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THE GEOMETRICAL CONSTRUCTIONS
LIFTING TENSOR FIELDS OF TYPE (0,2) ON MANIFOLDS
TO THE BUNDLES OF A-VELOCITIES

W. M. MIKULSKI

0. Introduction

Let A be a Weil algebra. The fibre bundle T*M of A-velocities over a mani-
fold M was described by A. Morimoto [15] as another description of the bundle of
near A-points by Weil [17]. In [4] for any tensor field 7 of type (0,2) on M and
any functional A € A” we have defined the so called A-lift of T to T*M. We recall
this construction in Example 1.3. The A-lift of 7 is a naturally induced tensor
field of type (0,2) on T*M.

In this paper we study the problem how a tensor field of type (0,2) on M can
induce tensor fields of types (0,1) and (0,2) on T*M. In Section 1 we present some
constructions of such type. Some new lifts of tensor fields of type (0,2) to M
are presented. In Section 2 we remark that the idea of such constructions is re-
flected in the concept of natural operators 7% > 17°°7T* and 7 —» 774,
cf. [6]. The rest of the paper is dedicated to the proof of the following classifica-
tion theorems.

THEOREM 0.1. Let A be a Weil algebra with p variables. For n-manifolds (n =
p + 2), the space of all natural operators T - TT* is q free finitely generated
module over C(S?), where S* is a finite dimensional vector space depending canowi-
cally om A.

THEOREM 0.2. Let A be a Weil algebra with p variables. For n-manifolds (n =
b+ 3), the space of all natural operators T"? — TPT* is a free finitely generated
module over C w(SA), where S* is a finite dimensional vector space depending canoni-
cally on A (the same as in Theorem 0.1).
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In the proofs of these theorems we construct explicitly the bases of these
C” (5" -modules. The space S” is defined in Section 1.

Problems of finding all some type natural operators has been studied by many
authors, cf. [1], [2], [3], [5]-[14]. Classifications of natural operators T *%—
T??T* are useful in the cases: (a) (p, @) = (0,1) because of almost contact
structures; (b) (p, @ = (0,2) because of Riemannian and almost symplectic struc-
tures; (c) (p, ¢ = (1,1) because of almost tangent and almost complex structures;
(d) @, @ = (0,0); (e) (p, ¢ = (1,0) because of vector fields. A classification in
the case (e) is given by I. Kolaf [5]. Classifications in cases (d) and (e) are pre-
sented in [10] and [13] respectively. Hence this paper is a continuation of [5], [10],
[13]. A classification in the case (c) is unknown. A classification of all natural
i

operators 7% — T* for arbitrary p, q, p, 4 is unknown even in the case

T'M= M.

It will be interesting to obtain classifications of natural operators lifting some
other geometrical objects (for example, connections) to the bundles of A-velocities.
In [14] we have solved the last problem in the case of foliations.

All manifolds and maps in this paper are assumed to be smooth, i.e. infinitely
differentiable. Manifolds are assumed to be finite dimensional and without bounda-
ries.

1. Main examples

Let C:(Rp) be the algebra of all germs at O of maps R’ —R. Let ASs
CJ(R”) be a finite codimensional ideal (with respect to R). The factor algebra
A= CJ(R")/A s called a Weil algebra with p variables.

Let M be a manifold. Two maps g, & : R”— M, g(0) = h(0) = z, are called
to be A-equivalent if germy(@ g — ¢ h) € A for every ¢ : M— R. Such an
equivalence class is denoted by jAg and called an A-velocity on M. The set of all
A-velocities on M is denoted by T*M. Then T*M is a fibre bundle over M with
projection j*g— g(0). Every chart (U, ¢) on M determines a chart § on T*M
over U given by (G 9 = G (o' g),. ..,/ (¢" - g) €EAX -+ x A=R""
Every f : M— N is extended to T*f : T*M— T*N defined by T*f(*g) =7*(f-g).
T is a product preserving bundle functor from the category of all manifolds and
maps into the category of fibered manifolds and fibered maps, cf. [15], [6], [4].

Let 7 (M) be the C”(M)-module of all tensor fields of type (0, @) on M.

Let A be as above. Let géo’a) (R?) be the C:(Rp) -module of all germs at 0 of
tensor fields of type (0,a) on R’ Let
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(1.1) Q' = TR /AT PR + CF R dA)

be the factor module, where A7, (R") is the multiplication of 7, (R") by A

and C; (R")dA is the submodule of TV (R?) spanned by all df with f € A. Let

S* = TP RN /AT P R + (C7RNdA) ® T, (R

1.2
(1.2) + 7R ® (C; (R dA))

be the factor module, where (C;(R")dA) R TLP(R?) is the submodule in
T (R”) generated by all germy(w, ® w,) with germ,(w,) € Cy (R*)dA and
germy(w,) € 7"V (R”). Of course, Q" and S* are finite dimensional vector
spaces over R. Given w € 7 “V(R?) the equivalence class of germ, @ modulo
AT R + C(R")dA is denoted by [w],. Given 7€ 7 “?(R’) the equiva-
lence class of germyr modulo A7, YR’ + C7(R)dA) Q@ T,V (R") +
TIVR") ® (C7(R)dA) is denoted by [[7]],.

For example in the case A = Cy (R)/{t"*"), where t is the usual coordinate
on R and <t"*') is the ideal in C; (R) generated by the germ at 0 of #"*", we have
Q=0 'TY"R=0("0:0€ T"’R)} and [wl,=j '@ for any o
e 7°P(R). For, dt’* = (r+ 1)¢'dt, and hence <t TV (R) + CJ(R)d
&y =T Y R). Similarly, S* = 7 T?) R and [[7]11, = j. 'z for any
r€ TP R).

