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Introduction

Consider the initial boundary value problem

u,-uxx = y(x,t) 0 < x < l 0 < ( < T (1)

u(x,0) = uo 0 < * < l (2)

ux(O,t) = f(u(O,t)) O^t^T (3)

-ux(l,t) = f(u(l,t)) Orgi^T (4)

In the context of the heat conduction problem, this models the case where the heat flux
across the ends at the rod is a function of the temperature. If the heat exchange between
the rod and its surroundings is purely by convection, then one commonly assumes that
/ is a linear function of the difference in temperatures between the ends of the rod and
that of the surroundings, (Newton's law of cooling). For the case of purely radiative
transfer of energy a fourth power law for the function / is usual, (Stefan's law).

We envision the situation where either the actual method of heat transfer is not
known, or where it cannot be assumed that the governing laws have such a simple form,
and would like to set up an experiment that would allow the recovery of the exact form
of the function / The major part of this paper will be devoted to showing that one can
in fact recover the unknown / by monitoring the temperature u at one end of the rod
for some time interval O^t^T. That is we overpose the problem (l)-(4) by giving the
additional boundary data

u(O,t) = h(t). (5)

In a later part of the paper we shall discuss other possible forms for the boundary
data in this model problem, and present some numerical examples to illustrate the
feasibility of the method.
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60 M. PILANT AND W. RUNDELL

Existence and uniqueness

The central question to be answered in this paper is to find conditions under which
one can find the solution pair (w, / ) to (l)-(5), when uo(x) and y(x, t) are known.

We shall recall certain standard functions and state the properties that we require
from them. The derivation of these properties can be found in [1].

Let 6(t) denote the theta function defined by

0(x,O= "£" K(x-2m,t) t>0 (6)
m = — co

where K(x, t) is the free space heat kernel

K(x,t)=—=e-xl1*' -oo<x<oo, t>0. (7)
yJ4nt

Lemma 1.

/4jrr *=i

rs a C00 function on [0, oo) w/iose nth partial derivative in t, evaluated at r = 0, vanishes.

Lemma 2.

where H(t) is C00 on [0, oo) with HM(0) = 0for all n.

Let the functions v(x, t) and w(x, t) be the solutions of the initial boundary value
problems

l, 0<£<T

(8)

wJC(0,t)=-wI(l,r)=0 O ^ t g T

and

v,-vxx = y(x,t) 0 < x < l 0 < t < T
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INITIAL-BOUNDARY VALUE PROBLEM 61

vJ.O,t)=go(t) OZt^T

-vx(l,t)=gl{t) O g t ^ T (9)

for some functions go{t) and gt(t).
In this case the function v(x, t) has the representation [1],

v(x,t) = w(x,t)-2\e(x,t-T)go(x)dT-2\e(x-l,t-r)gl(T)dT (10)

and thus

v(0, t) = w(0, t) - 2 j 0(0, t - x)go(x) dx - 2 } 0( - 1 , t - x)gl{x) dx (11)
O 0

If uo(x), y(x,t), go(t) and gt(t) are given, one can immediately determine v(0,i). Can the
function go(t) be recovered from a knowledge of v(O,t), uo(x), y(x,t) and g^ift The
answer is, of course yes and if we let

then go(t) is the solution of the first kind Abel-type integral equation,

\d(0,t-x)go(x)dx = k(t)
o

which can be written in the form

1 t CT-(T\ <

(12)

where H(t) is C° for t^>0, by Lemma 2.
The proof of the next lemma can be found in [1, p. 85].

Lemma 3. lfk(t) is absolutely continuous, with k'itfeL™, then the integral equation (12)
can be written in the form

Jt — x

where

t-x t Jt-n
(14)
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Now let v(O,t) = h(t) and set

gl(t) = f(u(l,t))

so that

k(t)=\\w(O,t)-h{t)-]-\e{-\,t-x)f(u{\,x))dx.

Note that H(0) = 0, and if w(0,0) -/i(0) = uo(O) -/i(0) is zero (that is, the initial data and
overposed data are compatible at x = 0, i = 0), then using (13) we obtain the integral
equation

n o

(15)

The right-hand side of (15) is a nonlinear function of /, since the final term contains
f(u(l,t)) and u{\,t) itself depends on the function / that is u = u(x,t;f).

