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1. Put 
m m 

(1) Sr(m) = £ n"+1, Tr(m) = £ niT+\ 
n=l n—1 

In a recent paper (4) , Lohne showed t h a t 

(3) i r W 2 £i 2s+1 (« -* ) ! ' 
where the coefficients Krs are positive integers and form a numerical triangle 

defined by 

(4) Krl = ^ r , r+ l = 1, 

(5) Kr+lt8 = Kr,,-! + s2Krs. 

T a m b s Lyche (7) showed t h a t 

Formulas (2) and (3) closely resemble the well-known expressions for power 
sums in terms of Stirling numbers of the second kind, namely 

yV- Y-±-A {m + 1)l (r>i) 

where the Stirling numbers A rs are defined by A 00 = 1 and 

( 7 ) An = Arr = 1, Ar+ljS = ^ r . s - i + sArs. 

I t is accordingly of some interest to see how the coefficients Krs and A rs are 

related. 
From either (2) or (3) we get (Lohne's defining relation) 

(8) m™_£Krt<!n±±=_pi. 
v } iTi (m — s) ! 

This can be rewrit ten as 
r+ l 

(9) m2r+2 = E Krs m\m - l2) . . . (w2 - (s - l ) 2 ) 

= X I K-T& m 
[2s] 
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the last using the notation of Steffensen (6) for central factorials, defined 
by (6, p. 8) 

mw = m(m + n/2 - 1) (m + n/2 - 2) . . . (m - n/2 + 1). 

Equation (9) may be taken as the starting point. Note first its resemblance 
to 

r 

mr = ^ Ar8m{m — 1) . . . (m — s + 1). 

Next, since 
w 2 w [ 2 s ] _ m[2s+2] _[_ S2m[2s]^ 

equation (5) follows at once. For a general expression for Krs, introduce the 
central difference d: 

«/(*) = fix + 1/2) - f(x - 1/2) 
and note that 

ôx[n] = nx{n~l]. 

Then for any polynomial f(x) (6, p. 13) 

/ ( * )= Z*[s]«!f(0)A!. 

Used with equation (9), this shows that 

(10) Krs = 82s02r+2/(2s)l ; 

in words, the Krs are the divided central differences of zero, of even order. 
Written out, (10) is the same as 

do ^-(èiê^K2/)^-»"'" 

the second form by symmetry. The second form is similar to (6) and their 
equivalence is readily verified. We remark that the Stirling numbers Ars are 
the divided (ordinary) differences of zero. 

Finally, the following results are immediate consequences of (9) : 

£(-ir((*-i)!)Xs = o, 

£ ( - l ) s - x ( l + 12)(1 + 22) . . . (1 + (5 - l)2)Krs = ( - l ) r . 

2. Turn now to generating functions. First, using (10a), 
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so that 

Then from (11) 
co oo 2 r + 2 2s 

(12) E E K„ 7 ~ - T - ^ T = cosh(2y sinh \x) - 1. 

These results may be compared with 
CO CO CO 

(13) E ATSx
r/r\ = (ex - 1)7*!, E E ^ V / r ! = expOy(e* - 1)). 

Again, returning to (4) and (5), and writing 
CO 

K8(x) = ^Krsx\ 

it is evident that 

(1 — s2x)Ks(x) = xKs-i(x), 

Kx(x) = (1 - x)-\ 

so that 
(14) K8(x) = x s ~7( l - x)(l - 22x) . . . (1 - s2x), 

which may be compared with (3, p. 175; 5, p. 43) 
CO 

(15) ] £ Arsx = xs7(1 - x)(l - 2x) . . . (1 - sx). 

The generating functions lead to relations of the numbers as follows. First, 
by (11) and (13), 

0 0 v 2 r oo r 

^Kr-l-s (27)7 = e""§4''!«7i ' 
which implies 

(16) X r _ M = E ( - l ) , ( 2 > ^ 4 2 r _ ; - , 2 s , 

(17) Ar,u = E feV^-i... 
and, incidentally, 

i=o \ J / 

Next, by (14) and (15), 

Ë^r^2rf2= (-l)SÉ^r,X
rË^,s(-x)^, 

so that 
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(18) Kr^,s= f,\-l)s+tAtsA^t,s. 
t=S 

3. For relations with Bernoulli numbers, we recall that 
m— 1 

^ nr = (Br+1(m) - Br+1)/(r + 1), 

where Bk{%) is the Bernoulli polynomial of degree k (Bk(0) = Bk). Thus by (1) 

ST(m) = m™ + (B2r+2(m) - B2r+2)/(2r + 2). 