In the case A = Cy (R /(H?, (t5%>, where t', t* are the usual coordinates
on R® and <(t)%, ()% is the ideal in C.(R? generated by the germs at 0 of
(#"? and (+*)*, we can compute the dimension of @* as follows. The module {(#")?,
(t2)2>.7(§0'”(R2) is generated over C:(RZ) by the germs at O of (tl)zdtl, (tl)zdtz,
(H%dt" and (t9)°dt". Furthermore, d((t)*f) = 2ft'dt' + (¢')’df for any i = 1,2
and any f : R°— R. Thus the module <(t")? HH TR + C7RYd{(W)?,
()% is generated over C:(Rz) by the germs at 0 of £'dt', (¢)2dt’, (#*)%at’,
t’dt’. Hence the classes [dt'],, [dt*],, [t'dt’], and [£’dt'], form a basis over R
in Q" Similarly, the classes [[dt' ®dt'1l,, [[dt ®dt11],, [[df* ® dt'l],,
[[dt’ @ dt’1],, [[t'dt* ® di*1], and [[#’dt' @ dt'1], form a basis over R in S*.

Analogously, if A= C;(R")/m., where m, is the maximal ideal, then the

classes [dt'],, [fdt"] = % [Fdt* — t*dt,,i=1,...,p,1<j<k<p, form a

basis of Q" and the classes [[df' ®dtj]],1, [[#dt’ ®dt'1,,i,7=1,..., p,
1 Sk<q<s£p,f0rmabasisofSA.
It is difficult to find explicit descriptions for Q" and S* with p>1

Given a tensor field ¢ € 7 *” (M) of type (0,2) on M we define ¢° €
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g—(O,Z)(M) by
(1.3) P, uQ@w) =L, wQu, (u,w) €TM X, TM.

The linear isomorphism 7 "?®R?) 2 r— ¢ € 7*”(R’) induces a linear iso-
morphism
(1.4) Ja:S*—= 8% L1y = [,

Let 7 € 7?(M) be a tensor field of type (0,2) on M. We present some ex-

amples of tensor fields of types (0,1) and (0,2) on T*M induced by .

Examrie 1.1. Let ¢ € (S*)™ be a functional on S*. Define
Y T'M-R G = @y A1)

for any 71 : R’ — M, where 7'*2' is the pull-back of 7 with respect to 7.

If n : R’ — M is another map such that jAr = jAr), then [[T*T]]A = [[n*r]]A.
To see this one can assume that M = R” and 7(0) = 7(0) = 0. Let 7 = a,.,.dxi ®
dr’,n=@' ..., 7 and 7= (..., 7"). Then germo(nj -7 e A and
germy(a;,°r — a,;°n) € Afor any i,j = 1,..., n. Then

germ, (¥t — n*0) = germ,((a,;7 — a,;*n)dy' Q@ dy’ + a, ndG' — 1) Qdy’
+ a,ondn' ®dG — 1)
€ AT (R + (CF (R dA) @ T, (R?)
+ 7, (R) ® (€7 (RN dA),

as well. Therefore ¢ is well-defined. One can easily show that this is smooth.

Define ¥ = d(z¥) € 7 “(T*M). We observe that (¢9)¥ = T<¢°]A>,
where ( )° is described in (1.3) and J, is defined in (1.4).

EXAMPLE 1.2, Let ¢ € (@™ be a functional on Q*. Define £ T M~
R as follows.

Let A= CyR’ x RIKA, (0% = (CFR)/A) @ (CrR) /(D) be  the
factor algebra, where tl, RN tp, t are the usual coordinates on R’ X R and {4,
(O is the ideal in C:’(R‘D X R) generated by the germ of (®? at 0 and all f(tl,
..., t") with f € A. We identify T*M with TT*M by a canonical isomorphism,
jAr—>%|p=o(jArp), where 7 :R” X R— M, rp:Rp—*M, 7,=70,0,0€R.

Let v =47 € TT*M, where 7:R’ X R— M. Then 7*7€ 7“’(R’ X R) .

Using the contraction C;, C; (0@ @ w) = O(w,.), we have C:(f%@%) e g
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(R” X R). Then using i : R° > R’ X R, i(x) = (z, 0), we get i*<cll(7’*f®'aa_t)>

e 7" R”). We put ) = ¢<[i*<Cf<r*z' ®%)>]A)

If n: R’ x R— M is another map such that jAT = jAr), then [i*<C:<T*T®

%))] = [i*(Cll<77*z‘®%>>] . For, by the reasoning as in Example 1.1 with 4
A A
instead of A we have
germ,(7*r — n*0) € A7,"P R’ X R) + (C7 (R’ X R)dA) T, "" (R’ X R)
+ 7R’ X R) Q (Cy R’ x R)dA)
CATP R’ X R) + O°T P (R X R)
+ (CF R’ X RAAR T, (R’ X R) + tdt @ T,"" (R’ x R)
+ T PR X R) @ (CT(R” x R)dA) +t7,"" (R’ x R) Qadt,
where the germs of ¢ and dt at 0 are also denoted by ¢ and dt.
Then

germO(Cf«r*r - 77*7> ®%>> € AT R’ X R) + 0°T " (R’ X R)
+tT7P R X R) + CF (R X R)dA + tC(R” X R)dt

because any element from A is independent of ¢. Hence
. 0 w
germo(z*(Cll«r*r - T]*T> ®_67>>> € AT VR + € (RN dA,

as well. Therefore 7" is well-defined. One can easily show that this is smooth. If
we consider av instead of v then aw = j* (y(¢',. .., t*, ad)), where v = j*7. Thus
at’” () = " (aw). Therefore " is linear on each fiber over T%M in view of
the homogeneous function theorem. Hence £ e 7T M.

Let 77 = (£%) ", where t° € T2 (M) is given by (1.3).

Exampie 1.3. Let 2 € A* be a functional on A. Let 7: TM X ,, TM— R be
the tensor field. Let I : TT*M— T*TM be the canonical isomorphism given by

(G ..d'7:0) =Gt 0)

Define 77" = A= T (I X D) : TT*M X yay, TT*M— R. %" is a tensor field of
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type (0,2) on T*M called the A-lift of 7 to T“M, cf. [4].
Let %2 = () w‘, where ()° is given by (1.3). We observe that
s
(Y.

