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Abstract. We use a Galerkin method to compute the eigenfunctions and eigenperiods of some
of the Earths spheroidal and toroidal modes. The boundary conditions are treated using a Tau
method. We show that for a realistic Earth model the difference between the computed and
observed periods is less than 1.4%. We conclude that a Galerkin method may be an effective
tool for the studies of the Earth’s normal modes.
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1. Method
Galerkin method is an efficient method to convert an operator problem to a discrete

problem (Li 2006; Seyed-Mahmoud 1994). Consider

L[χ(x)] + φ(x) = 0 over the interval a � x � b . (1.1)

where L is a linear differential operator, and χ and φ are linear functions. Let S =
{yi(x)}∞i=1 define the set of all linear independent functions. Any function χ(x) can then
be written uniquely as a linear combination of χ(x) =

∑N
i=1 aiyi(x). Application of a

Galerkin then makes the RHS of equation (1.1) as null as possible by requiring that∫ b

a

yj (x)

{
L

[
N∑

i=1

aiyi(x)

]
+ φ(x)

}
dx = 0 for j=1,...,N (1.2)

This leads to a system of N equations in N unknowns (ai) which we can solve uniquely.
As a test in this work, we consider a spherical non-rotating elastic isotropic (SNREI)

earth model in hydrostatic equilibrium. In solid layers, linear controlling equations are:

ρ0ω
2−→u + ρ0∇V1 + ρ0∇(−→u · −→g0 ) − ρ0

−→g0 (∇ · −→u ) + ∇ · Γ̃ = 0 (1.3)

and for the isotropic small oscillations of an inviscous liquid core:

ρ0w
2�u −∇p1 + ρ0∇V1 + ρ1 �g0 = 0 (1.4)

∇2V1 + 4πGρ1 = 0 (1.5)
ρ1 = −∇ · (ρ0�u) (1.6)

p1 = −�u · ∇P0 + α2ρ1 + α2�u · ∇ρ0 (1.7)

where, the displacement vector field −→u is expanded to spheroidal and toroidal fields.

−→u (r, θ, φ) =
∑
n,m

{um
n (r)Y m

n (θ, φ)r̂ + vm
n (r)∇1Y

m
n (θ, φ) − wm

n (r)r̂ ×∇1Y
m
n (θ, φ)} (1.8)
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And the boundary conditions for −→u , the stress field Γ̃, and the incremental potential V1
and its gradiant are: n̂ · Γ̃, n̂ ·(∇V1 −4πGρ0

−→u ), V1 be continuous on all boundaries; −→u be
continuous cross welded boundaries, and n̂ ·−→u be continuous across solid-fluid boundary.
We use a Tau method to solve boundary conditions.

2. Results & conclusion
Figure 1 are some results of the eigenfunctions (displacements) of the simple Earth as

a solid sphere:
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Figure 1. Eigenfunctions (u,v,w) of fundamental (n=0) and three overtones (n=1,2,3) of a
solid sphere. The radius are normalized to be 1 at surface. In the right half 4 subplots, bold and
dotted lines are for u(r) and v(r), respectively.

The eigen-periods are calculated for two earth models and listed in Table 1. The prelim-
inary reference Earth model(PREM) is used in which the Earth is treated as inner solid
core, fluid outer core and solid mantle. There is a maximum 4.1% or 1.4% difference if
we treat the mantle(+crust) as 1 or 10 layers, respectively.

Table 1. Periods of toroidal and spheroidal modes in minutes, the observed values are from
Lapwood & Usami (1981).

Modes Toroidal Spheroidal
Legendre degree Overtone Observed Calculated Observed Calculated

1-layer 10-layer 1-layer 10-Layer
2 0 44.01 45.53 43.63 53.89 51.84 53.43

1 12.61 13.06 12.53 24.51 25.35 24.18
3 0 28.43 29.58 28.15 35.56 36.36 35.26

1 11.59 11.90 11.48 17.68 18.06 17.54

Conclusion: As more realistic Earth model is considered, the numerical results for
the periods of the Earth’s acoustic modes converge to those of the observed ones. The
remained 1.4% discrepancies between the numerical and observed periods may be reduced
quickly by a more realistic Earth model (such as rotation or/and ellipticity). We conclude
that the Galerkin method is a powerful tool for the studies of the Earth’s normal modes.
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