resistant and-sensitive major depressive disorder. Journal of Psychiatric Research, 82, 3039. doi:10.1016/j.jpsychires.2016.07.011CrossRefGoogle ScholarPubMed
Hegerl, U., & Hensch, T. (2014). The vigilance regulation model of affective disorders and ADHD. Neuroscience & Biobehavioral Reviews, 44, 4557. doi:10.1016/j.neubiorev.2012.10.008CrossRefGoogle Scholar
Hegerl, U., Wilk, K., Olbrich, S., Schoenknecht, P., & Sander, C. (2012). Hyperstable regulation of vigilance in patients with major depressive disorder. The World Journal of Biological Psychiatry, 13(6), 436446. doi:10.3109/15622975.2011.579164CrossRefGoogle ScholarPubMed
Huntenburg, J. M., Bazin, P.-L., & Margulies, D. S. (2018). Large-scale gradients in human cortical organization. Trends in Cognitive Sciences, 22(1), 2131. doi:10.1016/j.tics.2017.11.002CrossRefGoogle ScholarPubMed
Just, M. A., Cherkassky, V. L., Keller, T. A., Kana, R. K., & Minshew, N. J. (2007). Functional and anatomical cortical underconnectivity in autism: Evidence from an FMRI study of an executive function task and corpus callosum morphometry. Cerebral Cortex, 17(4), 951961. doi:10.1093/cercor/bhl006CrossRefGoogle ScholarPubMed
Keskin, K., Eker, M. C., Gonul, A. S., & Northoff, G. (2023). Abnormal global signal topography of self modulates emotion dysregulation in major depressive disorder. Translational Psychiatry, 13(1), 107. doi:10.1038/s41398-023-02398-2CrossRefGoogle ScholarPubMed
Klein, S. D., Shekels, L. L., McGuire, K. A., & Sponheim, S. R. (2020). Neural anomalies during vigilance in schizophrenia: Diagnostic specificity and genetic associations. NeuroImage: Clinical, 28, 102414. doi:10.1016/j.nicl.2020.102414CrossRefGoogle ScholarPubMed
Knyazev, G. G. (2007). Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neuroscience & Biobehavioral Reviews, 31(3), 377395. doi:10.1016/j.neubiorev.2006.10.004CrossRefGoogle ScholarPubMed
Lai, C. H., & Wu, Y. T. (2014). Frontal-insula gray matter deficits in first-episode medication-naive patients with major depressive disorder. Journal of Affective Disorders, 160, 7479. doi:10.1016/j.jad.2013.12.036CrossRefGoogle ScholarPubMed
Li, L., Wang, Y., Ye, L., Chen, W., Huang, X., Cui, Q., … Chen, H. (2019). Altered brain signal variability in patients with generalized anxiety disorder. Frontiers in Psychiatry, 10, 84. doi:10.3389/fpsyt.2019.00084CrossRefGoogle ScholarPubMed
Li, R., Wang, H., Wang, L., Zhang, L., Zou, T., Wang, X., … Chen, H. (2021). Shared and distinct global signal topography disturbances in subcortical and cortical networks in human epilepsy. Human Brain Mapping, 42(2), 412426. doi:10.1002/hbm.25231CrossRefGoogle ScholarPubMed
Li, X. K., Qiu, H. T., Hu, J., & Luo, Q. H. (2022). Changes in the amplitude of low-frequency fluctuations in specific frequency bands in major depressive disorder after electroconvulsive therapy. World Journal of Psychiatry, 12(5), 708. doi:10.5498/wjp.v12.i5.708CrossRefGoogle ScholarPubMed
Liu, T. T., Nalci, A., & Falahpour, M. (2017). The global signal in fMRI: Nuisance or information? Neuroimage, 150, 213229. doi:10.1016/j.neuroimage.2017.02.036CrossRefGoogle ScholarPubMed
Månsson, K. N. T., Waschke, L., Manzouri, A., Furmark, T., Fischer, H., & Garrett, D. D. (2022). Moment-to-moment brain signal variability reliably predicts psychiatric treatment outcome. Biological Psychiatry, 91(7), 658666. doi:10.1016/j.biopsych.2021.09.026CrossRefGoogle ScholarPubMed