(GO

2. Natural operators T - 7’7" and T? - 71

It is well-known that the concept of geometrical constructions can be formu-
lated in the form of natural operators, cf. [6].

ExaMmpLE 2.1. Let # be a fixed natural number. Let A be a fixed Weil algeb-
ra. Let ¢ € (S")™ The family B of functions

B;{«O . gm,z)(m N 9(0'1)(TA1W), Bﬂ<f> (z‘) — T<<b>,

for any n-manifold M, where 1:<¢> is described in Example 1.1, is a natural oper-
ator T%% — T T* for n-manifolds. For, if f : M— N is an embedding of two
n-manifolds and 7€ J “”(\W) is a tensor field of type (0,2) on N, then
B,f,¢> (f*0) = (T* *B;,@(r). Foremore, B,,<f> is regular, ie. it transforms smooth-
ly parametrized families of tensor fields into smoothly parametrized families.

Exampie 2.2. Let #, A be as above. Let ¢ € (Q*)*. For a = 1,2 the family
Pa of functions

B;f)" . 5(0’2)(114) N g(o,l)(TAM)’ B;{@Q(T) — T<¢>,,,

B(

. {Da . . . .
for any n-manifold M, where T v is described in Example 1.2, is a natural oper-
ator 7% — TP T* for n-manifolds.

ExampLE 2.3. Let #, A be as above. Let A € A*. For @ =1,2 the family
(o) .
C of functions
C1,<;>" . 'To,z)(M) N g(O,Z)(TAM)’ c;m(r) — T(Da’

for any n-manifold M, where rw“ is described in Example 1.3, is a natural oper-
ator T? — T?T* for n-manifolds.

Examp,e 2.4. Let B, B: T - 7°’T* be natural operators for
n-manifolds. Then the families B ® B and dB of functions

BBy : (M) — T (T'M), (B®B),(0) = (B, (D) ® (By(1)),
@By : T M) — TP (T*M), (dB)y(1) = d(B,(7)),

https://doi.org/10.1017/50027763000005444 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000005444

LIFTING TENSOR FIELDS OF TYPE (0,2) ON MANIFOLDS 123

for any s#-manifold M, are natural operators T — T7°?T* for n-manifolds.

3. The main result

Let # be a fixed natural number and A = C; (R’)/A be a fixed Weil algebra.
The set of all natural operators 7% — 7074 (or 7% - 1% TA) for
n-manifolds is a C*(S*)-module, where S is defined in (1.2). Actually, for any
B, C:T"”—>T°T"or B, C: T’ > T?T* and f, g € C”(§*) the natu-

0,2) €0,1) nA 0,2) (0,2) A .
ral operator fB+ gC:T " — T ""T" (or fB+gC:T " —=T""T") is de-
fined by

((fB + g0, (D) G*1)
= F([[7*711 ) (B (™) G*1) + g(llr* 711, ((C, (D) (G*9)

for any #m-manifold M, ¢ € T “®(M) and T R’— M. We showed in Example
1.1 that [[7*7]1, depends on j*7.

In particular, the set of all natural operators T = TOPT* (or the set of
all natural operators 7P - 1% TA) for m-manifolds is a vector space over R,
provided all real numbers are considered as constant functions on S*. The set of
all linear natural operators 7% — 774 (or the set of all linear natural oper-
ators 7% — T(O’Z)TA) for m-manifolds is a vector subspace in this vector space.

The main result of this paper is formulated in the following two theorems cor-
responding to Theorems 0.1 and 0.2.

THEOREM 3.1. Let n be a fixed natural number and A = Cy(R’)/A be a fixed
Weil algebra. Let @y, . .., @, be a basis of the vector space (Q™)* and ¢,,..., ¢, be a
basis of the vector space (S*)*. If n = p + 2, then the natural operators

B<¢“>", B<¢">, u=1,...,s,a=12 0=1,...,1

(described in Examples 2.1 and 2.2) form a basis of the C”(S™*)-module (described
above) of all natural operators 7% — 1774 Sor n-manifolds.

In particular, every natural operator 7% — 7oV 4 for n-manifolds is of finite
order, provided n = p + 2.

THEOREM 3.2. Let n be a fixed natural number and A = Cy (R)/A be a fixed
Weil algebra. Let @y, ..., ¢ be a basis of the vector space (QA)*, Doy Py bea
basis of the vector space (SM)™ and ALy ..., A, be a basis of the vector space A* I
n = p + 3, then the natural operators
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Goda lowa <o $opda

Cla ’B‘Pu ®B by ﬂ’B‘pu ®B<‘/’p>,
[N oda o o> $opda
B @ B**, B’ Q B*, dB"*",

c=1,.. ,ka,B=12p0p,n=1,...,1,u,v=1,..., s (described in Examples
2.1-2.4) form a basis of the C”(S™*) —module (described above) of all natural operators
7% — 7% 14 for n-mawifolds.

In particular, every natural operator T7°°>T
order, provided n = p + 3.

©Bh for n-manifolds is of finite

In Section 1 we computed the dimensions of @* and S* for some A. If A =
CIR)/™, then T'M=TM={r:7:R—>M,Q =R, 5"=R,
A=R™ It A= CIRHKE?, ()%, then T'M=TTM by j'y—
%I g (_zl , T, tz)), Q'=R' S"=R’, A=R" If A= C;R")/m;, then

t t'=0 dt t°=0
T'M=T'M={lr:7:RR—-M, " =R"? s*=R"™% A=R"" Hence
we have the following Corollary of Theorems 3.1 and 3.2.

CorOLLARY 3.1. (a) Let n = 3 and r = 0. The module of all natural operators
T? =TT for n-manifolds is isomorphic to (C*(R"))?.

(b) Let w =4 and v = 0. The module of all natural operators 7% — 79217
for n-manifolds is isomorphic to (C™ (R 7+

(c) Let m=4. The module of all natural operators TP — TV(TT) for
n-manifolds is isomorphic to (C*(R%)™.

