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Abstract

We derive an expansion for the (expected) difference between the continuously monitored
supremum and evenly monitored discrete maximum over a finite time horizon of a jump
diffusion process with independent and identically distributed normal jump sizes. The
monitoring error is of the form a0/N

1/2 +a1/N
3/2 +· · ·+b1/N +b2/N

2 +b4/N
4 +· · · ,

where N is the number of monitoring intervals. We obtain explicit expressions for the
coefficients {a0, a1, . . . , b1, b2, . . .}. In particular, a0 is proportional to the value of the
Riemann zeta function at 1

2 , a well-known fact that has been observed for Brownian
motion in applied probability and mathematical finance.
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1. Introduction and main results

Jump diffusions and pure-jump Lévy processes are often used to model the dynamics
of asset prices and other financial variables in mathematical finance [4], [7], [23]. They
naturally incorporate extreme price movements due to jumps that are difficult to capture by
Brownian motion which is underlying the celebrated Black–Scholes–Merton model [3], [20].
The extremum of such a process is of interest when derivatives with barrier and lookback
features are evaluated [10], [11], [15], [16], [17], [18], [19], [22].

In this paper, we consider the monitoring error for the supremum of Merton’s normal jump
diffusion process [21] defined on a complete filtered probability space (�, F , F, P) with the
filtration F = {Ft , t ≥ 0} satisfying the usual conditions. The process takes the form

Xt = µt + σBt +
Nt∑
i=1

Zi,

where µ ∈ R, σ > 0, Bt is a standard Brownian motion, Nt is a Poisson process with intensity
λ > 0, and {Zi, i ≥ 1} are independent and identically distributed (i.i.d.) jump sizes with
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a normal distribution N(m̃, s2) for some m̃ ∈ R and s > 0. The Brownian motion, the
Poisson process, and the jump sizes are independent. The limiting case λ = 0 is simply a
drifted Brownian motion. Much is known about such a process. For example, its characteristic
function admits a very simple form. Moreover, the transition probability density of X is also
known and given by (see [7])

p(t, x) = e−λt
∞∑

k=0

(λt)k

k!
1√

2π(σ 2t + ks2)
exp

(
− (x − µt − km̃)2

2(σ 2t + ks2)

)
. (1)

We consider the supremum of X on a fixed time horizon [0, T ]. Without loss of generality,
we take T = 1. We are interested in characterizing the (expected) monitoring error for the
supremum when the process is monitored discretely with a constant monitoring interval T/N :

E
[

sup
0≤t≤1

Xt − max
0≤n≤N

Xn/N

]
. (2)

The above quantity appears in various application areas and has been well studied in the case
of a drifted Brownian motion Xt = µt + σBt . In [2], it was shown that (2) is of the form
−σζ( 1

2 )/
√

2πN + O(1/N), where ζ(s) is the Riemann zeta function. This result is used to
establish that the order of strong convergence when a reflected Brownian motion is simulated
using the Euler discretization is 1

2 . The same result is also derived in [6], although in a different
form, when two passive algorithms for global optimization of continuous functions on one-
dimensional domains are studied. The coefficient for 1/N is further derived in [5] when
correction formulae are designed for pricing discretely monitored lookback options using
continuous lookback option pricing formulae in the Black–Scholes–Merton model. More
recently, the above results have been greatly sharpened in [14], where a complete expansion
of (2) in terms of 1/N was obtained. More specifically, let N (x) be the standard normal
cumulative distribution function, and let g(t) = µN (µ

√
t) + e−µ2t/2/

√
2πt . Let g(i), i ≥ 1,

be the ith derivative of g, and let {Bk, k ≥ 0} be the Bernoulli numbers (see [12])

Bk =
k∑

i=0

i∑
j=0

(−1)j
(

i

j

)
jk

i + 1
, k ≥ 0.

For all odd k > 1, Bk = 0, and the first five values of the Bernoulli numbers are B0 = 1,
B1 = − 1

2 , B2 = 1
6 , B4 = − 1

30 , and B6 = 1
42 . Then, for a drifted Brownian motion, (2) admits

the following expansion.