Mulders, P. C., van Eijndhoven, P. F., Schene, A. H., Beckmann, C. F., & Tendolkar, I. (2015). Resting-state functional connectivity in major depressive disorder: A review. Neuroscience & Biobehavioral Reviews, 56, 330344. doi:10.1016/j.neubiorev.2015.07.014CrossRefGoogle ScholarPubMed
Murphy, K., & Fox, M. D. (2017). Towards a consensus regarding global signal regression for resting state functional connectivity MRI. Neuroimage, 154, 169173. doi:10.1016/j.neuroimage.2016.11.052CrossRefGoogle ScholarPubMed
Newson, J. J., & Thiagarajan, T. C. (2019). EEG Frequency bands in psychiatric disorders: A review of resting state studies. Frontiers in Human Neuroscience, 12, 521. doi:10.3389/fnhum.2018.00521CrossRefGoogle ScholarPubMed
Nilsonne, G., Tamm, S., Schwarz, J., Almeida, R., Fischer, H., Kecklund, G., … Akerstedt, T. (2017). Intrinsic brain connectivity after partial sleep deprivation in young and older adults: Results from the Stockholm sleepy brain study. Scientific Reports, 7(1), 9422. doi:10.1038/s41598-017-09744-7CrossRefGoogle Scholar
Nomi, J. S., Bzdok, D., Li, J., Bolt, T., Chang, C., Kornfeld, S., … Uddin, L. Q. (2022). Global fMRI signal topography differs systematically across the lifespan. bioRxiv, 2022.2007. 2027.501804. doi:10.1101/2022.07.27.501804.Google Scholar
Northoff, G. (2016). How do resting state changes in depression translate into psychopathological symptoms? From ‘Spatiotemporal correspondence'to ‘Spatiotemporal Psychopathology’. Current Opinion in Psychiatry, 29(1), 1824. doi:10.1097/YCO.0000000000000222CrossRefGoogle Scholar
Northoff, G., & Hirjak, D. (2022). Spatiotemporal psychopathology–An integrated brain-mind approach and catatonia. Schizophrenia Research, 263, 153159. doi:10.1016/j.jad.2015.05.007Google Scholar
Northoff, G., Wiebking, C., Feinberg, T., & Panksepp, J. (2011). The ‘resting-state hypothesis’ of major depressive disorder—A translational subcortical–cortical framework for a system disorder. Neuroscience & Biobehavioral Reviews, 35(9), 19291945. doi:10.1016/j.neubiorev.2010.12.007CrossRefGoogle ScholarPubMed
Orban, C., Kong, R., Li, J., Chee, M. W. L., & Yeo, B. T. T. (2020). Time of day is associated with paradoxical reductions in global signal fluctuation and functional connectivity. PLoS Biology, 18(2), e3000602. doi:10.1371/journal.pbio.3000602CrossRefGoogle Scholar
Peifer, C., Schulz, A., Schächinger, H., Baumann, N., & Antoni, C. H. (2014). The relation of flow-experience and physiological arousal under stress—can u shape it? Journal of Experimental Social Psychology, 53, 6269. doi:10.1016/j.jesp.2014.01.009CrossRefGoogle Scholar
Picco, L., Subramaniam, M., Abdin, E., Vaingankar, J. A., & Chong, S. A. (2017). Gender differences in major depressive disorder: Findings from the Singapore Mental Health Study. Singapore Medical Journal, 58(11), 649655. doi:10.11622/smedj.2016144CrossRefGoogle ScholarPubMed
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage, 59(3), 21422154. doi:10.1016/j.neuroimage.2011.10.018CrossRefGoogle ScholarPubMed
Power, J. D., Plitt, M., Laumann, T. O., & Martin, A. (2017). Sources and implications of whole-brain fMRI signals in humans. Neuroimage, 146, 609625. doi:10.1016/j.neuroimage.2016.09.038CrossRefGoogle ScholarPubMed