(d) Let m = 5. The module of all matural operators T = 7°°(TT) for
n-manifolds is isomorphic to (C*(R®)*?.

(€) Let n=p + 2. The module of all natural operators 7% — T(O'I)Tf for
n-manifolds is isomorphic to (C “(RIHD)) 2 DD

(f) Let n=p + 3. The module of all natural operators 7% — 7% Tlp for
n-manifolds is isomorphic to (Ceo(Rp2+<g)))(z<p+(g>)+p2+(g>)2+z(p+1+p+(g))‘

a> (o

Let us remark that B<w>“, B<¢>, C”* dB are linear natural operators.
Hence from Theorems 3.1 and 3.2 it follows the following fact.

COROLLARY 3.2. Let n be a fixed natural number and A = Cy (R”)/A be a fixed
Weil algebra. Let ¢y, . . ., @, be a basis of the vector space (Q™) * Dy .ty @y be the
basis of the vector space (S*)* and A,,. .., A, be a basis of the vector space A

(@) If n = p + 2, then the linear natural operators B<¢”>“, B<¢">, u=1,...,5s,
a=12,0p=1,...,1 form a basis (over R) of the vector space of all linear natural
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operators 7% > 1774 for n-manifolds.

(b) If n = p + 3, then the linear natural operators C<X">“, dB <¢“>”, u=1...,s
a=12,0=1,..., k, form a basis (over R) of the vector space of all linear natural

operators 7% — T(0 oA for n-mamnifolds.

’

Proof of Covollary 3.2. Let B : 7> 7T (or B: T? > T?T% 1
linear natural operator. Then B is a linear combination of the natural operators
presented in Theorem 3.1 (or in Theorem 3.2) with the uniquely determined
coefficients from C”(S?). Since B is linear, the coefficients are constant (or the
coefficients corresponding to CQ")“, daB @ are constant and the other ones are
zero). For, since B is linear, the coefficients are homogeneous of some weights (0

or — 1), and next we use the homogeneous function theorem, cf. [6]. ]
As a consequence of Corollary 3.2 and Theorems 3.1 and 3.2 we obtain

COROLLARY 3.3. Let # be a fixed natural number and A = C; (R”)/A be a fixed
Weil algebra. Let B,, ..., Bg be a basis (over R) of the vector space of all linear natu-

ral operators T — T(0 l)T for n-manifolds. Let Cy, ..., Cy be a basis (over R) of

the vector space of all linear natural operators 7% -1 2)T fO’l’ n-manifolds.
(@) If n = p + 2, then the matural operators Bj,..., By form a basis of the
C”(S*) -module of all natural operators T*? — TP T4 for n- mamfolds
(b) If n 2 p + 3, then the natural operators C,, B, ® B,, p = 5@,y
= .S, form a basis of the C”(S*)-module of all natural opemtors 7% —
(0 2)

T T for n-manifolds.
The proofs of Theorems 3.1 and 3.2 are given in Sections 4 and 5.

The purpose of the rest of this section is to explain Theorems 3.1 and 3.2 in
the case T"M. We do not use this explanation in the proofs of Theorems 3.1 and
3.2.

ExampLe 3.1. Let v=0,1,..., 7. Given f : M— R one can define f(”)

14 )} o7 1 . .
T"M— R by f(v Gor) = —D”(f° 1 (0). Given a vector field X on M there

exists one and only one vector field X on T"M such that X' “ = (X)) ***”
for any f:M—R and p=0,....7(f*:=0, if £<0 or £> 7. Given a
1-form w on M we denote the v-lift of w to T"M in the sense of A. Morimoto [16]

by @”. Then <0”, X*> = <w, X0 for any vector field X on M and ¢ =
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W)y

0,1,..., 7. The correspondence “w— w ” is a natural operator TV - 7oV,
For any tensor field 7 of type (0,2) on M we denote the v-lift of 7 to 7'M in
the sense of [16] by . Then <z, X @ Y» = (¢, X @ ¥"**"**™ for any

vector fields X, ¥ on M and any g, p = 0,..., 7. The correspondence C* : T®”

T(O’Z)T' (”), is a linear natural operator Let DY : T®? = TOPT" pe
linear natural operator given by D (7) = C(”)(T) where ()° is defined by
(1.3).

ExampLe 3.2. Let ¢=0,...,7—1 and a=0,1,2. Let 7y : TM—M
denotes the tangent bundle projection. Let 7€ 7T © (M). Define @
€ g “U(IM by: ¢V =dr, where 7:TM—R, 7(v) = <z, v @ »>; ',
w =<1, () ® (T, )>, u€ TTM; P, w =<z, (Trw) ®
(Tpy @)Y, u € TTM. We put 7% = ju (') € T(T'M), where jy,

- d
T’M— T"'TM is the canonical embedding given by Jor— ]; D(t—* ar r(t+
7=0

T)) and (") denotes the a-lift of ¢ € TY(TM) to T""'TM described in
Example 3.1. It is clear that for « = 0,1,2 and 6 = 0,..., # — 1 the correspond-
ence B%: 7% — T(O'I)T' — %% is a linear natural operator. By Example

2.4 we have a linear natural operator dB N A Ay A

LemMa 3.1. (a) If n = 2, then the linear natural operators B @Y g=0,...,
ry— 1, a=0,1,2, are linearly independent in the vector space of all linear natural
operators T2 — TV T” Sor n-manifolds.