Assuming that h(t) is a one-to-one function, then by setting /(£) = f(h(i)), we obtain

(16)
dx

and write this as

The space of functions of a single variable whose mth derivative is Holder continuous
of exponent a on the interval [a,b~] we shall denote by C"+<*[a,fc], 0 < a ^ l and endow
this space with its usual norm. In particular, we shall be interested in the space of
Lipschitz continuous functions on the interval [0, T]. We shall use the symbol J£? for
this space and set

I . - - P

as the usual seminorm, and 11111 = 111 + 111100 as the norm. We will also need the space of
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functions with a half power fractional derivative on the interval [0, T], and use the
symbol J f for this space, setting

as the seminorm, and ||'||jp = |>|jr + |H|a> a s the norm.
We shall assume that the data uo(x), y(x, t) and h(t) satisfy:

A.l. UO(X)E

A.2. y{x, t) is Lipschitz continuous in x and C1/2 in t.

A.3. The overposed data is continuously differential of [0, T\ with h'(t)eCm[0,T];
h(t) is monotone on this interval and /i(0) = uo(0).

Remark. The smoothness assumptions on these functions are sufficient to guarantee
that wt(0,i)-h'(t)eCll2[0, T\. The compatibility condition implies that fc(0) = 0 in (13).

We can rewrite the integral equation (16), in the form

7 = T,[/] =d(t) + Jxlf[ + sJJ2{_Fh(J)-\ (17)

where J\\_f~\ and < / 2 [ / ] denote the linear operators of Volterra type

<n
V

and stf\_f~\ is the Abel operator

'n o
(18)

2 \et{-\,t-x)f(x)dz

(19)
Jt — t

Here Fh denotes the nonlinear mapping

and u{l,t;f) is the solution of (1H4)-

Lemma 4. / / the function i^(-) is Lipschitz continuous, that is
c\xi —x2\, and ft and f2 are in Lip[0, T], then for i= 1,2

w/iere a,<0 = O(t) as
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64 M. PILANT AND W. RUNDELL

Proof. This follows directly by standard estimates and using the fact that each of the
kernels in the operators Jx and J2 are continuous functions. Let us denote by G the
kernel of J{ for i= 1,2.

- T ) {«/,(/,)-

)| / \

where a-»0 as t-»0. Since each of the functions S and 9,( — l,t) and their derivatives
vanish at t = 0, which implies that G vanishes with its derivative at t = 0. The conclusion
is then immediate.

Lemma 5. Under the same conditions o// l 5 f2 and ty we have

In fact, it follows that the Abel integral operator maps functions in C"(0, T) into
functions in Ca+1/2[0, T].

We thus have

Lemma 6. Ifu0, y and h satisfy A.1-A.3, then the function

lies in Jf[O, T].

Lemma 7. / / fx and f2 are Lipschitz functions of their independent variable, then the
solution of

l, 0<t<7

M(1)(0, t) = h(t)

-uf{l,t) = f,(u(i\l,t))=J oh-l(u(i)(l,
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for i = 1,2, evaluated at x = 1 satisfies

2 | | | | 7 / 2 | | 0 0 (20)

for T sufficiently small, and some constant C depending on T and the Lipschitz norms of
/ i and f2.

Proof. The difference u(1) —«<2> can be written in the form

for some kernel Ux), with a square root singularity at the origin.
Let (j)(t) = ua)(l,t) — u(2)(l,t). Then by breaking up the interval of integration we

obtain

+ J L(t, - T ) {/1(U( 2 ) (1,T))- / 2(U<2>(1)T))} dz

Now,

<2

I IM l > »i<2'll
^ *-l V £2 rl |7l | l | |u — " ||

For 12 we have
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For 73 and 74 we have

Combining these above inequalities we obtain

where C5 is independent of T. Noting that </>(0) = 0, we have ||0||oo^>/'|0|.*'- T*"s yi

and consequently,

and the conclusion of the lemma follows.
Compatibility of the data at t = 0 ensures that fi(h(0)) = f2(h(0)), and therefore

||/i~/2||oo = \AI7i — Tzlie- Lemmas 4-7 now give that

Ji-M, (21)

and thus for T sufficiently small (2C x / r< l ) , Tfc[ ] is a contraction on Jf.
In order to show that T\[ ] has a fixed point we require that the function

h~l(u(l,t,f)) be in the domain of J (that is u(l,t,/) be in the domain of / ) . In other
words, we may only recover /(u) over a range C70 ^ u ̂  UT if the overposed data h(t)
contains this set of values for 0 ̂  t ̂  T.

