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QUASISTOCHASTIC MATRICES AND
MARKOV RENEWAL THEORY

BY GEROLD ALSMEYER

Abstract

Let S be a finite or countable set. Given a matrix F = (Fij )i,j∈S of distribution functions
on R and a quasistochastic matrixQ = (qij )i,j∈S , i.e. an irreducible nonnegative matrix
with maximal eigenvalue 1 and associated unique (modulo scaling) positive left and
right eigenvectors u and v, the matrix renewal measure

∑
n≥0 Q

n ⊗ F ∗n associated
with Q ⊗ F := (qijFij )i,j∈S (see below for precise definitions) and a related Markov
renewal equation are studied. This was done earlier by de Saporta (2003) and Sgibnev
(2006, 2010) by drawing on potential theory, matrix-analytic methods, and Wiener–Hopf
techniques. In this paper we describe a probabilistic approach which is quite different
and starts from the observation that Q ⊗ F becomes an ordinary semi-Markov matrix
after a harmonic transform. This allows us to relate Q ⊗ F to a Markov random walk
{(Mn, Sn)}n≥0 with discrete recurrent driving chain {Mn}n≥0. It is then shown that
renewal theorems including a Choquet–Deny-type lemma may be easily established by
resorting to standard renewal theory for ordinary random walks. The paper concludes
with two typical examples.

Keywords: Quasistochastic matrix; Markov random walk; Markov renewal equation;
Markov renewal theorem; spread out; Stone-type decomposition; age-dependent multi-
type branching process; random difference equation; perpetuity
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1. Introduction and main results

Quasistochastic matrices (see below for the formal definition) constitute a generalization of
stochastic matrices and, thus, of transition matrices of Markov chains with countable state space.
In applications, two of which may be found in the final section of this paper, such matrices
appear when studying the limit behaviour of certain functionals of processes which are driven
by discrete Markov chains. These processes, called Markov random walks or Markov-additive
processes, are characterized by having increments (referring only to the additive part) which
are conditionally independent given the driving chain. Moreover, the conditional distribution
of the nth increment depends only on the state of the chain at times n − 1 and n. Aiming
at limit results as just mentioned, our main purpose is to show that, by using a harmonic
transform, quasistochasticity may easily be reduced to stochasticity and, thus, to ordinary
transition matrices. This in turn allows the use of more intuitive probabilistic arguments instead
of analytic ones. Further information follows below after a description of the basic setup.

First we define quasistochasticity. Let S = {1, . . . , m} for somem ∈ N or S = N. Suppose
that we are given an irreducible nonnegative matrixQ = (qij )i,j∈S with maximal eigenvalue 1
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for which there exist unique positive left and right eigenvectors u = (ui)i∈S, v = (vi)i∈S

modulo scaling,
u�Q = u� and Qv = v.

A matrix of this kind will be called quasistochastic hereafter. If S is finite or, more generally,∑
i∈S ui < ∞ and u�v < ∞, strict uniqueness is rendered upon choosing the normalization∑

i∈S

ui = 1 and u�v =
∑
i∈S

uivi = 1. (1.1)

Note that, under these assumptions, all powersQn =: (q(n)ij )i,j∈S
are also nonnegative matrices

with finite entries (plainly, a nontrivial statement only if S is infinite).
In the example that first comes to mind, Q is the transition matrix of a recurrent discrete

Markov chain on S and, thus, a proper stochastic matrix for which the left eigenvector u is
the essentially unique stationary measure of the chain. In the positive recurrent case, we can
choose u to be the unique stationary distribution and v = (1, 1, . . .)�.

Next, let Fij for i, j ∈ S be proper distribution functions on R, thus nondecreasing, and
right continuous with limits 0 at −∞ and 1 at +∞. Define the matrix function

R � t 	→ Q⊗ F(t) = ((Q⊗ F)ij (t))i,j∈S := (qijFij (t))i,j∈S,

where F(t) := (Fij (t))i,j∈S . If B(t) = (Bij (t))i,j∈S denotes another matrix of real-valued
functions, the convolution (Q⊗ F) ∗ B of Q⊗ F(t) and B(t) is defined by

((Q⊗ F) ∗ B)ij (t) :=
∑
k∈S

∫
R

Bkj (t − x) (Q⊗ F)ik(dx), i, j ∈ S, t ∈ R,

provided that the integrals exist. Since, for all i, j ∈ S,

((Q⊗ F) ∗ (Q⊗ F))ij (t) =
∑
k∈S

qikqkjFik ∗ Fkj (t) ≤
∑
k∈S

qikqkj = q
(2)
ij ,

it follows that (Q⊗ F)∗2 exists (as a componentwise finite-valued function), and then, using
induction over n, the same is true for (Q⊗ F)∗n which is defined recursively by

(Q⊗ F)∗n(t) = (Q⊗ F) ∗ (Q⊗ F)∗(n−1)(t), t ∈ R,

for n ≥ 1, where A∗0(t) equals the identity matrix for each t ≥ 0 and any matrix function A.
The same induction argument also shows that

(Q⊗ F)∗n(t) = (q
(n)
ij F

∗n
ij (t))i,j∈S = Qn ⊗ F ∗n(t), t ∈ R, n ∈ N0.

Of particular interest in this work is the matrix renewal measure associated with Q ⊗ F ,
namely the S × S × R-valued measure for which

V((t, t + h]) :=
∑
n≥0

((Q⊗ F)∗n(t + h)− (Q⊗ F)∗n(t)), t ∈ R, h > 0,

under conditions ensuring that the entries of V = (Vij )i,j∈S are Radon measures. The matrix
measure V arises in connection with the solution Z(t) = (Zi(t))i∈S of a system of renewal
equations, namely,

Zi(t) = zi(t)+
∑
j∈S

qij

∫
R

Zj (t − x) Fij (dx), t ∈ R, i ∈ S,
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written shortly as Z = z + (Q ⊗ F) ∗ Z, where z(t) = (zi(t))i∈S is a vector of real-valued
functions. Indeed, if

Z(t) = V ∗ z(t) = (Vi ∗ z(t))i∈S =
(∑
j∈S

q
(n)
ij

∫
R

zj (t − x) F ∗n
ij (dx)

)
i∈S

exists for all t ∈ R, then it forms a solution which is unique under additional assumptions that
we sketch around Theorem 1.4 below.