(b) If n > 3, then the linear natural operators C* , DY, dB"" v=0
0=0,...,7vr— 1, a = 1,2, are linearly independent in the vector space of all linear

0,2) 0,2)
— T T for n-manifolds.

natural operators T
Proof of Lemma 3.1. Let xl,. .., 2" be the usual coordinates on R” and let
1

0
a0, = F Denote the induced coordinates on TR” = R” X R” by xl,. L,z
x

=dzr',...,v" =dz" Let e =j](t, 0,...,0) € T{R", where { is the usual coor-
dinate on R. We use the notations of Examples 3.1 and 3.2. Of course, jRn(e) =
jo Nt 0,...,0,1,0,...,0), 1in#n + 1-position.

ad(@) Consider 7=z"g(x")dx' ®dz' + f(&Y)dzx' Qdz" + h(z")dz" ®dz’
e 7°”R", where f,g,h:R—R. In the induced coordinates, 7=
gz W) + f)v'o” + h(z) "' and 8 where X is the complete

6 n’
lift of X to TM (defined by the lift of flows). Hence <z'”’, 35> = 8‘z =
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g(x") @")* Therefore

<B(0‘0)(z_)’ a’ir)(e)> — <(z_((0)))(0)’ (a:)(f—l)>(]-R”(e))
/{0 AC\(0) . _Ldag
= &, 0D (@) = 5y~ £ O,

By the definitions of 7“’ we have <z, 85> = f(z")o' and <®, 35> =
h(z")v'. Then

(3.1)

d’h

147 .

(32) <Bg:' (0,9, @) =_;

O, B, 00 @) = 5

tU

The case (a) is a simple consequence of formulas (3.1) and (3.2).
ad(b) Consider
r=f@Vdx"" Qdz" + g(x")dz" Q dz"™*
+ n(z") (z"dz' @ dx" ' — 2" 'dx' @ dz”)
+ k(z") (2"dz" Qdx' — 2" 'dx" @ dxV).
Then <Y, 85 = f@Ho"™ — h@Ha" ™", ', 05 = g@Hv” + h(zHz"v'
Since 8, is equal to the complete lift of 3, to T'R” and j,: T"M— T"'TM is a
natural transformation, then Tjig.>d, = (35)" " jgs Therefore
(@B ) ga (D), (0,°,(0)) @ (3, ()
_ (ar(lr_)l«rw b a;r)>) 6“(( (@, 6(')>))(e)
— ((a:_l) (r—1) (<T((l))’ a”>) (@) __ (an)(f 1)(<T((1)), anC_1>) (0)) (IR”(e))
= ((0,_,(<c" ™, 3PN = (3, "™, 8, PN ) (jga(e))

NG 2 d’h
= — 2(h(z)1") ” (ga(@) = — H;F(O)'
Similarly,
(@B eld), B4 ® @) @) = = 7 2 0.

Foremore

(€2, BN ® G @) = (&, 0,,99) @) = (fGN(@ = f L),

) ) @ 1 dyg
D@, B B 0@ = 0,

The case (b) is proved. O
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Using Corollary 3.2, Lemma 3.1 and the dimension argument we deduce that
the operators of Lemma 3.1(a) and Lemma 3.1(b) form the bases of the vector
spaces of all linear natural operators T > T°T" and T =TT re.

spectively. Hence we have the following consequence of Corollary 3.3.

CoroLLarY 3.4. (a) Let =3 and 7= 0 be fized integers. Let B : TP —

TT” be a natural opevator for n-manifolds. Then theve exist the uniquely deter-

mined smooth maps f,, : Uy"lT(O’Z))OR =R —-R,0=0,...,7r—1,a=0,1,2
such that

¥ -

r 2 ! =1, % (0,a) s .7
By(@GoD) = 2 2 foaGo (10T Go?)

a=0 o=l

for any n-manifold M, any € T *? (M) and any v :R— M, where t7%
scribed in Example 3.2. If B is lineay, then the maps f,, are constant.

(b) Let n = 4 and v = 0 be fixed integers. Let B : T? =TT be a natural

operator for n-manifolds. Then there exist the uniquely determined smooth maps f,, g,
howr Hyis: U THRE=R =R, 0,6=0,...,7r—1,v=0,...,7,a=
1,2, B, B=10,1,2 such that

1S de-

B, = 5 5 h, (7 GF0)de " Gly)

a=1 0=

+ 2 L6706 + £ 670 @V 6
£ 35 Hagl G0 0 <) G

s

Jor any n-mawifold M, any T € T “2(M) and any 7:R— M, where P

is de-
scribed in Example 3.2 and t, (Y are described in Example 3.1.

Remark. A classification of all first order natural operators 7% — 7% T/,
where TYM = J,(R*, M), has been studied by M. Doupovec and J. Kurek [1].

4. A preparatory proposition

We shall be proving Theorems 3.1 and 3.2 simultaneously. Parentheses will

deal with Theorem 3.2. In the proofs of Theorems 3.1 and 3.2 we shall use some
technical facts proved in this section.

From now on for @ = 1,2 the C*(S*)-module of all natural operators 7"
— T®T4 for n-manifolds is denoted by T(4, n, a).
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Let .rl,. .., Z" be the usual coordinates on R”, tl,. . .,tp be the usual coordi-

0 .
nates on Rp, n>p. Let 0, = —,1=1,..., n, be the canonical vector fields on
n ox
R". Let
(4.1) e:=7,..., 1 0,...,0 € T'R"

Given a natural operator B € J(4, n, 1) (or BE€ J (4, n, 2)) we define Oy
9(0,2) (Rn) — R by

(4.2) @, (7) 1= {(Bg(0)) (e), T"d,(e)> (or
4.2y 0,(7) 1= {(Bgs(D)) (&), (T*8,_,(e)) ® (T*8,(e))?),

where T“X is the complete lift of a vector field X on M to T*M. If ¢, is the flow
of X, then T*¢, is the flow of T*X.

We start with the proof of the following lemma.

LemMa 4.1, Let B,C€JA,n, 1), n=2p+1 (r B,CETA, n, 2), n
2p+2).If Oy = @, then B= C.