Theorem 1. ([14].) Let Xt = µt + Bt , where µ ∈ R and Bt is a standard Brownian motion.
Then, for any integer m ≥ 1, we have

E
[

sup
0≤t≤1

Xt − max
0≤n≤N

Xn/N

]
= − ζ(1/2)√

2πN
− 2g(1) − µ

4N
−

m∑
i=1

B2i

(2i)!
g(2i−1)(1)

N2i

− 1√
2πN

∞∑
n=0

ζ(−1/2 − n)(−1/2)n

n! (2n + 1)(2n + 2)

(
µ√
N

)2n+2

+ O

(
1

N2m+2

)
.
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In this paper, we follow the approach of [14] and extend the above result to Merton’s normal
jump diffusion process. Before we state the main result of this paper, we introduce some
notation. Throughout this paper, we will use Erf(x) and Erfc(x) to denote the error function
and the complementary error function:

Erf(x) = 2√
π

∫ x

0
e−t2

dt = 2N (
√

2x) − 1

and

Erfc(x) = 1 − Erf(x) = 2√
π

∫ ∞

x

e−t2
dt = 2N (−√

2x).

In the remainder of this paper, we set a = (2λσ 2 +µ2)/(2σ 2) and a(x) = (2λσ 2 +x2)/(2σ 2),
and define

f1(t) = e−λtErfc

(
− µ√

2σ 2

√
t

)
, (3a)

f2(t) = 1√
t

e−at , (3b)

g(t, x) = √
te−a(x)t , (3c)

pk(t) = e−λt tk−1Erfc

(
− µt + km̃√

2(σ 2t + ks2)

)
, k ≥ 1, (3d)

qk(t) = tpk(t), k ≥ 1, (3e)

rk(t) = e−λt tk−1
√

σ 2t + ks2 exp

(
− (µt + km̃)2

2(σ 2t + ks2)

)
, k ≥ 1. (3f)

For a function f (t) and i ≥ 1, f (i)(t) denotes the ith derivative of f (t). Moreover, g(i)(t, x)

denotes the ith derivative of g(t, x) with respect to t . The main result of this paper is as follows.

Theorem 2. Let Xt = µt + σBt + ∑Nt

i=1 Zi , where µ ∈ R, σ > 0, Bt is a standard Brownian
motion, Nt is a Poisson process with intensity λ > 0, Zi ∼ N(m̃, s2) are i.i.d. with m̃ ∈ R and
s > 0, and Bt , Nt , Zi, i ≥ 1, are independent. Then, for any integer N > (2λσ 2+µ2)/(4πσ 2)

and m ≥ 1,

E
[

sup
0≤t≤1

Xt − max
0≤n≤N

Xn/N

]
= −σζ(1/2)√

2πN
+ b1

N
+

∞∑
n=1

an

Nn+1/2 +
m∑

i=1

b2i

N2i
+ O

(
1

N2m+2

)
.

The coefficients are given by

an = −ζ(1/2 − n)

n! √2π

(
σ

(
−λ − µ2

2σ 2

)n

+ nµ

σ

∫ µ

0

(
−λ − x2

2σ 2

)n−1

dx

)
, n ≥ 1,

where ζ(s) is the Riemann zeta function, ζ( 1
2 ) ≈ −1.460 354 51,

b1 = 1

4

(
µ − µe−λErfc

(
− µ√

2σ 2

)
+ m̃λErfc

(
− m̃√

2s2

)

−
∞∑

k=1

λk

k! (µ + m̃k)e−λErfc

(
− µ + km̃√

2(σ 2 + ks2)

))
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+ 1

2
√

2π

(
λs exp

(
− m̃2

2s2

)
− σ exp

(
−

(
λ + µ2

2σ 2

))

−
∞∑

k=1

λk

k! e−λ
√

σ 2 + ks2 exp

(
− (µ + km̃)2

2(σ 2 + ks2)

))
,

and, for i ≥ 1,

b2i = − B2i

(2i)!
(

µ

2
λ2i−1(1 − e−λ) + µ√

2πσ 2

∫ µ

0
g(2i−1)(1, x) dx

+ 1√
2π

∞∑
k=1

λk

k! (r
(2i−1)
k (1) − r

(2i−1)
k (0)) + σ√

2π
f

(2i−1)
2 (1)

+ 1

2

∞∑
k=1

λk

k! (µ(q
(2i−1)
k (1) − q

(2i−1)
k (0)) + m̃k(p

(2i−1)
k (1) − p

(2i−1)
k (0)))

)
.

Two remarks are in order. First, it is trivial to verify that Theorem 2 reduces to Theorem 1
when λ = 0 and σ = 1. Second, the first term in the expansion for the jump diffusion process
is the same as the first term in the expansion for the corresponding drifted Brownian motion
without jumps. That is, it does not depend on jumps. Intuitively, due to the nature of the
compound Poisson process component in Xt , the probability that an interval of length 1/N

contains one or more jumps is of order O(1/N). When N increases, the monitoring error due
to the drifted Brownian motion component, which is of the order O(1/

√
N), dominates.