Apart from allowing S to be infinite, our setup is the same as in the papers by de Saporta [12]
and Sgibnev [26], who derived a Blackwell-type renewal theorem for V and determined the
asymptotic behaviour of Z(t) = V ∗ z(t) under appropriate conditions. De Saporta’s approach
is based on potential theory and rather technical, while Sgibnev used a matrix-analytic approach
in combination with a matrix Wiener–Hopf factorization as described in [3]. The main purpose
of this paper is to provide a different, purely probabilistic approach within the framework
of discrete Markov renewal theory; this allows us to interpret assumptions in a more natural
context and is also considerably simpler. This simplification is due to the fact that the core
results in discrete Markov renewal theory, which deals with random walks driven (or modulated)
by a recurrent Markov chain with discrete state space, can be easily deduced from classical
renewal theory dealing with ordinary random walks with positive drift. This is done by drawing
on stopping times, occupation measures, and regeneration techniques, and is demonstrated in
Section 3, for it has apparently never been carried out in the literature (though a similar approach
may already be found in the classical paper by Athreya et al. [6]). For basic definitions and
properties of Markov random walks and Markov renewal processes with discrete driving chain,
we refer the reader to the textbooks by Asmussen [4, pp. 206ff.] and Çinlar [10, Chapter 10],
or [9].

Besides quasistochasticity, the following two standing assumptions about Q are made
throughout this work:

(A1)
∑
n≥1 q

(n)
ii = ∞ for some i ∈ S,

(A2) μ := ∑
i∈S

∑
j∈S ui qij vj

∫
x Fij (dx) > 0.

In terms of the stochastic matrix P that is associated with Q and is introduced in Section 2
below, condition (A1) means that P is recurrent, while (A2) ensures that the Markov random
walk associated with P ⊗ F has positive stationary drift (see Lemma 2.1). Since Q (and,
thus, P ) is irreducible, it follows by solidarity that (A1) actually implies that

∑
i∈S q

(n)
ii = ∞

for all i ∈ S. Moreover, (A1) automatically holds if S is finite.
We also need the following lattice-type condition on Q ⊗ F ; it is due to Shurenkov [28].

We call Q⊗ F the d-arithmetic if d is the maximal positive number such that

Fij (γ (j)− γ (i)+ d Z) = Fij (∞) (1.2)

for all i, j ∈ S with ui qij vj > 0 and some measurable γ : S → [0, d) which we call the shift
function. If no such d exists, Q⊗ F is called nonarithmetic. Note that (1.2) for all i and j as
stated implies that

F ∗n
ij (γ (j)− γ (i)+ d Z) = F ∗n

ij (∞)

for all i, j ∈ S with ui q
(n)
ij vj > 0 and all n ∈ N. Consequently, if F ∗n

ij is nonsingular with

respect to the Lebesgue measure λ for some n ∈ N and i, j ∈ S with ui q
(n)
ij vj > 0, thenQ⊗F

must be nonarithmetic and is called spread out. As in the classical renewal setup, this property
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entails a Stone-type decomposition of the matrix renewal measure V; this leads in turn to some
improvements of the renewal results on V in the nonarithmetic case.

We proceed to the statement of our main results, all proofs of which are presented in Section 4.
For the sake of brevity, we restrict attention to the case of nonarithmetic Q⊗ F ; note that all
given results have obvious arithmetic counterparts which are obtained in a similar manner.

If S is finite, the following result can be found in [12, Theorem 3] or [26, Theorem 1].

Theorem 1.1. Let Q be a quasistochastic matrix satisfying (A1) and (A2), and suppose that
Q⊗ F is nonarithmetic. Then the associated renewal measure V satisfies

lim
t→∞ Vij ((t, t + h]) = vi ujh

μ
and lim

t→−∞ Vij ((t, t + h]) = 0

for all h > 0 and i, j ∈ S.

The next result provides a Stone-type decomposition of V. It was derived by other means
for finite S in [25, Theorem 2] (one-sided case) and [26, Theorem 5].

Theorem 1.2. Let Q be a quasistochastic matrix satisfying (A1) and (A2), and suppose that
Q⊗F is spread out. Then the associated renewal measure allows a Stone-type decomposition
V = V

1 + V
2, where

(a) V
1 = (V1

ij )i,j∈S consists of finite measures V
1
ij , and

(b) V
2 = (V2

ij )i,j∈S consists of λ-continuous measures V
2
ij with densities hij that are

bounded, continuous, and satisfy, for all i and j ∈ S,

lim
t→∞hij (t) = viuj

μ
and lim

t→−∞hij (t) = 0.

Furthermore,

lim
t→∞ sup

B(R)�B⊂[0,h]

∣∣∣∣Vij (t + B)− viujλ(B)

μ

∣∣∣∣ = 0

for all h > 0 and i, j ∈ S.

Turning to the functional version of the two previous results, consider a positive sequence
λ = (λi)i∈S and a measurable function g : S × R → R. The function g is called λ-directly
Riemann integrable if

gi is λ-almost everywhere continuous for all i ∈ S, (1.3)∑
i∈S

λi
∑
n∈Z

sup
nε<x≤(n+1)ε

|gi(x)| < ∞ for some ε > 0, (1.4)

where gi := g(i, ·). If S is finite then this reduces to the statement that gi for each i ∈ S is
directly Riemann integrable in the ordinary sense and Theorem 1.3 reduces to [12, Theorem 4]
or [26, Theorem 4] for the general nonarithmetic case. For the spread-out case, see also [25,
Theorem 3] and [26, Theorem 6]. (In Theorem 1.3 below the S × R-valued function V ∗ g has
components (V ∗ g)i(t) := ∑

j

∫
g(j, t − x)Vij (dx) =: (Vi ∗ g)(t)i∈S .)