Proof of Lemma 4.1. It is well-known (see Example 1.2) that TT*M = TZM,
where A = A ® (C;(R)K®H) = C7R” X R)KA, O, where t',. .., ', tare
the usual coordinates on R’ X R. Similarly, TT M x Ay TT M = T* M, where
A=CJR x R)/K4, @ t#t, (t)2> where ¢t',. .., #*, ¢, t are the usual coordin-
ates on R’ X R% (Coordmates t',...,t on Rﬂ we identify (in obvious way) with
the coordinates #,...,# on R’ X R or on R? X R?. Of course, T* 0,(e) =j 4.
t*,0,. Ot)(or(Tanl(e)Ta(e))“](t ,t°,0,...,0,¢ D). Ifn>
p+1 (or n 2 p + 2), then by the rank theorem the orblt of ] (t t 0,...,0,
D (or of j (¢, ,t°,0,...,0,t D) with respect to lifted dlffeomorphlsms is
dense in (TT* ) R (or in ((TT )R x TAR,,((TT )oR™). Using the assumption
and the invariancy of B and C we deduce that <Bg.(7), > = {(Cga(2), v> (or
{Bgo(D), vQu> = {Cga(7), vQw)) for any 7 E T°?(R") and any v (or (v, w))
from some dense subset in (TT*);R" (or in ((TT*)R" X pags((TT*),R")
Then Bga(7) = Cga(7) over 0 for any 7 € T (R". Using the invariancy of B
and C with respect to charts we get that B,(t) = C,(7) for any M and any
€ T”(M),ie. B=C. ]

LEMMA 4.2. Let B,CE€TJA,n,1),n=p+1 (or B,CETA, n2),n
>p+2). If 0,7 = O(D forany € TP R") of the form
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(4.3) t=q"t, +2"¢"t, + (Fw) ®@dx" + dz" ® (g w) (or
= q*To + an*TI + xn—lq*T2 + xn—lan*z_3 + (q*wo) ®dxn
+dz" ® (¢¥w) + (¢Fw,) Qdx" + dz" ' ® (¢"w,)
(4.3) + 2" (g% w,) ®dz"™ + 2" (¢Fw) ®dz" + 2"dx" ' ® (¥ wy)
+ 2" " @ (¢Fw) + f,(x',.. ., 2D dx" ® dz”
+ £, .., 2")dz" @ dz" ™),
where 7,y 7, € TR, wy, 0, €ETPR) (or 7p,..., ,€T?R), w,, . . .,

w, €TR), £, fl:RR—=R) and ¢:R"=R’ X R"? >R’ is the projection,
then B = C.

Proof of Lemma 4.2. Let
n . ;
(4.4) t= X fdx' @dx’
1,j=1

be an arbitrary tensor field of type (0,2) on R”. By Lemma 4.1 it is sufficient to
show that @,(7) = @.(7).

By the corollary of the non-linear Peetre theorem by Slovak, cf. Corollary
19.8 in [6], there is a natural number s = s(7) such that @,(7) = @,(7) and
®.(D = O.(0) for any T € T*P(
fi; are polynomials in xl,. o, x"of degree < s. Then we can write

) s— -
R" with j,7 = j;7. Hence we can assume that

(4.5) fi= MZ;S a,x", a=(a,...,a) € N U {0)"

Let us denote the restriction of @y to the finite dimensional vector space of
all tensor fields type (0,2) on R" of the form (4.4) with fi; of the form (4.5) by @,
Since B is regular, @, is smooth with respect to the a4

For any @,;,..., a, € R — {0} the diffeomorphism 7 = ..., 2",
a,,ﬂxpﬂ,..., a,x”) : R"— R” preserves e and sends 0, into a,0, (or 8,_,, 0,
into a,_,0,_;, a,0,). Using the invariancy of B with respect to 7 we deduce that

a,05(0) = O(n*D)  (or a,_,a,05(0) = O(n™D).

Let n*r=D,+ Dya, + -+ (or "t =E,+ E\a, + Eya, , + Esa,_ja, + - *),
where D,, D, (or E,, E,, E,, E; are independent of a,,,,..., @, and the dots de-
note the linear combination of monomials in a,,,,. .., @, other than 1, a, (or 1,
a,, G,_,, 4,_,a,) with coefficients from 7 °?(R"). Let = D, + D, (or 7= E, +
E, + E,+ E,). Then by the homogeneous function theorem, cf. [6], @z(7) =
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@;(%), and similarly for C.
It is easy to see that 7 is of the form (4.3) (or (4.3)"). Then using the assump-
tion of the lemma we obtain @y(7) = @p(7) = O.(7) = O.(7). O

Lemva 4.3. Let BEJTWA, n,1),n=>2p+2 (r BETA, n2),n=>p+
3). Given t € R we put ¢, = ..., 2 "™ 2" )R> R Letp €
T (R") be such that g0 = 0. Then ®5(0) = Oy(z + p) for any r € T R").

Proof of Lemma 4.3. We see that for ¢ # 0 the diffeomorphism ¢, preserves e
and 0, (or e, 0,_;, 0,). Using the invariancy of B with respect to ¢,, t # 0, we
obtain @,(0) = @y(@;7). If t— 0, then D5(z) = Oy(pa7). Since gap = 0, then
oi(t+ p) = @iz Hence @5(2) = @plpat) = Oyli(z+p) = O(z +p). [

LEmMMA 44. Let B,CE€ JTA,n,2),n=p+ 3. If Op(v) = O(7) for any
re TP ®R" of the form
t=q¢%r, + 2"¢"r, + 2" ", + (P, @ dz”
+dz" ® (("w) + Fw) Qdz" + d2" R (¢Fw,)
(4.6) + 2"(q%w) ®dz"" — 2" (% w,)  dz”
+ 2"dz" " ® (¢Fwy) — 2" dx" R (¢Fw,)
+ .., 2D dx" ®dz” + £, .., 2h)da" @ dx"

where Ty, Ty, T, € TP R, Wy, . . o, W5 E TR, foo fi: R"— R and q:R"
=R’ x R"?— R’ is the projection, then B = C.

Proof of Lemma 4.4. Let 7y,..., T, € TR, Wy ..y Wy € TP (R?) and
fo fi: R’ — R. Let 7 be given by (4.3). By Lemma 4.2 it is sufficient to show that
0,(7) = 0.(7).