We thus assume that

A.4. For each r .O^tg T, the function «(l,t,/) lies in the interval [fc(O),A(t)].

Physically this condition says that the range of values of temperature on the hidden
boundary x = l is contained in the range of values at temperature on the boundary
where this quantity can be measured.
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One cannot guarantee A.4 solely by giving conditions on the data uo(x), y(x,t) and
h(t), for it will depend on the unknown function / There are, however, easily obtainable
conditions under which A.4 can be made to hold. For example, if it is known a priori
that / ^ 0 , (cooling on the boundary), that y^O (no internal sources), and u0(0) = uo(l)
then it is easy to give conditions under which h(t) will be a decreasing function and
h(t) = u(0,t)^u(l,t)^iuo(0) = u1(0) = h(0) for all t^O. If / > 0 for «>0 with /(0) = 0 then
w(x,r)-»0 as r-»oo for all x and thus both u(O,t) — h(t) and u(l,t) will be contained in
the interval (0,MO(0)) for all r>0.

One of the advantages of using the contraction mapping is to allow us to give a
constructive algorithm for the recovery of / In order to apply the associated iteration
procedures we must ensure that each successive iterate lies in the correct range and we
do this by extending the domain of / = /(fc(t)) to the whole line by extending / to be
constant outside of [0, T]. The extended function will remain Lipschitz.

We have proved the following theorem.

Theorem 1. Let A.I-A.4 hold. Then there exist a unique solution pair (w,/) to (1.1) to
(1.5) over the interval Q^t^t*, for some t*>0.

Several factors may allow us to extend this above conclusion of Theorem 1 to global
values of time. The constant C appearing in (20) will in general depend on (the
Lipschitz) norms at the function u. If the allowable class of functions / is restricted to
the uniformly Lipschitz functions, this will be the case. If / is restricted to be
nonnegative with /(0) = 0, then there will be a heat loss from the rod for all t>0, and
the maximum principle shown that u(x, t) remains uniformly bounded by the maximum
at the initial time, provided there are no sources, that is y(x,t)^0. These two cases
encompass many of the problems of physical interest.

Related problems

Some obvious extensions of the method can be made. For example the boundary
conditions can be taken in the form

ux(0,t) = <xo(t)f(u(0,t)) + po(t) -ux(l,t) = xl(t)f(u(l,t)) + pl(t) (22)

where <x0, alt p0 and /Sj are known functions.
We can also consider the case when the radiation condition ux = f(u) hold at only one

of the boundaries, while at the other, either the function u, or its normal derivative, is
prescribed. In the latter case we look for the solution pair (w, / ) to the initial-boundary
value problem

u,-uxx = y(x,t) 0<x<l, 0<£<T (23)

(24)

(25)
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««(U)=*ito O^t^T (26)

If we give the overposed data at the boundary x=0

u{O,t) = h(t) O^t^T (27)

then the solution to (23)-(26) with (27), can be determined immediately. To see this,
note that there is a unique solution u(x, t) to (23), (24), (26) and (27). By evaluating the
^-derivative of this function on the boundary x = 0 we obtain the equation

ux(0,t)=f(Kt)) 0<t<T (28)

from which /(•) can be determined if h(i) is a monotone function of t.
For the problem (l)-{4), if u(x, t) is symmetric about the midpoint of the interval, that

is u(x, t) = u(l — x, t) then by noting that ux(j,i) = 0, we can convert this case to the above
problem. Such a symmetric condition would, for example, arise from a homogeneous
equation with constant initial temperature.

If both the temperature and the flux is prescribed at the boundary x = 0, that is,

0<t<T (29)

u(x,0)=«0W Ogxgl (30)

-ux(l,t)=f(u(l,t)) O^t^T (31)

uJLO,t)=g(t) O^t^T (32)

u(O,t) = h(t) O^t^T (33)

then the solution to (29)-(32) can be written in the form

u(x, t) = ftx, t)+'jK1(x,t- T)/(0(T)) dx (34)
o

where \ji(x, t) is a known function depending on MO(X), g(i) and y(x, t). By evaluating (34)
on the boundary x = 0, and using (33), we obtain an integral equation for the unknown
function / (• ) . Unfortunately this is a first kind Volterra equation with a smooth kernel,
(K,= 0(0,0 which is a C00 function with /C(

1"
)(0)=0 for all n). The conditions (32), (33)

represent characteristic Cauchy data for the parabolic equation (29). Given sufficient
restrictions on the functions g and h, we can continue the function «(x, t) as a solution
of (29) into the region x>0, (we must somehow ensure compatibility with the initial
condition (30)). By evaluating this function and its x derivative on the line x = l , we can
in theory recover the function / This of course will lead to a severely ill-conditioned
problem, as was suggested by the form of the integral equation (34). We thus see that
the problem (29)-(34) will admit at most one solution pair (u, / ) , but existence can only
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be guaranteed by making extremely restrictive (and difficult to determine) conditions on
the data. Even if this can be done, continuous dependence of the solution on the data
cannot be expected in any reasonable norm.