Theorem 1.3. Under the same assumptions as in Theorem 1.1, let g be u-directly Riemann
integrable. Then V ∗ g = (Vi ∗ g(t))i∈S has bounded components, i.e.

sup
t∈R

|Vi ∗ g(t)| < ∞ for all i ∈ S,
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and

lim
t→∞(V ∗ g)i(t) = vi

μ

∑
j∈S

uj

∫
gj (x) dx and lim

t→−∞(V ∗ g)i(t) = 0

for all i ∈ S. If also Q⊗ F is spread out then the assertions remain valid for all functions g
satisfying

gi ∈ L∞(λ) and lim|x|→∞ gi(x) = 0 for all i ∈ S, (1.5)∑
i∈S

ui ‖gi‖∞ < ∞, (1.6)

g ∈ L1(u⊗ λ), i.e.
∑
i∈S

ui‖gi‖1 < ∞. (1.7)

Turning finally to the Markov renewal equation Z = z + (Q⊗ F) ∗ Z, it is now relatively
easy to provide conditions such that Z∗ = V ∗ z is a solution. On the other hand, the question
of uniqueness of Z∗ within a reasonable class of functions is more difficult, especially when
the state space S of the driving chain is infinite. Conditions that guarantee uniqueness are often
hard to verify in concrete applications.

Given any Z : S × R → R, let Ẑ := D−1Z = (v−1
i Zi)i∈S . Then define

L :=
{
Z : ‖Ẑi‖∞ < ∞ and lim

t→−∞ Ẑi(t) = 0 for all i ∈ S
}
,

L0 :=
{
Z ∈ L : sup

i∈S
‖Ẑi‖∞ < ∞

}
,

L0(g) := {Z : Ẑ − ĝ ∈ L0},
Cb :=

{
Z : sup

i∈S
‖Ẑi‖∞ < ∞ and Zi is continuous for all i ∈ S

}
.

Note that L = L0 if S is finite.

Theorem 1.4. Let Q be a quasistochastic matrix satisfying (A1) and (A2), and suppose that
Q ⊗ F is nonarithmetic. Let z : S × R → R be u-directly Riemann integrable, or satisfy
conditions (1.5)–(1.7) if Q ⊗ F is spread out. Then Z∗ = V ∗ z is an element of L and the
unique solution to Z = z+ (Q⊗F) ∗Z in L0(Z

∗). It is also the unique solution in the larger
class L0 if S is finite or, more generally, Z∗ ∈ L0.

Note that, within the class of componentwise bounded functions, there are in fact infinitely
many solutions to Z = z+ (Q⊗ F) ∗ Z, namely all functions

Zc(t) := V ∗ z(t)+ cv = (Vi ∗ z(t)+ cvi)i∈S, t ∈ R,

for c ∈ R. This means that the constant vectors cv = (cvi)i∈S are solutions to the homogeneous
(Choquet–Deny-type) equation Z = (Q⊗ F) ∗ Z. The following theorem further shows that
they are in fact the only solutions within the class Cb. If S is finite, this was established
analytically by de Saporta [12, Subsection 3.2] extending earlier results by Crump [11] and
Athreya and Rama Murthy [5] in the one-sided case when all zi, Zi , and/or Fij are concentrated
on [0,∞). Not necessarily continuous solutions in the one-sided case are also discussed in
some detail by Çinlar [9, Sections 3 and 4] in his survey of Markov renewal theory. For yet
another and quite recent extension of these results, see [27]. Here we give a simple probabilistic
argument which essentially reduces the problem to the classical renewal setup where the answer
is known (see [14, p. 382]).
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Theorem 1.5. Let Q be a quasistochastic matrix satisfying (A1) and (A2), and suppose that
Q⊗ F is nonarithmetic. Then any solution Z ∈ Cb to the equation Z = (Q⊗ F) ∗ Z equals
cv for some c ∈ R.

2. The Markov renewal setup

Put D := diag(vi, i ∈ S) and π = (πi)i∈S with πi := uivi for i ∈ S. By (1.1), π defines a
probability distribution on S if both the ui and uivi are summable. Put further

P := D−1QD =
(
qij vj

vi

)
i,j∈S

,

which is an irreducible stochastic matrix having an essentially unique left eigenvector π =
u�D = (uivi)i∈S associated with its maximal eigenvalue 1. Then

�(t) := P ⊗ F(t) = D−1(Q⊗ F)(t)D =
(
qijFij (t)vj

vi

)
i,j∈S

(2.1)

defines a matrix transition function of a Markov-modulated sequence {(Mn,Xn)}n≥0 with state
space S × R. This means that the latter sequence forms a temporally homogeneous Markov
chain satisfying

P{Mn+1 = j, Xn+1 ≤ t | Mn = i} = pijFij (t)

for all n ∈ N0, i, j ∈ S, and t ∈ R. Equivalently, M = {Mn}n≥0 forms a Markov chain on S
with transition matrix P and the Xn are conditionally independent given M with

P{Xn ≤ t | M} = P{Xn ≤ t | Mn−1,Mn} = FMn−1Mn(t)

for all n ∈ N and t ∈ R. The Markov-additive process associated with {(Mn,Xn)}n≥0,
called the Markov random walk (MRW) hereafter, is defined to be {(Mn, Sn)}n≥0, where Sn =
X0 + · · · + Xn for n ∈ N0. Its occupation measure on S × R under Pi := P{· | M0 = i} is
given by

Ui (C) := Ei

[∑
n≥0

IC(Mn, Sn)

]
=

∑
n≥0

Pi{(Mn, Sn) ∈ C}

for measurable subsets C of S × R; call (Ui )i∈S the Markov renewal measure. Since S is
countable, there is a one-to-one correspondence between the vector measure (Ui )i∈S and the
matrix renewal measure U = (Uij )i,j∈S , where

Uij (B) := Ei

[∑
n≥0

I{Mn=j, Sn∈B}
]

=
∑
n≥0

Pi{Mn = j, Sn ∈ B}, B ∈ B(R).