Before we proceed to the proof, we first review some results that will be used later. It is
known that the error function admits the following Taylor expansion (see Section 7.1.5 of [1]):

Erf(x) = 2√
π

∞∑
n=0

(−1)nx2n+1

n! (2n + 1)
= 2√

π

(
x − x3

3
+ x5

10
− · · ·

)
for all x ∈ R.

Denote the probability density function of the standard normal distribution by φ(x) =
(1/

√
2π) exp(− 1

2x2). Using φ(1)(x) = −xφ(x), it is easy to verify that

Erfc(1)(x) = −2
√

2φ(−√
2x), Erfc(2)(x) = 4

√
2xφ(−√

2x). (4)

Since the normal jump diffusion process is a Lévy process, it corresponds to a random walk
when monitored discretely and evenly. One of the important tools that is often used to study
the maximum of a random walk is Spitzer’s identity [24], which gives an explicit expression
for the maximum of a random walk. More specifically, for a random walk S0 = 0, Sn =∑n

k=1 Xk, n ≥ 1, with i.i.d. step sizes {Xk, k ≥ 1}, it holds that

E
[

max
0≤k≤n

Sk

]
=

n∑
k=1

1

k
E[S+

k ],

where x+ = max(0, x). In our case, we have a discretely monitored normal jump diffusion
process Xt with monitoring interval 1/N and time horizon [0, 1]. From the independent and
stationary increment properties and Spitzer’s identity, we have

E
[

max
0≤n≤N

Xn/N

]
=

N∑
n=1

1

n
E[X+

n/N ] =
N∑

n=1

1

n

∫ ∞

0
xp

(
n

N
, x

)
dx. (5)
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By the dominated convergence theorem, the expected supremum of X on [0, 1] is then given
by

E
[

sup
0≤t≤1

Xt

]
=

∫ 1

0

1

t

∫ ∞

0
xp(t, x) dx dt. (6)

We note that the right-hand side of (5) is very close to the trapezoidal sum approximation
of the integral on the right-hand side of (6). Expansion of the error of the trapezoidal sum
approximation to an integral can thus be used to study the difference between the continuous
supremum and discrete maximum. This motivates the use of the Euler–Maclaurin formula,
which describes the discretization error of the trapezoidal approximation to an integral (see [8,
Theorem 3.4.10, Chapter 3]): if f ∈ C2m+2([a, b]), b − a = Nh for a positive integer N ≥ 1,

and h > 0, then∫ b

a

f (x) dx − h

N∑
n=1

f (a + nh)

= −h

2
(f (b) − f (a)) −

m∑
i=1

B2i

(2i)!h
2i (f (2i−1)(b) − f (2i−1)(a)) − R2m+2,

where

R2m+2 = h2m+2
∫ b

a

(
B2m+2 − B̂2m+2

(
x − a

h

))
f (2m+2)(x)

(2m + 2)! dx.

Here

Bi(x) =
i∑

j=0

(
i

j

)
Bjx

i−j

is the ith Bernoulli polynomial, B̂i(x) = Bi(x − 	x
), and 	x
 is the largest integer that is less
than or equal to x. Note that B̂i(x) is the periodically extended version of Bi(x) on [0, 1] and
is hence bounded. If f ∈ C2m+2([a, +∞)), limb→+∞ f (i)(b) = 0, 0 ≤ i ≤ 2m + 1, and∫ +∞
a

|f (2m+2)(x)| dx < ∞, then the above still holds by replacing f (b) and f (2i−1)(b), 1 ≤
i ≤ m, by 0, N by +∞, and the upper limit b of the integral in R2m+2 by +∞.

For certain integrals that we need to handle, instead of the Euler–Maclaurin formula, well-
established results in analytic number theory can be applied directly. The following result
regarding the Lerch transcendent has been successfully applied in [13] and [14] for studying
the maximum of Gaussian random walks and to obtain Theorem 1. The same technique will
be used to derive Theorem 2 in this paper. The Lerch transcendent is the analytic continuation
of the following infinite series:

�(z, s, v) =
∞∑

n=0

(n + v)−szn.

It has the following expansion for | log(z)| < 2π, s �= 1, 2, 3, . . . , v �= 0, −1, −2, . . . (see [9,
Chapter 1]):

�(z, s, v) = �(1 − s)

zv

(
log

(
1

z

))s−1

+ 1

zv

∞∑
n=0

ζ(s − n, v)
(log(z))n

n! , (7)

where �(x) is the gamma function and ζ(s, v) = �(1, s, v) is the Hurwitz zeta function. In
particular, ζ(s, 1) is the Riemann zeta function ζ(s).
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2. Proof of Theorem 2

Recall that

E
[

sup
0≤t≤1

Xt

]
=

∫ 1

0

1

t

∫ ∞

0
xp(t, x) dx dt,

E
[

max
0≤n≤N

Xn/N

]
=

N∑
n=1

1

n

∫ ∞

0
xp

(
n

N
, x

)
dx.