Proakis, J. G., & Manolakis, D. G. (1988). Introduction to digital signal processing: Prentice Hall Professional Technical Reference.Google Scholar
Qiao, J., Li, X., Wang, Y., Wang, Y., Li, G., Lu, P., … Wang, S. (2022a). The infraslow frequency oscillatory transcranial direct current stimulation over the left dorsolateral prefrontal cortex enhances sustained attention. Frontiers in Aging Neuroscience, 14, 879006. doi:10.3389/fnagi.2022.879006CrossRefGoogle ScholarPubMed
Qiao, J., Wang, Y., & Wang, S. (2022b). Natural frequencies of neural activities and cognitions may serve as precise targets of rhythmic interventions to the aging brain. Frontiers in Aging Neuroscience, 14, 988193. doi:10.3389/fnagi.2022.988193CrossRefGoogle Scholar
Raut, R. V., Snyder, A. Z., Mitra, A., Yellin, D., Fujii, N., Malach, R., & Raichle, M. E. (2021). Global waves synchronize the brain's functional systems with fluctuating arousal. Science Advances, 7(30), eabf2709. doi:10.1126/sciadv.abq3851CrossRefGoogle ScholarPubMed
Ries, A., Hollander, M., Glim, S., Meng, C., Sorg, C., & Wohlschlager, A. (2019). Frequency-dependent spatial distribution of functional hubs in the human brain and alterations in major depressive disorder. Frontiers in Human Neuroscience, 13, 146. doi:10.3389/fnhum.2019.00146CrossRefGoogle ScholarPubMed
Scalabrini, A., Vai, B., Poletti, S., Damiani, S., Mucci, C., Colombo, C., … Northoff, G. (2020). All roads lead to the default-mode network-global source of DMN abnormalities in major depressive disorder. Neuropsychopharmacology, 45(12), 20582069. doi:10.1038/s41386-020-0785-xCrossRefGoogle Scholar
Schmidt, F. M., Pschiebl, A., Sander, C., Kirkby, K. C., Thormann, J., Minkwitz, J., … Himmerich, H. (2016). Impact of serum cytokine levels on EEG-measured arousal regulation in patients with major depressive disorder and healthy controls. Neuropsychobiology, 73(1), 19. doi:10.1159/000441190CrossRefGoogle ScholarPubMed
Sheng, J., Shen, Y., Qin, Y., Zhang, L., Jiang, B., Li, Y., … Wang, J. (2018). Spatiotemporal, metabolic, and therapeutic characterization of altered functional connectivity in major depressive disorder. Human Brain Mapping, 39(5), 19571971. doi:10.1002/hbm.23976CrossRefGoogle ScholarPubMed
Siegel, M., Donner, T. H., & Engel, A. K. (2012). Spectral fingerprints of large-scale neuronal interactions. Nature Reviews Neuroscience, 13(2), 121134. doi:10.1038/nrn3137CrossRefGoogle ScholarPubMed
Stern, P. (2022). No neuron is an island. Science (New York, N.Y.), 378, 486487. doi:10.1126/science.adf4275CrossRefGoogle Scholar
Tae, W.-S. (2015). Regional gray matter volume reduction associated with major depressive disorder: A voxel-based morphometry. Investigative Magnetic Resonance Imaging, 19(1), 1018. doi:10.13104/imri.2015.19.1.10CrossRefGoogle Scholar
Tanaka, S. C. (2020). SRPBS Multi-disorder MRI dataset (unrestricted). Synapse (New York, N.Y.). doi:10.7303/syn22317081Google Scholar
Tanaka, S. C., Yamashita, A., Yahata, N., Itahashi, T., Lisi, G., Yamada, T., … Imamizu, H. (2021). A multi-site, multi-disorder resting-state magnetic resonance image database. Scientific Data, 8(1), 227. doi:10.1038/s41597-021-01004-8CrossRefGoogle ScholarPubMed