Let 7 be given by (4.6) with 7, 7y, T, @y, @, W,, W, fo, f; as above and with

W, — Wy W = Wy, . )
2 and 2 playing the role of w, and w; respectively. Then by the

assumption, @z(7) = @.(7).
The diffeomorphism B = (z',. .., z°, 2" + 2" 2", 2*",. . ., 2") :R"—

R" preserves (T%8,_,(e), T*9,(e)) = jE(tI, oo, t,0,...,0,t, D, where A=
CS R’ x RY/KA, B 1, ().

ws + w w, + w
Letw = ¢ <5—2—i> and @’ = q* <—7—6> Using Lemma 4.3 with p =

2
xp“q*rs + o Qdz’ + dz’* @ w” and the invariancy of B with respect to S8
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we have

0,(0) = 0,(r + 2"¢"r, + 0 Rdzx’™ + d2" Q)
= @,B%(r + 2" ¢ r, + o Rdx*" + dz" ® w"))
=@, (r+ 2", + o Qdz" + dr" Qo
+ 2" 72"+ 2w Qdr" T + 2" @ dx”
+ 2"dx" 7 Q@ o’ + 2" dx" @ w”)
=@yt + 2" 2", + 2" Rdx" T + 2w @ dx”
+ 2" @’ + 2" dr" T Q") = 0,

and similarly for C. Hence @4(7) = @.(7), as well. L]

LEMma 45. Lt BETA, n, 1), n=2p+2 (v BETA, n,2), n=p+ 3).
Suppose that Ty, Ty, Toy T, € g R, Wy, Wy, Wy, @, € T (R?) (or Ty, Tyy Tay
To T T, €E T PR, Wy ..y W, Dy .y @5 € T VR, fo, fir for F1: R —
R) are such that:

[z 11, = [z ], fora = 0,1 and [wgl, = [@,], for 8= 0,1
(or [z, 01, = 701, fora = 0,1,2, [wgl, = (@4, for B=10,..., 5,
and j°f, = j°f, for y = 0,1).

Let T be equal to the right side of (4.3) (or (4.6)) and T be equal to the right side of
(4.3) (o7 (4.6)) with Ty, . .. replaced by T,,. ... Then @g(r) = Og(7).

Proof of Lemma 4.5. Let 7 be as in (4.3) (or 4.3)). Let F : R’ > Rbea map
inz',...,z" and n:R*— R be amap in = ,. .., 2’ such that germo(n(tl,. cy
£)) € A. Reminding the definitions of [[ .]11,, [ .1, and jA( .) (see Section 1)
and using Lemma 4.4 it is sufficient to show that

0,0 = 0,(t + FX°X'X%dX°’ ®dX"),

where X°, X', X°, X°, X' € {1, n(2',..., 2", 2',..., 2%, "} (or X°, X', X7,
X, xte{,n&',..., 2N, 2. .., 2, 2", 2™) and card({a : X¥=p}) = 1.

We put X* = 2Tt X = n and X* = X otherwise. The diffeomorphism f
=@, 2", 2+ @l 2, 2", .., 2") preserves e and 8, (or ¢, 8, ,
and 0,). Then using Lemma 4.3 with p = FX°X' XX’ ® dX* and the invariancy
of B with respect to 8 we have

0,(7) = 0,7 + FX’X'X*dX°dX") = 0,(8% (7 + FX’X' X*dX’dX"))
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= @,z + FX’X'X"dX°dX' + FX°X'X’dX’dX"
= @,(7 + FX'X'X’dX’dx"),
as well. 0

From Lemmas 4.2, 4.4 and 4.5 we obtain

ProposiTioN 4.1. Let A= Cy(R")/A be a fixed Weil algebra. Let n=p+ 2
(or n = p+ 3) be a fixed natural number. For any BE T (A, n,1) (r BE T (A, n, 2))
define Gy: (SN x (@)= 5" x §* x Q* x Q" >R (or G,: (5M)° x (@"° x
(T*R)*—R) by
Gp(llz 11, (711, [wyl,, [w]y) = @57
(or G([lt )1y, [[7]],, 01, (@, ..., [wd,, 7, 7°0) = 0,(0),

where T is given by (4.3) (or T is given by (4.6)). Then the function

G:T,n 1)~ C”((SH x (@), GB) =G,
(or G: T (A, n, 2) = C™((SH* x (@")° x (T*R)?), G(B) = Gp)

is a monomorphism of C”(S™)-modules, provided the C(S*)-module structure in
C((SM)? x (@M (orin CT((SM)® x (@M° X (T*R)?)) is given by (A1) (ay, a,,
by, b)) = A(ay) f(a,, a,, by, b))  (or  (Af)(ay,..., a, by,. .., bs, co, ¢) = Alay)
..., @y by..., by Cpc)), where AECT(SY,feC™USH x (@M
(or f€ C™USN* X (@Y° X (T*R)?) and (ay, a,, by, b) € (SH* x (@*)* (or
(ag, @y, Gy, by, .., by, €,y ¢) € (ST X (@M° x (T*R)Y).

Pooof. By Lemma 4.5, Gy is well-defined. From Lemma 4.2 (or Lemma 4.4) it
follows that G is injective. Reminding the definitions of the module structures it is
easy to verify that G is a homomorphism of C*(S*)-modules ]

5. Proof of Theorems 3.1 and 3.2

Let BE (A, n, 1) (or B € J(A, n, 2)). From the invariancy of B with re-
spect to (xl,. . x"—l, tr") preserving ¢ and sending 0, into #0, (or with respect

to (z',..., " i ") preserving e and sending 0,_,, 0, into 20,,_1, 10,) it
follows that

tGyla,, a,, b, b) = Gyla,, ta,, tb,, tb))