With the transition density p(t, x) given in (1), we have, by Fubini’s theorem,∫ ∞

0
xp(t, x) dx = e−λt

∞∑
k=0

(λt)k

k!
1√

2π(σ 2t + ks2)

∫ ∞

0
x exp

(
− (x − µt − km̃)2

2(σ 2t + ks2)

)
dx

= e−λt
∞∑

k=0

(λt)k

k!
(

µt + km̃

2
Erfc

(
− µt + km̃√

2(σ 2t + ks2)

)

+
√

σ 2t + ks2

2π
exp

(
− (µt + km̃)2

2(σ 2t + ks2)

))
.

Applying Fubini’s theorem again, we find that E[sup0≤t≤1 Xt ] is equal to

∞∑
k=0

λk

k!
∫ 1

0
e−λt tk−1

(
µt + km̃

2
Erfc

(
− µt + km̃√

2(σ 2t + ks2)

)

+
√

σ 2t + ks2

2π
exp

(
− (µt + km̃)2

2(σ 2t + ks2)

))
dt. (8)

The term corresponding to k = 0 reduces to

µ

2

∫ 1

0
e−λtErfc

(
− µ√

2σ 2

√
t

)
dt + σ√

2π

∫ 1

0

1√
t

exp

(
−

(
λ + µ2

2σ 2

)
t

)
dt. (9)

Using the expression above for
∫ ∞

0 xp(t, x) dx, with t replaced by n/N , we find that
E[max0≤n≤N Xn/N ] is equal to

∞∑
k=0

λk

k!
1

N

N∑
n=1

e−λn/N

(
n

N

)k−1(
µn/N + km̃

2
Erfc

(
− µn/N + km̃√

2(σ 2n/N + ks2)

)

+
√

σ 2n/N + ks2

2π
exp

(
− (µn/N + km̃)2

2(σ 2n/N + ks2)

))
. (10)

Again, the term corresponding to k = 0 reduces to

µ

2

1

N

N∑
n=1

e−λn/NErfc

(
− µ√

2σ 2

√
n

N

)
+ σ√

2π

1

N

N∑
n=1

1√
n/N

exp

(
−

(
λ+ µ2

2σ 2

)
n

N

)
. (11)

To study the monitoring error (2), it suffices to study the differences of the corresponding terms
in (8)–(11). More specifically, we have the following representation for (2):

E
[

sup
0≤t≤1

Xt − sup
0≤n≤N

Xn/N

]
= µ

2
E1 + σ√

2π
E2 + 1

2
E3 + 1√

2π
E4. (12)
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Here E1, E2, E3, and E4 are given by

E1 =
∫ 1

0
f1(t) dt − 1

N

N∑
n=1

f1

(
n

N

)
,

E2 =
∫ 1

0
f2(t) dt − 1

N

N∑
n=1

f2

(
n

N

)
,

E3 =
∞∑

k=1

λk

k!
(∫ 1

0
(µqk(t) + km̃pk(t)) dt − 1

N

N∑
n=1

(
µqk

(
n

N

)
+ km̃ pk

(
n

N

)))
,

E4 =
∞∑

k=1

λk

k!
(∫ 1

0
rk(t) dt − 1

N

N∑
n=1

rk

(
n

N

))
,

where f1, f2, pk , qk, and rk are defined in (3). For E3 and E4, the integrands are smooth
on [0, 1] and the Euler–Maclaurin formula can be used directly. For E1 and E2, we utilize
expansion (7) for the Lerch transcendent.

2.1. Analysis for E1

We first consider the case µ = 0. Then f1(t) = e−λt , and its ith order derivative is simply
f

(i)
1 (t) = (−λ)if1(t). By the Euler–Maclaurin formula, for any integer m ≥ 1, we have

E1 = − 1

2N
(e−λ − 1) −

m∑
i=1

B2i

(2i)!
1

N2i
(f

(2i−1)
1 (1) − f

(2i−1)
1 (0)) − R2m+2

= 1 − e−λ

2N
−

m∑
i=1

B2i

(2i)!
1

N2i
λ2i−1(1 − e−λ) + O

(
1

N2m+2

)
,

where the last term is due to the boundedness of B̂2m+2 and

R2m+2 = 1

N2m+2

∫ 1

0
(B2m+2 − B̂2m+2(Nx))

f
(2m+2)
1 (x)

(2m + 2)! dx.