Thiebaut de Schotten, M., & Forkel, S. J. (2022). The emergent properties of the connected brain. Science (New York, N.Y.), 378(6619), 505510. doi:10.1126/science.abq2591CrossRefGoogle ScholarPubMed
Thompson, G. J., Riedl, V., Grimmer, T., Drzezga, A., Herman, P., & Hyder, F. (2016). The whole-brain “global” signal from resting state fMRI as a potential biomarker of quantitative state changes in glucose metabolism. Brain Connectivity, 6(6), 435447. doi:10.1089/brain.2015.0394CrossRefGoogle ScholarPubMed
Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2), 411423. doi:10.1111/1467-9868.00293CrossRefGoogle Scholar
Tolkunov, D., Rubin, D., & Mujica-Parodi, L. (2010). Power spectrum scale invariance quantifies limbic dysregulation in trait anxious adults using fMRI: Adapting methods optimized for characterizing autonomic dysregulation to neural dynamic time series. Neuroimage, 50(1), 7280. doi:10.1016/j.neuroimage.2009.12.021CrossRefGoogle ScholarPubMed
Wang, L., Hermens, D. F., Hickie, I. B., & Lagopoulos, J. (2012). A systematic review of resting-state functional-MRI studies in major depression. Journal of Affective Disorders, 142(1–3), 612. doi:10.1016/j.jad.2012.04.013CrossRefGoogle ScholarPubMed
Wang, L., Kong, Q., Li, K., Su, Y., Zeng, Y., Zhang, Q., … Si, T. (2016). Frequency-dependent changes in amplitude of low-frequency oscillations in depression: A resting-state fMRI study. Neuroscience Letters, 614, 105111. doi:10.1016/j.neulet.2016.01.012CrossRefGoogle ScholarPubMed
Wang, X., Liao, W., Han, S., Li, J., Wang, Y., Zhang, Y., … Chen, H. (2021). Frequency-specific altered global signal topography in drug-naive first-episode patients with adolescent-onset schizophrenia. Brain Imaging and Behavior, 15(4), 18761885. doi:10.1007/s11682-020-00381-9CrossRefGoogle ScholarPubMed
Wang, Y., Ao, Y., Yang, Q., Liu, Y., Ouyang, Y., Jing, X., … Chen, H. (2020). Spatial variability of low frequency brain signal differentiates brain states. PLoS One, 15(11), e0242330. doi:10.1371/journal.pone.0242330CrossRefGoogle ScholarPubMed
Wang, Y., Yang, C., Li, G., Ao, Y., Jiang, M., Cui, Q., … Jing, X. (2023). Frequency-dependent effective connections between local signals and the global brain signal during resting-state. Cognitive Neurodynamics, 17(2), 555560. doi:10.1007/s11571-022-09831-0CrossRefGoogle ScholarPubMed
Wilks, D. S. (2006). On “field significance” and the false discovery rate. Journal of Applied Meteorology and Climatology, 45(9), 11811189. doi:10.1175/Jam2404.1CrossRefGoogle Scholar
Wolf, E., Kuhn, M., Normann, C., Mainberger, F., Maier, J. G., Maywald, S., … Nissen, C. (2016). Synaptic plasticity model of therapeutic sleep deprivation in major depression. Sleep Medicine Reviews, 30, 5362. doi:10.1016/j.smrv.2015.11.003CrossRefGoogle ScholarPubMed
Wong, C. W., Olafsson, V., Tal, O., & Liu, T. T. (2013). The amplitude of the resting-state fMRI global signal is related to EEG vigilance measures. Neuroimage, 83, 983990. doi:10.1016/j.neuroimage.2013.07.057CrossRefGoogle ScholarPubMed
Xia, M., Liu, J., Mechelli, A., Sun, X., Ma, Q., Wang, X., … He, Y. (2022). Connectome gradient dysfunction in major depression and its association with gene expression profiles and treatment outcomes. Molecular Psychiatry, 27(3), 13841393. doi:10.1038/s41380-022-01519-5CrossRefGoogle ScholarPubMed