Comparing this with (2) we get 

E Krs / 2 -, N / 2 / i \ 2 w , x 1r , B2r+2(m) — B2r+2 

s=—(m-l)...(m-(s-l)Km + s)=m + ( 2 r + 2 ) m • 
Since 

*»(*) = E ( ! W ^ S . 
5=0 \ S / 

we find, equating coefficients of m, 
r+ l 

(19) (2r + l)B2r = E (-l)s_1((^ - l)!)V^rs, 

which may be compared with the corresponding representation in Stirling 
numbers (5, p. 45) 

Br= £ (-i)v.(s + i r x . 
s=0 

From (19) and (10a) we get the explicit formula 

» (2,+m„. s»-g,(--)-;;:wt;"l'w 

Since for r > 0, both BiT+1 = 0 and Ô2s02r+1/(2s)! = 0, it follows that 

(2D (r + i)Br= z ^ ^ ( - i ) ' ^ - ^ ; ^ : ! ^ " 2 . 

4. The Stirling number polynomials 
r 

s=0 

are familiar. They are defined effectively by the second generating function 
of (13), or by one of its consequences 

(22) ar+1(y) = y[a(y) + l]r = £ (r)yas(y). 

Put ar{\) = ar. 
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Analogously we define 
r + l 

k2r+2(y) = J2Krsy2S, 
5 = 1 

whose generating function by (12) is 
oo 

(23) cosh(2;y sinh \x) = E k2r(y)x2r / (2r)\ (h(y) = 1). 
r=0 

It is also convenient to define k2r+1(y) by 

(24) sinh(2;y sinh %x) = £ k2r+1(y)x2r+1 / (2r + 1)! 
r=0 

so that 
oo 

(25) exp(2y sinh \x) = ^ fer(;y):x;r/r!. 

Since, with Z> = d/dx, 

y sinh(2^ sinh \x) = sech \x D cosh(2y sinh |x) 

= Sech \%^ ^2r+2(^) 
( 2 r + l ) ! 

and 
CO 

sech^x = E 2 " 2 r £ 2 , x 2 7 ( 2 r ) ! , 
7=0 

where the £27- are the Euler numbers in the even suffix notation, it follows 
that 

(26) ykir+i(y) = Z ( 2 r + l)2-isEisk^w{y). 

Differentiation of (25) gives 
CO 

y cosh \x exp(2^ sinh \x) = ^2 kT+i(y)xT/r\ 
r=0 

and therefore 

(27) kr+l(y) = yZ ('^-"kr-uiy), 

which may be compared with (22). 
The first few values of kr(y) are 

ko(y) = 1, k2(y) = y2, kt(y) = y2 + y\ 

ki(y) = y, *s(y) = \y + y\ h(y) = ^ y + 2 ^3 + yb-

Now let p be a, fixed odd prime. Differentiating (25) p times we get 
CO 

(28) Dv exp(2y sinh J*) = £ *r+i,(y)x7r!. 
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By the formula for derivatives of a composite function (5, p. 35) we find that 

Dv exp(2;y sinh \x) = Yv{gu . . . ,&>) exp(2;y sinh %x) 

with Yp the Bell multivariable polynomial, and 

gk = Dk (2;y sinh Jx). 

But, see (1), 

Yp(gi, . . . , & ) = & + gip (mod p) 
and 

gp = y 21~p cosh §x = y cosh \x (mod p), 

glp = yp (cosh \x)v = 3^ (mod p). 

Hence 

Z>p exp (2y sinh |x) = (Z> + yv) exp (2y sinh Jx) (mod p) 

and by (28) we get 

(29) kr+v{y) s &r+1(;y) + 3/^(3,) (mod />)• 

This congruence is of precisely the same form as the congruence satisfied 
by the ar(y) defined above, namely, see (8), 

ar+P(y) = aT+1(y) + ypar(y) (modp). 

It follows that the numbers kr = kT(l) have the same period as the ar\ that 
is, by the result given in (2) 

(30) kr+P = kr (mod p) 

where 

Some further properties of the numbers kr are as follows. First k2r is integral, 
while k2r+i has the denominator 22r. Indeed it follows at once from (27) that 

22rk2r+1 = 1 (mod 4) ; 
more precisely 

22rk2r+1 = 1 + 4r(2r - 1) (mod 16). 

To find the residue (mod 4) of k2r, it is convenient to define 

r+ l 

(31) «H-2= T,Krs-
s=l 

s odd 

Then by (5) 

KTS = Kr-i,s-i + K7-ltS (mod 4) (s odd). 

Summing this over odd s gives 

(32) k2r+2 = k2r (mod 4). 

https://doi.org/10.4153/CJM-1963-010-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1963-010-8


100 L. CARLITZ AND JOHN RIORDAN 

On the other hand 

Krs = i£r_ifS_i (mod 4) (s even) 

so that 

k2r+2 — k2r+2 = k2r (mod 4). 

Using (32) this becomes 

(33) k2r+2 = k2r + k2r-2 (mod 4). 

Iteration of (33) shows that 

(34) &2r+i2 = k2r (mod 4). 

Thus the period (mod 4) is 12, and 

k\2r = 1, &12r+4 = 2 , &12r+8 = 1 , 1 f A A \ 
h - i fc - Q i, _ n ( m o d 4 ) 
#12r+2 = 1 , #12r+6 = à, /C12r+10 = U. / 

This shows that the only even &2r are those of the form k6r+4. 
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