Next, we consider the case when µ �= 0. In the following, we assume that µ > 0. When
µ < 0,

∫ µ

0 is understood as − ∫ 0
µ

and x ∈ [0, µ] is understood as x ∈ [µ, 0]. Otherwise, the
proof is identical. Note that f1(t) is not differentiable at 0. Its derivatives contain the terms
1/

√
t, 1/t

√
t, . . .. The Euler–Maclaurin formula cannot be applied directly. Instead, we use

(4) to obtain the following representation for the complementary error function term in f1(t):

Erfc

(
− µ√

2σ 2

√
t

)
= − 1√

2σ 2

√
t

∫ µ

0
Erfc(1)

(
− x√

2σ 2

√
t

)
dx + Erfc(0)

=
√

2

πσ 2

√
t

∫ µ

0
exp

(
− x2

2σ 2 t

)
dx + 1.
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Similarly, we get the representation for Erfc(−(µ/
√

2σ 2)
√

n/N ) by replacing t with n/N

in the above. Thus, using our notation a(x) = λ + x2/(2σ 2) > 0, we have

E1 =
√

2

πσ 2

∫ µ

0

(∫ 1

0

√
te−a(x)t dt − 1

N

N∑
n=1

√
n

N
e−a(x)n/N

)
dx

+
( ∫ 1

0
e−λt dt − 1

N

N∑
n=1

e−λn/N

)
.

We have established the expansion for the second term above when discussing the case for
µ = 0. To deal with the first term, we set

E1x =
∫ 1

0
g(t, x) dt − 1

N

N∑
n=1

g

(
n

N
, x

)

=
(∫ ∞

0
g(t, x) dt − 1

N

∞∑
n=1

g

(
n

N
, x

))
−

(∫ ∞

1
g(t, x) dt − 1

N

∞∑
n=N+1

g

(
n

N
, x

))
,

where g(t, x) = √
te−a(x)t was defined in (3c). By the definition of the Lerch transcendent,

we have

1

N

∞∑
n=1

g

(
n

N
, x

)
= e−a(x)/N

N3/2

∞∑
n=0

(n + 1)1/2e−a(x)n/N = e−a(x)/N

N3/2 �

(
e−a(x)/N , −1

2
, 1

)
.

For any positive integer N such that

N >
2λσ 2 + µ2

4πσ 2 , (13)

we have 0 < a(x)/N < 2π on [0, µ] and, hence, expansion (7) applies, i.e.

1

N

∞∑
n=1

g

(
n

N
, x

)
= �

(
3

2

)
(a(x))−3/2 +

∞∑
n=0

ζ

(
−1

2
− n

)
(−a(x))n

n!
1

Nn+3/2

=
∫ ∞

0
g(t, x) dt +

∞∑
n=0

ζ

(
−1

2
− n

)
(−a(x))n

n!
1

Nn+3/2 ,

where we have used the fact that, for any a > 0,
∫ ∞

0

√
te−at dt = �( 3

2 )/a3/2. We have thus
obtained the expansion for the first part in E1x . For the second part, note that g(t, x), as a
function of t , is smooth on [1, ∞), and all its derivatives with respective to t vanish at ∞
and are absolutely integrable on [1, ∞) due to the exponential tail. This can be seen from the
following:

g(i)(t, x) := ∂i

∂t i
g(t, x) =

i∑
j=0

(
i

j

)
∂j (e−a(x)t )

∂tj

∂i−j (
√

t)

∂t i−j
, i ≥ 0. (14)

For example, when i = 1 and i = 2, we have

g(1)(t, x) = √
te−a(x)t

(
1

2t
− a(x)

)
, g(2)(t, x) = √

te−a(x)t

(
a(x)2 − a(x)

t
− 1

4t2

)
.
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From the Euler–Maclaurin formula,

∫ ∞

1
g(t, x) dt − 1

N

∞∑
n=N+1

g

(
n

N
, x

)
= e−a(x)

2N
+

m∑
i=1

B2i

(2i)!
1

N2i
g(2i−1)(1, x) − R2m+2(x),

where the remainder is given by

R2m+2(x) = 1

N2m+2

∫ ∞

1
(B2m+2 − B̂2m+2((t − 1)N))

g(2m+2)(t, x)

(2m + 2)! dt.

Thus, we have the following expansion for E1x :

E1x =−
∞∑

n=0

ζ

(
−1

2
−n

)
(−a(x))n

n!
1

Nn+3/2 − e−a(x)

2N
−

m∑
i=1

B2i

(2i)!
1

N2i
g(2i−1)(1, x)+R2m+2(x).