Xue, S., Wang, X., Wang, W., Liu, J., & Qiu, J. (2016). Frequency-dependent alterations in regional homogeneity in major depression. Behavioural Brain Research, 306, 1319. doi:10.1016/j.bbr.2016.03.012CrossRefGoogle ScholarPubMed
Yan, C., & Zang, Y. (2010). DPARSF: A MATLAB toolbox for” pipeline” data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 4, 1377. doi:10.3389/fnsys.2010.00013Google Scholar
Yan, C. G., Yang, Z., Colcombe, S. J., Zuo, X. N., & Milham, M. P. (2017). Concordance among indices of intrinsic brain function: Insights from inter-individual variation and temporal dynamics. Science Bulletin, 62(23), 15721584. doi:10.1016/j.scib.2017.09.015CrossRefGoogle ScholarPubMed
Yang, G. J., Murray, J. D., Glasser, M., Pearlson, G. D., Krystal, J. H., Schleifer, C., … Anticevic, A. (2017). Altered global signal topography in schizophrenia. Cerebral Cortex (New York, N.Y.: 1991), 27(11), 51565169. doi:10.1093/cercor/bhw297Google ScholarPubMed
Yang, G. J., Murray, J. D., Repovs, G., Cole, M. W., Savic, A., Glasser, M. F., … Pearlson, G. D. (2014). Altered global brain signal in schizophrenia. Proceedings of the National Academy of Sciences, 111(20), 74387443. doi:10.1073/pnas.1405289111CrossRefGoogle ScholarPubMed
Yang, H., Zhang, H., Meng, C., Wohlschlager, A., Brandl, F., Di, X., … Biswal, B. (2022). Frequency-specific coactivation patterns in resting-state and their alterations in schizophrenia: An fMRI study. Human Brain Mapping, 43(12), 37923808. doi:10.1002/hbm.25884CrossRefGoogle ScholarPubMed
Yang, Y., Cui, Q., Pang, Y., Chen, Y., Tang, Q., Guo, X., … Chen, H. (2021). Frequency-specific alteration of functional connectivity density in bipolar disorder depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 104, 110026. doi:10.1016/j.pnpbp.2020.110026CrossRefGoogle ScholarPubMed
Zhang, J., Huang, Z., Tumati, S., & Northoff, G. (2020). Rest-task modulation of fMRI-derived global signal topography is mediated by transient coactivation patterns. PLoS Biology, 18(7), e3000733. doi:10.1371/journal.pbio.3000733CrossRefGoogle ScholarPubMed
Zhang, J., Magioncalda, P., Huang, Z., Tan, Z., Hu, X., Hu, Z., … Northoff, G. (2019). Altered global signal topography and Its different regional localization in motor cortex and hippocampus in mania and depression. Schizophrenia Bulletin, 45(4), 902910. doi:10.1093/schbul/sby138CrossRefGoogle ScholarPubMed
Zhang, J., & Northoff, G. (2022). Beyond noise to function: Reframing the global brain activity and its dynamic topography. Communications Biology, 5(1), 1350. doi:10.1038/s42003-022-04297-6CrossRefGoogle ScholarPubMed
Zhang, Y., Zhu, C., Chen, H., Duan, X., Lu, F., Li, M., … Chen, H. (2015). Frequency-dependent alterations in the amplitude of low-frequency fluctuations in social anxiety disorder. Journal of Affective Disorders, 174, 329335. doi:10.1016/j.jad.2014.12.001CrossRefGoogle ScholarPubMed
Zhu, J., Cai, H., Yuan, Y., Yue, Y., Jiang, D., Chen, C., … Yu, Y. (2018). Variance of the global signal as a pretreatment predictor of antidepressant treatment response in drug-naïve major depressive disorder. Brain Imaging and Behavior, 12, 17681774. doi:10.1007/s11682-018-9845-9CrossRefGoogle ScholarPubMed
Supplementary material: File

Yang et al. supplementary material

Yang et al. supplementary material
Download Yang et al. supplementary material(File)
File 8.2 MB