Lemma 2.1. Let Q be a quasistochastic matrix satisfying (A1) and (A2). Then the associated
MRW {(Mn, Sn)}n≥0 has recurrent driving chain with stationary measure π and positive
stationary drift μ defined in (A2), so EπX1 = μ.

Proof. Obviously, (A1) is equivalent to∑
n≥1

p
(n)
ii = ∞ for some i ∈ S,
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which in turn is equivalent to the recurrence of {Mn}n≥0 as claimed. The drift assertion follows
from

EπX1 =
∑
i,j∈S

Pπ {M0 = i, M1 = j} E[X1 | M0 = i, M1 = j ] =
∑
i,j∈S

πipij

∫
x Fij (dx)

in combination with the definitions of the πi and pij .

Lemma 2.2. Let Q be a quasistochastic matrix satisfying (A1) and (A2). Then

V = DUD−1 =
(
vi Uij

vj

)
i,j∈S

. (2.2)

Proof. For all i, j ∈ S, t ∈ R, and h > 0,

Uij ((t, t + h]) =
∑
n≥0

Pi{Mn = j, Sn ∈ (t, t + h]} =
∑
n≥0

p
(n)
ij (F

∗n
ij (t + h)− F ∗n

ij (t)),

and, therefore, using (2.1),

U((t, t + h]) =
∑
n≥0

((P ⊗ F)∗n(t + h)− (P ⊗ F)∗n(t))

=
∑
n≥0

D−1((Q⊗ F)∗n(t + h)− (Q⊗ F)∗n(t))D.

But this equals the left-hand side below, and the rest proves the assertion:

D−1
(∑
n≥0

((Q⊗ F)∗n(t + h)− (Q⊗ F)∗n(t))
)
D = D−1

V((t, t + h])D.

Equation (2.2) provides the crucial relation between the renewal measure V associated with
Q ⊗ F and the matrix renewal measure U whose entries Uij are actually ordinary renewal
measures, as will be shown in Lemma 3.3 below. As a consequence, any result valid for U is
now easily converted into a result for V.

3. Discrete Markov renewal theory: a purely probabilistic approach

Throughout this section, let {(Mn, Sn)}n≥0 be an arbitrary nonarithmetic MRW with discrete
recurrent driving chain M = {Mn}n≥0 having state space S, transition matrix P = (pij )i,j∈S ,
and stationary measure π = (πi)i∈S , the latter being unique up to positive scalars. We denote
by X1, X2, . . . the increments of {Sn}n≥0 and by Fij the conditional distribution of Xn given
Mn−1 = i and Mn = j for i, j ∈ S. Put Pi (·) := P(· | M0 = i) with expectation operator Ei ,
and let S0 = 0 almost surely (a.s.) under Pi for each i ∈ S. Finally, assume that the MRW has
positive stationary drift μ, given by

μ =
∑
i∈S

∑
j∈S

πipijμij = EπX1,

whereμij := ∫
x Fij (dx). Below, we call all these the standard assumptions. Note thatμ, like

π , is unique only up to positive scalars.
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3.1. Auxiliary results

Let i ∈ S be arbitrary but fixed throughout this subsection. Then we can define π by

πk := π
(i)
k := Ei

[σ(i)∑
n=1

I{Mn=k}
]
, k ∈ S, (3.1)

where σ(i) denotes the first return time of M to i. With this choice, πi = 1 and we can also
easily deduce that

Ei

[σ(i)∑
n=1

g(Mn,Xn)

]
= Ei

[σ(i)−1∑
n=0

g(Mn,Xn)

]
= Eπg(M1, X1) (3.2)

whenever Eπg(M1, X1) exists. Note that π(j) = cjπ
(i) for any j ∈ S together with cjπj =

cjπ
(i)
j = π

(j)
j = 1 implies that cj = π−1

j .
If {σn(i)}n≥1 denotes the renewal sequence of successive return times of M to i (thus,

σ(i) = σ1(i)) then {Sσn(i)}n≥1 is an ordinary random walk under any Pj with increment
distribution Pi{Sσ(i) ∈ ·} and drift

EiSσ(i) = Ei

[σ(i)∑
n=1

Xn

]
= EπX1 = μ,

where we have utilized (3.2). In particular, {Sσn(i)}n≥0 with σ0(i) := 0 forms a zero-delayed
random walk under Pi . The drift of any other {Sσn(j)}n≥1 in terms of μ and π is given in the
next lemma.

Lemma 3.1. For each j ∈ S,

Ej Sσ(j) = μ

πj
.

Proof. This follows from

Ej Sσ(j) = Eπ(j)X1 = π−1
j EπX1

valid for any j ∈ S.

The following lemma on the lattice type of {Sσn(j)}n≥1, j ∈ S, is stated without proof, which
can be given with the help of Fourier transforms.

Lemma 3.2. Under the standard assumptions, for any j ∈ S, Sσ(j) is nonarithmetic under Pj .

The next lemma confirms that the Markov renewal measure Ui is directly related to the
ordinary renewal measures of {Sσn(j)}n≥1, j ∈ S, under Pi .

Lemma 3.3. For all j ∈ S, Ui ({j} × ·) = Uij equals the (ordinary) renewal measure of
{Sσn(j)}n≥1 under Pi if j �= i, and of {Sσn(i)}n≥0 under Pi if j = i.

Proof. The assertion follows directly from

Uij (B) = Ei

[∑
n≥0

I{Mn=j, Sn∈B}
]

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ei

[∑
n≥1

I{Sσn(j)∈B}
]

if j �= i,

Ei

[∑
n≥0

I{Sσn(i)∈B}
]

otherwise,

for all B ∈ B(R).
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The next result concerns the pre-σ(i) occupation measure

Ui(C) := Ei

[σ(i)−1∑
n=0

IC(Mn, Sn)

]

defined on measurable subsets C of S × R. Setting C = {j} × R, it follows that

Ui({j} × R) = Ei

[σ(i)−1∑
n=0

I{Mn=j}
]

= πj for all j ∈ S. (3.3)

Lemma 3.4. Under the standard assumptions,

Ui (C) =
∑
j∈S

∫∫
IC(j, x + y)Ui({j} × dy)Uii (dx)

for any measurable C ⊂ S × R; in particular, for all j ∈ S and B ∈ B(R),

Uij (B) =
∫
Ui({j} × (B − x))Uii (dx) =

∫
Uii (B − x)Ui({j} × dx).