Recall that a(x) = λ + x2/(2σ 2). So we have

∫ µ

0
e−a(x) dx = e−λ

∫ µ

0
e−x2/(2σ 2) dx =

√
πσ 2

2
e−λErf

(
µ√
2σ 2

)
.

Using 1 + Erf(x) = Erfc(−x), we obtain the following expansion for E1 (the validity of
interchanging the summation and integration will be established shortly):

E1 =
√

2

πσ 2

∫ µ

0
E1x dx + 1 − e−λ

2N
−

m∑
i=1

B2i

(2i)!
1

N2i
λ2i−1(1 − e−λ) + O

(
1

N2m+1

)

= 1 − e−λErfc(−µ/
√

2σ 2)

2N
−

√
2

πσ 2

∞∑
n=0

ζ(−1/2 − n)

n! Nn+3/2

∫ µ

0

(
−λ − x2

2σ 2

)n

dx

−
m∑

i=1

B2i

(2i)! N2i

(
λ2i−1(1 − e−λ) +

√
2

πσ 2

∫ µ

0
g(2i−1)(1, x) dx

)
+ O

(
1

N2m+2

)
.

In the above, we have used the fact that∣∣∣∣
∫ µ

0
R2m+2 dx

∣∣∣∣ ≤ 1

N2m+2

∫ µ

0

∫ ∞

1
|B2m+2 − B̂2m+2((t − 1)N)| |g

(2m+2)(t, x)|
(2m + 2)! dt dx

= O

(
1

N2m+2

)
,

since, for a fixedm, B̂2m+2((t − 1)N) is bounded by a constant independent ofN (see Section 1),
and, from (14), |g(2m+2)(t, x)| is bounded by

√
te−λt multiplied by a polynomial in a(x) of

finite order and the polynomial itself is bounded for x ∈ [0, µ]. Finally, we need to validate
the interchanging of the summation and integration:

∫ µ

0

∞∑
n=0

ζ(−1/2 − n)

n!
(−a(x)

N

)n

dx =
∞∑

n=0

∫ µ

0

ζ(−1/2 − n)

n!
(−a(x)

N

)n

.

https://doi.org/10.1239/jap/1324046016 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1324046016


1030 A. CHEN ET AL.

We use Equation (23.2.6) of [1] with s = − 1
2 − n for the Riemann zeta function and Equation

(6.1.12) of [1] for the gamma function to obtain, for any integer n ≥ 0,

ζ(−1/2 − n)

n! = −2(2π)−n−3/2ζ

(
n + 3

2

)
sin

(
nπ

2
+ π

4

)
�(n + 3/2)

n!
= −2(2π)−n−3/2ζ

(
n + 3

2

)
sin

(
nπ

2
+ π

4

)
(2n + 1)!!

2n+1n!
√

π,

where (2n + 1)!! = 1 · 3 · 5 · · · (2n + 1). But |sin(nπ/2 + π/4)| = √
2/2,

(2n + 1)!!
2n+1n! = (n + 1)

(2n + 1)!!
2n+1(n + 1)! = (n + 1)

(2n + 1)!!
(2n + 2)!! < n + 1,

and
ζ
(
n + 3

2

) ≤ ζ
( 3

2

)
< ∞.

We thus have the following bound:∣∣∣∣ζ(−1/2 − n)

n!
∣∣∣∣ ≤ n + 1

(2π)n+1 ζ

(
3

2

)
.

Moreover, 0 < a(x)/N ≤ (λ + µ2/(2σ 2))/N for x ∈ [0, µ], and, by our condition (13),
0 < (λ + µ2/(2σ 2))/(2πN) < 1. It follows that

∞∑
n=0

ζ(−1/2 − n)

n!
(−a(x)

N

)n

converges absolutely and uniformly. This validates the interchanging of the summation and
integration.

2.2. Analysis for E2

The second term E2 in (12) concerns f2(t). Recall that f2(t) = e−at /
√

t and a = λ +
µ2/2σ 2. Following the same approach used in [14] and Section 2.1, we have

E2 =
(∫ ∞

0
f2(t) dt − 1

N

∞∑
n=1

f2

(
n

N

))
−

(∫ ∞

1
f2(t) dt − 1

N

∞∑
n=N+1

f2

(
n

N

))
.