Numerical examples

We shall describe a numerical implementation of the solution of the integral equation
(16) by using an iteration scheme.

The recipe for the procedure is as follows:

(a) Generate "experimental data". Select a function /„,., and obtain the solution
u(x, t;fact) to (l)-(4). The value of this function on the line x=0 forms the overposed
data, and is passed to the inversion routine as h(t) at discrete points ty

(b) We are free to use the data in any order, and the derivation that led to (16)
required us to solve equation (1) with the initial value (2), the condition at x = 1, (4), and
the value of u at x = 0, (5). We then use equation (3) as an "update scheme" for the
iteration. That is, for a given function /, we solve (1), (2), (4) and (5) to find u(x,t;f).
The mapping TA[/] is now equivalent to

Tk[/] = «;c(0)t;/) (35)

and this function can easily be found by direct differentiation of u(x, t; / ) .
(c) We thus generate an iteration scheme by choosing an initial function f0, and

obtaining successive iterates by

/.+1(0 = /.+ iWO)=T»[/J = ««(0, t; /„) (36)

where u(n\x, t; /„) denotes the solution of (1), (2), (4) and (5) with / = /„.

(d) The iteration is terminated when \\fn — /n+i|| is within the desired accuracy.

This scheme is similar to that applied by the authors to recover nonlinear coefficients
and source terms in elliptic and parabolic equations [2-5]. The central idea in these
papers was to evaluate the differential operator on that section of the boundary where
the overposed data is prescribed, and to use this to form an update algorithm for
succesive approximations. For the problem (1H5), this is provided by the evaluation on
x=0 of the boundary operator ux = f(u).

There are some remarks to be made on the above procedure.

(1) The forwards solver method used to generate u(x, t;f) from a given function /, was
a 3 time level finite difference scheme that was second order accurate in both x and t.

(2) To obtain the data in part (a) above we used a course grid, Ax=0.1, At = 0.05
being typical. This is to simulate the inevitable inaccuracies in measurement of real data.
For the calculation of the solution u(x, t; f) of the direct problem in the inverse iteration
scheme we used a finer mesh, with variable grid size to more accurately calculate the
value of ux on the boundary x = 0.

(3) The number of iterations required to obtain a given accuracy of / will obviously
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depend on the tolerance required, but in all cases effective convergence was obtained
within a few iterations. We illustrate the procedure with two examples, one for a cooling
problem and the other for the case when the body is absorbing heat.

Example 1. Let u(x, t) satisfy,

l, 0 < t < l

u(x,0)=0

-ux(\,t) =

with fac,(u) = e'" — l. The table below shows the difference of/ and fact in the supremum
and 1} norms until the difference in ||/n+1 —/B|| no longer decreased. The initial guess
was / 0 = 0.

Convergence rate of /„ to /„,

H/^-ZnlU \\L,-L\\L2

0
1
2
3
4
5
6

1.00000
0.72147
0.36802
0.08205
0.00855
0.00158
0.00157

1.47584
0.50049
0.18695
0.03202
0.00258
0.00078
0.00075

Example 2. Let u{x, t) satisfy,

l, 0 < r < l

,t) = 2f(u{0,t))

with/ac((u)=-u2.
The choice of initial data was simply to be compatible with the boundary data at

x=0 and x = l. Note that the function / is not sublinear, but its Lipschitz constant
remains uniformly bounded since by the maximum principle the function u(x, t) satisfies
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The table below shows the difference of / and fMt in the supremum and L2 norms
until the difference in ||/n+i —/n|| no longer decreased. The initial guess was / 0 = 0.

Convergence rate of /„ to / M

II/--/JL ll/«-/JI«
0
1
2
3
4
5

1.00000
0.18082
0.04051
0.00559
0.00559
0.00558

0.44677
0.21749
0.02795
0.00476
0.00442
0.00442
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