Proof. Apply a standard conditioning argument to the expression

Ui (C) = Ei

[∑
n≥0

σn+1(i)−σn(i)−1∑
k=0

IC(Mσn(i)+k, Sσn(i)+k)
]
.

Lemma 3.5. Under the standard assumptions, for all j ∈ S and h > 0,

sup
t∈R

Uij ([t, t + h]) ≤ πj Uii ([−h, h]).

Proof. It is well known from ordinary renewal theory that, for any h > 0,

sup
t∈R

Uii ([t, t + h]) ≤ Uii ([−h, h]).

Using this and (3.3) with Lemma 3.4, we obtain, for all j ∈ S, t ∈ R, and h > 0,

Uij ([t, t + h]) =
∫

Uii ([t − x, t + h− x]) Ui({j} × dx)

≤ Ui({j} × R)Uii ([−h, h])
= πj Uii ([−h, h]).

3.2. Markov renewal theorems

It is now fairly straightforward to derive the Markov renewal theorem in the present setup by
drawing on Blackwell’s renewal theorem and the key renewal theorem from standard renewal
theory. Sinceπ is generally unique only up to positive scalars, it should be observed thatπ(·)/μ
with μ defined by (A2) does not depend on the particular choice of π .

Theorem 3.1. (Markov renewal theorem I.) Under the standard assumptions,

lim
t→∞ Ui (A× [t, t + h]) = π(A) h

μ
and lim

t→−∞ Ui (A× [t, t + h]) = 0

for all i ∈ S, π -finite A ⊂ S, and h > 0.
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Proof. This is now a direct consequence of Blackwell’s renewal theorem (applied to the Uij )

and the dominated convergence theorem, when using the facts that

Ui (A× [t, t + h]) =
∑
j∈A

Uij ([t, t + h]) =
∑
j∈A

Uij ([t, t + h])

by Lemma 3.3 and
∑
j∈A Uij ([t, t + h]) ≤ π(A)U ii ([−h, h]) (Lemma 3.5), and, finally, by

Lemma 3.1,

lim
t→∞ Uij ([t, t + h]) = 1

Ej Sσ(j)
= πj

μ
for any j ∈ S.

Turning to the functional version of the previous result, recall from (1.3) and (1.4) the
definition of a π -directly Riemann integrable function g. The asymptotic behaviour of

Ui ∗ g(t) =
∑
j∈S

∫
gj (t − x)Uij (dx)

for any such g and i, j ∈ S is described by the second Markov renewal theorem.

Theorem 3.2. (Markov renewal theorem II.) Under the standard assumptions, for any i ∈ S
and π -directly Riemann integrable function g, Ui ∗ g is a bounded function satisfying

lim
t→∞ Ui ∗ g(t) = 1

μ

∑
j∈S

πj

∫
gj (x) dx and lim

t→−∞ Ui ∗ g(t) = 0.

Proof. Without loss of generality, let g be nonnegative. Define, for any ρ > 0,

g
ρ
k (t) :=

∑
n∈Z

(
sup

nρ<x≤(n+1)ρ
gk(x)

)
I(nρ,(n+1)ρ](t), (k, t) ∈ S × R.

By construction, for each i ∈ S, gεi majorizes gi , and since all the πj are positive, condition
(1.4) ensures that gεi is directly Riemann integrable, which when combined with (1.3) implies
that gi itself is directly Riemann integrable. Then, by the key renewal theorem,

lim
t→∞ Uij ∗ gj (t) = πj

μ
and lim

t→−∞ Uij ∗ gj (t) = 0

for all i, j ∈ S. Now fix any i ∈ S and choose π = π(i); thus, πi = 1. Use Lemma 3.5
together with (1.4) to infer that∑

j∈S

Uij ∗ g(t) ≤
∑
j∈S

Uij ∗ g ε(t)

=
∑
j∈S

∑
n∈Z

(
sup

nε<x≤(n+1)ε
gj (x)

)
Uij ([t − (n+ 1)ε, t − nε))

≤ Uii ([−ε, ε])
∑
j∈S

πj
∑
n∈Z

(
sup

nε<x≤(n+1)ε
gj (x)

)
< ∞. (3.4)

Now by Lemma 3.3 we also have

Ui ∗ g(t) =
∑
j∈S

∫
gj (t − x)Uij (dx) =

∑
j∈S

Uij ∗ g(t), (3.5)

so the convergence assertions follow on appealing to the dominated convergence theorem.
Combining (3.4) and (3.5) also shows the boundedness of Ui ∗ g for each i ∈ S.
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3.3. The spread-out case: a Stone-type decomposition

The final subsection deals with the situation when {Mn, Sn}n≥0 is spread out which means
that some convolution power of Pπ {X1 ∈ ·} is nonsingular with respect to λ or, equivalently,
that F ∗n

rs is nonsingular with respect to λ for some r, s ∈ S with p(n)rs > 0 and some n ∈ N

(for a definition in a more general setup, see [21, Definition 2.1]). In this case, Lemma 3.3
further allows us to derive a Stone-type decomposition of the Markov renewal measure in
a very straightforward manner. We begin with a preliminary result on the ordinary renewal
measures Uij .

Proposition 3.1. Let {(Mn, Sn)}n≥0 be spread out. Then there exist finite measures U
1
ij and

λ-continuous measures U
2
ij = υijλ such that the following assertions hold for all i, j ∈ S.

(a) Uij = U
1
ij + U

2
ij .

(b) If i �= j then U
1
ij = Gij ∗ U

1
jj , U

2
ij = Gij ∗ U

2
jj , and υij = Gij ∗ υjj , where Gij (·) :=

Pi{Sσ1(j) ∈ ·}.
(c) υij is continuous and bounded (uniformly in i ∈ S) with

lim
t→∞ υij (t) = πj

μ
and lim

t→−∞ υij (t) = 0.