For the first component above, with N satisfying (13) and, hence, a/N < 2π , expansion (7)
with z = e−a/N , s = 1

2 , and v = 1 can be used. With �( 1
2 ) = √

π , ζ(s, 1) = ζ(s), and∫ ∞
0 f2(t) dt = √

π/a, we obtain

1

N

∞∑
n=1

f2

(
n

N

)
=

∫ ∞

0
f2(t) dt +

∞∑
n=0

(
ζ(1/2 − n)(−a)n

n!
)

1

Nn+1/2 .

For the second component in E2, we apply the Euler–Maclaurin formula for f2(t), which is
smooth on [1, ∞), with all its derivatives vanishing at ∞ and absolutely integrable on [1, ∞):

∫ ∞

1
f2(t) dt − 1

N

∞∑
n=N+1

f2

(
n

N

)
= 1

2N
f2(1) +

m∑
i=1

(
B2i

(2i)!f
(2i−1)
2 (1)

)
1

N2i
− R2m+2.
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The remainder is given by

R2m+2 = 1

N2m+2

∫ ∞

1
(B2m+2 − B̂2m+2(N(t − 1)))

f
(2m+2)
2 (t)

(2m + 2)! dt.

Combining the above, we have the following expansion for E2:

E2 = −ζ(1/2)√
N

− e−(λ+µ2/2σ 2)

2N
−

∞∑
n=1

ζ(1/2 − n)(−a)n

n! Nn+1/2 −
m∑

i=1

B2i

(2i)! N2i
f

(2i−1)
2 (1)

+ O

(
1

N2m+2

)
.

Remark 1. In the analyses of E1 and E2, due to the nondifferentiability of the corresponding
integrands at the lower endpoints of the integrals, the Euler–Maclaurin formula cannot be
used directly. This difficulty is overcome by using the expansion of the Lerch transcendent,
which essentially gives us the expansion of the error of approximating an integral with the
right endpoint rule. Moreover, the Lerch transcendent is only necessary in analyzing E1 and
E2, which basically correspond to the term with k = 0 in (1) (see also (9) and (11)). The
applicability of the Lerch transcendent is therefore not restricted by the assumption of normal
jump sizes.

2.3. Analysis for E3

The third term E3 in (12) concerns the summations

∞∑
k=1

λk

k!
∫ 1

0
pk(t) dt,

∞∑
k=1

λk

k!
∫ 1

0
qk(t) dt,

where pk and qk are defined in (3d)–(3e). The derivatives of pk(t) and qk(t) can be computed
as

q
(1)
k (t) = pk(t) + tp

(1)
k (t),

q
(2)
k (t) = 2p

(1)
k (t) + tp

(2)
k (t),

p
(1)
k (t) = 1{k≥2}(k − 1)e−λt tk−2Erfc

(
− µt + km̃√

2(σ 2t + ks2)

)

− λpk(t) + e−λt tk−1φ

(
µt + km̃√
σ 2t + ks2

)
µσ 2t + 2µks2 − kσ 2m̃

(σ 2t + ks2)3/2 , k ≥ 1. (15)

Recall that φ(x) is the probability density function of the standard normal distribution. We can
further compute the derivative of p

(1)
k (t). The derivative of the first term in (15) has a similar

form as p
(1)
k (t) itself. The derivatives of the remaining terms in (15) are also straightforward

to compute. Using the boundedness of the normal density φ(x) and the complementary error
function Erfc(x), it can be seen that, for any integer i ≥ 0, p

(i)
k (t) and q

(i)
k (t) can all be

bounded by polynomials in k of finite orders on [0, 1]. Consequently, we have

∞∑
k=1

λk

k! |p
(i)
k (1) − p

(i)
k (0)| < ∞,

∞∑
k=1

λk

k!
∫ 1

0
|p(i)

k (t)| dt < ∞, (16)
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and ∞∑
k=1

λk

k! |q
(i)
k (1) − q

(i)
k (0)| < ∞,

∞∑
k=1

λk

k!
∫ 1

0
|q(i)

k (t)| dt < ∞. (17)

From the Euler–Maclaurin formula, using (17) and qk(0) = 0, k ≥ 1, we obtain

µ

∞∑
k=1

λk

k!
(∫ 1

0
qk(t) dt − 1

N

N∑
n=1

qk

(
n

N

))

= µ

∞∑
k=1

λk

k!
(

1

2N
(qk(0) − qk(1)) −

m∑
i=1

B2i

(2i)!N2i
(q

(2i−1)
k (1) − q

(2i−1)
k (0))

)

+ O

(
1

N2m+2

)

= − µ

2N

∞∑
k=1

λk

k! qk(1) −
m∑

i=1

µB2i

(2i)! N2i

∞∑
k=1

λk

k! (q
(2i−1)
k (1) − q

(2i−1)
k (0)) + O

(
1

N2m+2

)
.