(or #Gy(ay, a,, @y by,. .., by, ¢, €,)
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= Gula,, ta,, ta,, tb,, tb,, tb,, tb,, ttb,, itb,, ttc,, ttc,))

for any (a,, ay, by, b) € (") x (@")* and any t € R — {0} or for any (a,, a4,
ay by, . .., be o ) € (S X (@D° X (T*R)” and any £, t € R — {0}). We
fix bases in S* and QA (or in SA, Q* and T'R). By the homogeneous function
theorem, cf. [6], Gy is a linear combination of the coordinates of a,, b,, b; (or a
linear combination of the coordinates of b, by, ¢, ¢;, a, P a,, a, @ b,, a, ¥ b,, a,
& by, a, @by, by & b,, by by, by b, b & b;) with respect to the bases with
coefficients being C”-maps depending on @, Thus owing to Proposition 4.1 we
see that Theorem 3.1 (or Theorem 3.2) will be proved after proving that:

(5.1) Gpwla, b) = ¢a),
(5.2) Ggw.(a, b) = @by, Ggwi(a, b) = (b))

for any (a, b) = (a,, ay, by, b) € (§M* X (Q*)? any ¢ € (@)™ and any ¢ €
(shH* (or after proving that:

(5.3) Gupwsla, b, ) = — 20(b), Guwi.(a, b, ) =—2¢(b,),
(5.4) Gpai(a, b, ©) = A(c), Ggw,la, b, ¢) = A(cy),

GB<¢)®B@(a, b, C) = (l’(az)(z’(al), GB<w>z®B<¢>>(a, b, C) = @(b2)¢(611),
GB((p>1®B<¢‘>(a, b, C) = @(bg)ﬁb(al), GB(¢’>®B<§0>2(a, b, C) = ¢(a2)<p(b0)y
(65) Gpwepw(a, b, 0 = ¢la) 9(b), Grwgpa.(a, b, ) = ¢(b)p(by),
GB(w>1®B®2(a, b, C) = (P(b3)¢(bo), GB<¢>2®B@1(a, b, C) = QD(bz)@(bl),
GB(¢>1®B@1(a, b, C) = (p(b;;)(o(bl)
for any (a, b, ¢) = (ay, @y, Gy, by, . . ., bs, €0y ¢) € (SN X (Q"° x (T*R)?,
any 1 € A¥ = (T*R)*, any ¢, € (") and any ¢, € (SHH.
We prove (5.1)-(5.5) as follows.
Let p € (@)%, ¢ € (8N  and 2 € A% Let 7, 7, 1, € TP R, w,, . . .,
ws € TP (R?) and fo fi: R’—R. Let 7, 7 be given by (4.3) and (4.6) respec-
tively. Let A = CJ(R® x R) /{4, (0% Then T* M = TT*M. We observe that

given &« € R we have (see Examples 1.1, 1.2, 1.3, 2.1, 2.2, 2.3 and 2.4 for the
notation)
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BED, @, 0,...,0, a D
= <p([z‘*(cf((t1,. L, t8,0,...,0,a, t>*r®%>>])

= o([i*(c!{(r+ 1" + ar, + 0, @ at + @t ® w0,
0

—aw, dt — adt ® ws) ®5Z>>]A> = ¢([w,],) — ap(lwsl,)
as Ty Ty, Ty Wy, W, are independent of dt. It follows from (5.6) and the invariancy
of B with respect to the diffeomorphism permuting 2" and z” that
6.7 B, E,. 20,0t @) = o(lwd,) + ap(wl,).
Since By *(2) = B (%), it follows from (5.6) and (5.7) that
(5.8) <(BLH(D), i ..., 1,0,...,0, a0 = ¢(wl,) — ap([w,],).
5.9 BE:@), AE,.. . £0,...,0t, a0 = olwl) + apw,ly,
We see that

(BE (D), T0,(0)> = {d(z"), T*3,(e)>

d :
5.10) L =L 0,0, 0,0))

= i 1 y) %
- dt|t=0(¢([[(t [ t ’ 0" DN 07 t) T]]A))
dt\ Sz, + 11]1)) = ¢([[z,]10).

From (5.10) and the invariancy of BQI)> with respect to the diffeomorphism per-
. n n—1 .
muting x and x it follows that

(5.11) (B (D), T*8,.,(0> = ¢(L[z,]1,).
From (5.10) with 7, = 0, w, = **- = ws = 0 and f, = f, = 0 it follows (5.1).
From formula (5.6) and (5.8) witha =0, 7, =0, w, = *** = w; = 0 and f;

= f, = 0 we obtain formula (5.2).
Since [TAG,,_I, TAG,,] = 0, it follows from (5.6)-(5.8) that
Gy ([l 1y, L)1, [T, [0y, ..., (ol 7%, 745
= B (D), (T"8,.,(0) ® (T*3,(0))
= T%0,_,(e) B (1), T*3,)) — T*8,(e) KB (©), T*3,_)
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=L (BE@, . P0,..,0,a D)

d A
- %M«B;?‘(z), A, 0,0,...,0, 8 @) = — 20([wd,)

and (similarly)
G oo ([[7]1,, [y, [[50],, [, ..., [wd,, 7% 7)) = — 20(w,],).

Therefore formulas (5.3) are proved.

We see that Gez(LItl],, [[T,]],, [[01, [0y, . . ., [wdls, 7% 5°6) =
{Bg(7) ®BR..(T), (T‘ia,,_l(e)) X (TAa,,(e)» for any B, B € T, n 1. We
know that T%8,(e) =j*(¢',..., ¢*,0,...,0, H and T%3,_,(e) =7°(t',..., ", 0,
...,0,t 0). Therefore formulas (5.5) are clear because of (5.10), (5.11) and
(5.6)-(5.9) with a = 0.

It remains to show formulas (5.4). We have

Gy (Llz )1y, [, [e,),, (g, . .., [wl,, 7%, i*F)
= (BIM(D), (T8, ,(0) ® (T*3,(0)))
= Q- T*@-U x D, (T*3,_,()) ® (T"3,())>
= (-T*(z, 8,., ®3,)) (&) = A-T*f) (&) = AG*fy).

The first formula of (5.4) is proved. Since B;;:z(r) = B;{:‘(rs), the second formu-
la of (5.4) is an immediate consequence of the first one. O
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