Proof. Choose any i ∈ S. If r, s ∈ S are such that F ∗n
rs has a convolution power that is

nonsingular with respect to λ for some n ∈ N, then choose a cyclic path (i, r1, . . . , rm, i) of
positive probability p that passes through r and s at consecutive times. This is possible because
{Mn}n≥0 is irreducible and prs > 0. It follows that

Gii(·) := Pi{Sσ1(i) ∈ ·}
= piiFii +

∑
n≥2

∑
i1,...,in−1∈S\{i}

pii1 · · ·pin−1i Fii1 ∗ · · · ∗ Fin−1i

≥ p Fir1 ∗ · · · ∗ Frs ∗ · · · ∗ Frn−1i

and, hence, that Gii is spread out. Consequently, Stone’s decomposition for ordinary renewal
measures provides us with Uii = U

1
ii + U

2
ii for some finite measure U

1
ii and some λ-continuous

measure U
2
ii = υiiλ such that υii is bounded and continuous with limit 0 at −∞ and

lim
t→∞ υii(t) = 1

EiSσ(i)
= πi

μ
.

All remaining assertions are now easily derived by using Uij = Fij ∗ Ujj for i, j ∈ S with
i �= j . Further details are therefore omitted.

It is now easy to obtain a Stone-type decomposition of the Markov renewal measures Ui , i ∈ S.

Theorem 3.3. (Stone-type decomposition.) Let {(Mn, Sn)}n≥0 be spread out. Then, for each
i ∈ S, there exists a finite measure U

1
i and a (π ⊗ λ)-continuous measure U

2
i with density υi

such that

(a) Ui = U
1
i + U

2
i ,

(b) υi is bounded on any S0 × R with supi∈S0
πi < ∞, and

(c) υij (·) := υi(j, ·) is continuous for any j ∈ S and satisfies

lim
t→∞ υij (t) = 1

μ
and lim

t→−∞ υij (t) = 0.
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Proof. Fix any i ∈ S, and again let π be defined by (3.1) so that πi = 1. Using

Ui (C) =
∫

R

Ei

[σ(i)−1∑
n=0

IC(Mn, x + Sn)

]
Uii (dx)

and Stone’s decomposition for Uii from the previous result, we arrive at the decompositon
Ui = U

1
i + U

2
i into the finite measure

U
1
i (C) :=

∫
R

Ei

[σ(i)−1∑
n=0

IC(Mn, x + Sn)

]
U

1
ii (dx)

with total mass U
1
i (S × R) = π−1

i U
1
ii (R) and the σ -finite measure

U
2
i (C) :=

∫
R

Ei

[σ(i)−1∑
n=0

IC(Mn, x + Sn)

]
υii(x)λ(dx)

=
∫

R

Ei

[σ(i)−1∑
n=0

IC(Mn, x)υii(x − Sn)

]
λ(dx).

Choosing C = {j} × B for arbitrary j ∈ S and B ∈ B(R), it follows that

U
2
i ({j} × B) =

∫
B

Ei

[σ(i)−1∑
n=0

I{Mn=j}υii(x − Sn)

]
λ(dx)

and thereby that U
2
i has (π ⊗ λ)-density

υij (t) = π−1
j Ei

[σ(i)−1∑
n=0

I{Mn=j}υii(t − Sn)

]
, t ∈ R,

which satisfies (with ‖ · ‖∞ denoting the sup norm)

υij (t) ≤ ‖υii‖∞
for all j ∈ S and t ∈ R, and, thus, ‖υij‖∞ ≤ ‖υii‖∞, and is continuous in the second argument.
The remaining asymptotic assertions are now derived by using the asymptotic properties of υii
stated in Proposition 3.1 and the dominated convergence theorem.

In the spread-out case the class of functions g satisfying the assertions of Theorem 3.2 can
be relaxed.

Theorem 3.4. (Markov renewal theorem II: spread-out case.) Let {(Mn, Sn)}n≥0 be spread
out, and let g : S × R → R be a measurable function satisfying (compare (1.3) and (1.4))

gi ∈ L∞(λ) and lim|x|→∞ gi(x) = 0 for all i ∈ S, (3.6)∑
i∈S

πi ‖gi‖∞ < ∞,

g ∈ L1(π ⊗ λ), i.e.
∑
i∈S

πi‖gi‖1 < ∞. (3.7)

Then all assertions of Theorem 3.2 about the Ui ∗ g remain valid.
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Proof. Again, without loss of generality, let g be nonnegative. Fix any i ∈ S, choose
π = π(i) and use Stone’s decomposition of U ii from Proposition 3.1(a) to infer that

Ui ∗ g(t) = Ei

[σ(i)−1∑
n=0

[U1
ii ∗ gMn(t − Sn)+ U

2
ii ∗ gMn(t − Sn)]

]
=: J1(t)+ J2(t)

for all t ∈ R. Put G(i) := ‖gi‖∞, and recall that ‖U
1
ii‖ := U

1
ii (R) < ∞. It follows that∑σ(i)−1

n=0 U
1
ii ∗ gMn(t − Sn) ≤ ‖U

1
ii‖

∑σ(i)−1
n=0 G(Mn), Pi-a.s. and

J1(t) ≤ ‖U
1
ii‖ Ei

[σ(i)−1∑
n=0

G(Mn)

]
= ‖U

1
ii‖ EπG(M0) < ∞ (use (3.2)),

implying the boundedness of J1, and then, by the dominated convergence theorem, we have
lim|t |→∞ J1(t) = 0 when lim|t |→∞ gi(t) = 0.

It remains to consider J2(t). Write

J2(t) = Ei

[σ(i)−1∑
n=0

∫
R

gMn(t − x − Sn)υii(x)λ(dx)

]

=
∫

R

Ei

[σ(i)−1∑
n=0

gMn(x)υii(t − x − Sn)

]
λ(dx)

=
∫

R

EπgM0(x) υii(t − x) λ(dx)

+
∫

R

Ei

[σ(i)−1∑
n=0

gMn(x)[υii(t − x − Sn)− υii(t − x)]
]

λ(dx).