Similarly, with pk(0) = 0, k ≥ 2, from the Euler–Maclaurin formula and (16), we have

m̃

∞∑
k=1

λkk

k!
(∫ 1

0
pk(t) dt − 1

N

N∑
n=1

pk

(
n

N

))

= m̃

2N

(
λp1(0) −

∞∑
k=1

λkk

k! pk(1)

)
−

m∑
i=1

m̃B2i

(2i)! N2i

∞∑
k=1

λkk

k! (p
(2i−1)
k (1) − p

(2i−1)
k (0))

+ O

(
1

N2m+2

)
.

Adding the above, noting that qk(1) = pk(1), we obtain the expansion for E3:

E3 = 1

2N

(
m̃λp1(0) −

∞∑
k=1

λk

k! (µ + m̃k)pk(1)

)

−
m∑

i=1

B2i

(2i)! N2i

∞∑
k=1

λk

k! (µ(q
(2i−1)
k (1) − q

(2i−1)
k (0)) + m̃k(p

(2i−1)
k (1) − p

(2i−1)
k (0)))

+ O

(
1

N2m+2

)
.

2.4. Analysis for E4

The fourth term E4 in (12) concerns the summation
∞∑

k=1

λk

k!
∫ 1

0
rk(t) dt,

where rk is defined in (3f). The first-order derivative of rk(t) is given by

r
(1)
k (t) = 1{k≥2}(k − 1)e−λt tk−2

√
σ 2t + ks2 exp

(
− (µt + km̃)2

2(σ 2t + ks2)

)

+ rk(t)

(
−λ + σ 2

2(σ 2t + ks2)
− (µt + km̃)(µσ 2t + 2µks2 − km̃σ 2)

2(σ 2t + ks2)2

)
for k ≥ 1.
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We can easily compute higher-order derivatives of rk(t). For example, the derivative of the
first term in r

(1)
k (t) has a similar form as r

(1)
k (t) itself. The derivatives of the remaining terms,

although cumbersome, are straightforward to compute. We observe that rk(t) is in fact smooth
on [0, 1], and, for any integer i ≥ 0, r(i)

k (t) can be bounded by a polynomial in k of finite orders
on [0, 1]. Consequently, we have

∞∑
k=1

λk

k! |r
(i)
k (1) − r

(i)
k (0)| < ∞,

∞∑
k=1

λk

k!
∫ 1

0
|r(i)

k (t)| dt < ∞.

Therefore, by the Euler–Maclaurin formula, using rk(0) = 0 for k ≥ 2, we obtain the following
expansion for E4:

E4 =
∞∑

k=1

λk

k!
(∫ 1

0
rk(t) dt − 1

N

N∑
n=1

rk

(
n

N

))

=
∞∑

k=1

λk

k!
(

1

2N
(rk(0) − rk(1)) −

m∑
i=1

B2i

(2i)! N2i
(r

(2i−1)
k (1) − r

(2i−1)
k (0))

)
+ O

(
1

N2m+2

)

= 1

2N

(
λr1(0) −

∞∑
k=1

λk

k! rk(1)

)
−

m∑
i=1

B2i

(2i)! N2i

∞∑
k=1

λk

k! (r
(2i−1)
k (1) − r

(2i−1)
k (0))

+ O

(
1

N2m+2

)
.

Combining the above results for E1, E2, E3, and E4, we obtain the expansion in Theorem 2.

3. Concluding remarks

We studied the monitoring error of the supremum of Merton’s normal jump diffusion process
on a fixed finite time horizon. The error is of the forma0/N

1/2+a1/N
3/2+· · ·+b1/N+b2/N

2+
b4/N

4 + · · · . The coefficients {a0, a1, . . . , b1, b2, . . .} admit explicit expressions and can be
computed numerically. The proof used Spitzer’s identity regarding the maximum of a random
walk and the Euler–Maclaurin formula regarding the discretization error of the trapezoidal sum
approximation to an integral, as well as a well-known expansion for the Lerch transcendent. The
Lerch transcendent has been successfully applied in [13] and [14] to study the maximum of a
Gaussian random walk and the monitoring error of the supremum of a drifted Brownian motion.
The same technique was used in deriving our main result, Theorem 2. Finally, we remark that
the analysis in this paper relies on the explicit expression of the transition probability density of
the underlying stochastic process. For other jump diffusion processes and more general Lévy
processes, the transition densities may not be available explicitly or may be too complex. In
these cases, expansions of the monitoring errors can be obtained by analyzing the characteristic
functions or Lévy densities of the underlying processes. The extension to more general Lévy
processes will be reported separately.
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