By combining the assumptions on g with the properties of υii , it is now straightforward to
conclude that J2 is bounded and that the first term of the last two lines converges to the asserted
respective limit as t → ±∞, while the second term converges to 0. We omit further details.

4. Proofs of the main results

In view of the results of the two previous sections, it is now straightforward to deduce our
main theorems.

Proof of Theorem 1.1. As noted at the beginning of Section 2, P = D−1QD has the
essentially unique left eigenvector π = u�D = (uivi)i∈S associated with eigenvalue 1, so
that π is the essentially unique stationary measure of the Markov chain (Mn)n≥0 with transition
matrix P . Moreover, the MRW {(Mn, Sn)}n≥0 has stationary drift μ as defined in (A2) under
π and is nonarithmetic if Q ⊗ F has this property. Hence, a combination of Lemma 2.2 and
Markov renewal theorem I (Theorem 3.1) yields

lim
t→∞ Vij ([t, t + h]) = vi

vj
lim
t→∞ Uij ([t, t + h]) = viπjh

μvj
= viujh

μ

as well as lim t→−∞ Vij ([t, t + h]) = 0 for all h > 0 and i, j ∈ S.
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Proof of Theorem 1.2. IfQ⊗F is spread out then so is {(Mn, Sn)}n≥0. Therefore, by another
use of Lemma 2.2 in combination with Theorem 3.3, the assertions of the theorem follow directly
from observing that V = DU

1D−1 +DU
2D−1 provides a Stone-type decomposition of V.

Further details can be omitted.

Proof of Theorem 1.3. Recall that ĝ(t) := D−1g(t) = (v−1
i gi(t))i∈S . Then it is easily seen

that ĝ is π -directly Riemann integrable if and only if g is u-directly integrable, and that ĝ
satisfies (3.6) and (3.7) if and only if g itself satisfies (1.5) and (1.7). Furthermore, observing
that

V ∗ g = (DUD−1) ∗D ĝ = DU ∗ ĝ,
all assertions are directly inferred from Theorem 3.2 or 3.4 when applied to U ∗ ĝ.

Proof of Theorem 1.4. The fact that Z∗ ∈ L follows directly from Theorem 1.3, so we may
immediately turn to the uniqueness assertions regarding the Markov renewal equation

Z = z+ (Q⊗ F) ∗ Z. (4.1)

Note that if Z is in L and a solution to (4.1) then Ẑ = D−1Z is in the same class (with respect
to P , thus replacing v by (1, 1, . . .)� in the definition of L) and is a solution to the probabilistic
counterpart of (4.1), namely,

Ẑ = ẑ+ (P ⊗ F) ∗ Ẑ.
Hence, we may assume without loss of generality that Q = P , v = (1, 1, . . .)�, and, thus,
Ẑ = Z. Given any further solutionZ′ ∈ L0(Z

∗), the difference
 := Z′ −Z∗ is an element of
L0 and a solution to the homogeneous equation 
 = (P ⊗ F) ∗
; thus, 
i(t) = Ei[
(M1,

t − S1)] and then upon iteration


i(t) = Ei[
(Mn, t − Sn)]
for all t ∈ R, n ∈ N, and i ∈ S. This shows that, for all i ∈ S, {
(Mn, t − Sn)}n≥0 forms a
bounded Pi-martingale which thus converges Pi-a.s. to a limit. But the latter equals 0 because

lim
n→∞
(Mn, t − Sn) = lim

n→∞
(i, t − Sσn(i)) = 0,

where, as before, the σn(i) denote the almost surely finite return times to i of the chain {Mn}n≥0.
If S is finite orZ∗ ∈ L0, then L0(Z

∗) = L0 and the previous argument extends to all solutions
Z′ ∈ L0.

Proof of Theorem 1.5. Given a solution Z ∈ Cb of the homogeneous Markov renewal
equation Z = (Q⊗ F) ∗ Z, the function Ẑ is a bounded, componentwise continuous solution
to Ẑ = (P ⊗ F) ∗ Ẑ and, therefore, {Ẑ(Mn, t − Sn)}n≥0 is a bounded Pi-martingale for all
i ∈ S. Using the optional sampling theorem, it follows that

Ẑi(t) = Ei[Ẑ(Mσ(i), t − Sσ(i))] = Ei[Ẑi(t − Sσ(i))] for all i ∈ S.

In other words, Ẑi forms a bounded, continuous solution to the ordinary Choquet–Deny equation
Ẑi = F̂i ∗ Ẑi for each i ∈ S, where F̂i denotes the law of Sσ(i) under Pi . Since F̂i is
nonarithmetic (Lemma 3.2) and Ẑi is continuous, the latter function must equal a constant
ci (see [14, p. 382]). By another appeal to the optional sampling theorem, now for distinct
i, j ∈ S, we find that

ci = Ẑi(t) = Ei[Ẑj (t − Sσ(j))] = cj ,

where Pi{σ(j) < ∞} = 1 is guaranteed by the recurrence of {Mn}n≥0. Consequently, Ẑi ≡ c

for all i ∈ S and some c ∈ R as asserted.
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5. Two examples

Quasistochastic matrices arise in various areas of applied probability, typically in connection
with an exponential change of measure. We present two illustrative examples but make no
attempt to completely elaborate all technical details.

5.1. Age-dependent multitype branching processes

This is an example from the class of multitype Crump–Mode–Jagers processes. We refer
the reader to Mode’s book [20, Chapter 3] for more detailed information and further mention
a paper by the same author about a related model used for cell-cycle analysis [19].

Consider a population stemming from one ancestor born at time 0 which may be of any type
s ∈ S = {1, . . . , m}. At the end of its life, each individual of type i gives birth to a random
number of offspring of type j with finite mean μij for any j ∈ S and has a nonarithmetic
lifetime distribution Gi on (0,∞). Moreover, all individuals behave independently. We are
interested in the asymptotic behaviour of S(t) = (Sij (t))i,j∈S , where Sij (t) denotes the mean
number of type-j individuals alive at time t ≥ 0 when starting from one individual of type i.
For simplicity, let the numbers of offspring be independent of the lifetime of an individual. Put
Gi := 1 −Gi . Then a standard renewal argument leads to

Sij (t) = δijF i(t)+
m∑
k=1

μik

∫
(0,t]

Skj (t − x) Gk(dx), t ≥ 0,

for all 1 ≤ i, j ≤ m, that is, S = g + (M ⊗G) ∗ S with M := (μij )1≤i,j≤m,

g(t) :=
⎛
⎜⎝
G1(t) 0

. . .

0 Gm(t)

⎞
⎟⎠ , and G(t) :=

⎛
⎜⎝
G1(t) . . . G1(t)

. . .

Gm(t) . . . Gm(t)

⎞
⎟⎠ .

Here S(t) and z(t) are matrices instead of vectors, but we may of course consider their
column vectors S·j (t) = (Sij (t))1≤i≤m and g·j (t) = (δijGj (t))1≤i≤m separately, or any linear
combination v�S(t) = ∑m

j=1 vjS·j (t).
Now consider α ∈ R such that φi(α) := ∫

e−αt Gi(dt) < ∞ for each i = 1, . . . , m.
Defining Z(t) := e−αtS(t), we then find that Z = z + (Q ⊗ F) ∗ Z with z(t) := e−αtg(t),
Q := (mijφi(α))1≤i,j≤m, and

F(t) :=
⎛
⎜⎝
F1(t) . . . F1(t)

. . .

Fm(t) . . . Fm(t)

⎞
⎟⎠ , where Fi(t) := φi(α)

−1
∫

[0,t]
e−αx Gi(dx).

If α, called the Malthusian parameter of the population, can be chosen such thatQ has maximal
eigenvalue 1 and is primitive (thus, Qn is a strictly positive matrix for some n ∈ N—see [24]),
then the results of Section 1 can be used to determine the limit of e−αtS(t) as t → ∞. In
principle, these considerations may be extended to the case of infinite type space (S = N)

in the sense that the Markov renewal equations as above remain valid. On the other hand,
the quasistochasticity of Q, including therefore the necessary existence of the Malthusian
parameter α, is a more delicate matter.

Note finally that other functionals of the population described here may be studied in a
similar manner. For example, if Aij (t) denotes the average total age of all type-j individuals
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alive at time t when the ancestor of the population is of type i, then it is readily verified that
A(t) = (Aij (t))1≤i,j≤m satisfies the Markov renewal equation A = f + (M ⊗G) ∗A withM
and G as before and

f (t) := (δij t Gi(t))1≤i,j≤m.

5.2. Random difference equations in a Markovian environment

Let {(An, Bn)}n∈Z be a doubly infinite stationary ergodic sequence and consider the random
difference equation

Yn = AnYn−1 + Bn (5.1)

for n ≥ 0. It was shown by Brandt [7] that, if

E[log |A0|] < 0 and E[log+ |B0|] < ∞,

then a stationary solution of {Yn}n≥0 exists and may be realized by defining

Y0 = B0 +
∑
n≥0

A−nA−(n−1) · · ·A−1A0 B−n−1.

Regarding the existence and properties of the stationary law of Y0 (often called perpetuity),
many papers have dealt with the situation when the (An, Bn) are independent and identically
distributed (i.i.d.) and possibly multivariate; see [1, 2, 8, 15, 16, 17, 18, 29]. The case where
{An}n∈Z forms an irreducible stationary Markov chain taking values in a finite subset S of R,
and the Bn are i.i.d. and independent of theAn was treated by de Saporta [13]; see also [22, 23]
for the more general case of continuous state space S.

Here we look more closely at the situation treated in [13], for simplicity confining ourselves
to the case when S ⊂ (0,∞), but allowing S to be a countably infinite set. Denote by
P = (pss′)s,s′∈S the transition matrix of {An}n≥0 and by π = (πs)s∈S its unique stationary
distribution. Note that the dual backward chain (A−n)n≥0 has transition probabilities p̂ss′ =
πs′ps′s/πs .

Being interested in P{±Y1 > t, A0 = s} for (s, t) ∈ S × R, observe that, by (5.1),

P{±Y1 > t, A1 = s} = P{±sY0 > t, A1 = s} + ψ±
s (t),

where
ψ±
s (t) := P{±sY0 + B1 > t, A1 = s} − P{±sY0 > t, A1 = s}.

For α still to be specified, define the smoothed tail functions

Z±
s (t) := 1

πset

∫ et

0
uα P{±sY1 > u, A1 = s} du

and z±s (t) := π−1
s e−t ∫ et

0 uα ψ±
s (u) du. Put Fss′(t) := I[log s,∞)(t). Then it is not difficult to

show (see [13, Section 3] for details) that

Z±
s (t) = z±s (t)+ sα

∑
s′∈S

p̂ss′Fss′ ∗ Z±
s′ (t)

for all (s, t) ∈ S × R. Consequently, Z+(t) = (Z+
s (t))s∈S and Z−(t) = (Z−

s (t))s∈S both
satisfy the Markov renewal equation Z = z + (Q ⊗ F) ∗ Z with z(t) = z+(t) = (z+s (t))s∈S

and z(t) = z−(t) = (z−s (t))s∈S , respectively, and

Q = (sαp̂ss′)s,s′∈S =
(
sαπs′ps′s
πs

)
s,s′∈S

.

https://doi.org/10.1239/jap/1417528486 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1417528486


Quasistochastic matrices and Markov renewal theory 375

Therefore, the asymptotic behaviour of Z+(t) and Z−(t) as t → ∞ can be determined with
the help of the results in Section 1 if (besides further technical assumptions) we can choose
α > 0 such that Q is quasistochastic, which in particular requires Q to have spectral radius

ρ(Q) = lim
n→∞(E(A0 · · ·A−n+1)

α)1/n = 1.

In the case of finite S, the latter already implies quasistochasticity as a consequence of the
Perron–Frobenius theorem, but, for infinite state space, this needs further discussion.
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