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Locally integrable structures

In this chapter we introduce the main concepts which will be studied through-
out the book. In order to do so we recall some standard notions such as differ-
entiable manifolds, vector fields, differential forms, etc., with the purpose
mainly of laying down the basis for the presentation and to establish the
notations.

Nevertheless, we assume from the reader some familiarity with these
concepts. In particular, we freely use some standard results on complex vector
fields and complex differential forms on RN .

I.1 Complex vector fields

Let � be a Hausdorff topological space, with a countable basis of open
sets. A differentiable structure over � of dimension N is a collection of
pairs � = ��U�x�	, where U ⊂� is a nonempty open set, x 
 U −→ RN is a
homeomorphism onto an open subset x�U� of RN and the following properties
are satisfied:

(1)
⋃

�U�x�∈� U =�;

(2) x�U ∩U ′�
x′
x−1−→ x′�U ∩U ′� is C� for each pair �U�x�, �U ′�x′� ∈ � with

U ∩U ′ �= ∅;
(3) � is maximal with respect to (1) and (2), that is, if ∅ �= V ⊂� is open

and y 
 V −→ y�V� is a homeomorphism over an open subset of RN such

that, for any �U�x� ∈ � with U ∩V �= ∅, the composition x�U ∩V�
y
x−1

−→
y�U ∩V� is C�, then �V�y� ∈ � .

1
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2 Locally integrable structures

It is easy to see that given any family � ∗ = ��U�x�	 as above satisfying (1)
and (2) there is a unique differentiable structure � over �, of dimension N ,
such that � ∗ ⊂ � .

Definition I.1.1. A differentiable manifold (or smooth manifold) of dimen-
sion N is a Hausdorff topological space �, with a countable basis equipped
with a differentiable structure of dimension N .

If, in the above definitions, we replace C� by real-analytic we obtain the
concept of a real-analytic manifold of dimension N .

We give some examples:

(1) �= RN , � ∗ = ��RN � identity map�	.
(2) Let � be a differentiable manifold of dimension N and let W ⊂ �

be open. Then over W is defined a natural differentiable structure of
dimension N , which is given by

�W = ��W ∩U�x
W∩U � 
 �U�x� ∈ � �W ∩U �= ∅	�
(3) Let f 
 RN+1 → R be a C� function. Let

�= �x ∈ RN+1 
 f�x�= 0	

and suppose that df�x� �= 0, ∀x∈�. Then a natural differentiable structure
of dimension N is defined over � (as a consequence of the implicit
function theorem).

Notation. An element �U�x� ∈ � will be refered to as a local chart or as
a local system of coordinates. If we write x = �x1� � � � � xN � then for p ∈ U

its local coordinates (with respect to this given local chart) are given by
�x1�p�� � � � � xN �p��.

From now on, unless otherwise stated, we shall fix a differentiable manifold
� (of dimension N ). We shall say that a function f 
 �→C is smooth if for
every �U�x� ∈ � the composition f 
 x−1 is C� on x�U�.1 We shall denote
by C���� the set of all smooth functions on �. We observe that C� is an
algebra over C which contains, as an R-subalgebra, the set C����R� of all
smooth functions on � which are real-valued.

Definition I.1.2. A (smooth) complex vector field over � is a C-linear map

L 
 C����−→ C����

1 More generally, we say that a function f 
 �→ C is Ck (k ≥ 0) if for every �U�x� ∈ � the
composition f 
x−1 is Ck on x�U�.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511543067.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511543067.002


I.1 Complex vector fields 3

which satisfies the Leibniz rule

L�fg�= fL�g�+gL�f�� f� g ∈ C����� (I.1)

We shall denote by X��� the set of all complex vector fields over �.

Proposition I.1.3. If L ∈ X��� and if f is constant then Lf = 0. We also
have

suppLf ⊂ supp f� ∀f ∈ C����� L ∈ X���� (I.2)

Proof. For the first statement it suffices to show that L1= 0 and this follows
from (I.1) together with the fact that 12 = 1. We shall now prove (I.2); we
must show that if f vanishes on an open set V ⊂ � then the same is true
for Lf .

Let p ∈ V be arbitrary. We select a local chart �U�x� with p ∈ U ⊂ V

and take � ∈ C�c �x�U�� such that ��x�p��= 1. Then the function g 
 �→ R

defined by the rule

g�q�=
{

��x�q�� if q ∈ U

0 if q �∈ U

belongs to C����R� and vanishes on �\V . In particular,

f = �1−g�f

and then

L�f��p�= �1−g�p��L�f��p�+f�p�L�1−g��p�= 0�

since g�p�= 1.

A consequence of the preceding result is the possibility of defining the
restriction of an element L∈X��� to an open subset W of �. More precisely,
there is a C-linear map

X��� � L−→ LW ∈ X�W�

which turns the diagram

C����
L−→ C����

↓ ↓
C��W�

LW−→ C��W�

commutative (the vertical arrows denote the restriction map). Indeed, if p ∈W

and f ∈ C��W� we set

LW�f��p�= L�f̃ ��p��
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4 Locally integrable structures

where f̃ is any element in C���� which coincides with f in a neighborhood
of p. Such a definition is meaningful according to Proposition I.1.3 and it
is very easy to check that LW defines an element in X�W�. As usual we
shall write L instead of LW , since the meaning will always be clear from the
context.

I.2 The algebraic structure of X���

Given g ∈ C���� and L ∈ X��� we can define gL ∈ X��� by

�gL��f�= g ·L�f�� f ∈ C�����

Such external multiplication gives X��� the structure of a C����-module.
A very important (internal) operation in X��� is the so-called Lie bracket

(or commutator) between two vector fields. Given L�M ∈ X��� we define


L�M��f�= L�M�f��−M �L�f�� � f ∈ C����� (I.3)

It is a simple verification to check that 
L�M� ∈X���. This bracket operation
turns X��� into a Lie algebra2 over C.

Let �U�x� be a local chart in � and let also L ∈ X�U�. We fix p ∈ U and
write as before

x�q�= �x1�q�� � � � � xN �q��� q ∈ U�

Next we take V ⊂ U open such that x�V� is an open ball centered at x�p�=
a= �a1� � � � � aN �. Given f ∈C��U�, write f ∗ = f 
x−1. If �x1� � � � � xN �∈ x�V�,
the Fundamental Theorem of Calculus applied to the function t �→ f ∗�a1+
t�x1−a1�� � � � � aN + t�xN −aN�� gives

f ∗�x1� � � � � xN �= f ∗�a1� � � � � aN �+
N∑

j=1

hj�x1� � � � � xN ��xj−aj��

where hj ∈C��x�V�� and hj�a�= ��f ∗/�xj��a�. If we further set gj = hj 
x ∈
C��V�, we obtain

f�q�= f�p�+
N∑

j=1

gj�q��xj�q�−xj�p��� q ∈ V� (I.4)

2 Recall that a Lie algebra over C is a C-vector space E over which is defined a bilinear form
E×E � �v�w� �→ 
v�w� which satisfies


u�u�= 0� 
u� 
v�w��+ 
v� 
w�u��+ 
w� 
u� v��= 0� u� v�w ∈ E�
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I.3 Formally integrable structures 5

and consequently the Leibniz rule gives

L�f��p�=
N∑

j=1

gj�p�
(
Lxj

)
�p�� (I.5)

Definition I.2.1. The C-linear map C��U�→ C��U� given by

f �→ �f ∗

�xj


x

defines an element in X�U�, which will be denoted by �
�xj

.

Returning to the preceding argument and notation we can write

gj�p�= hj�x�p��=
�f ∗

�xj

�x�p��=
(

�

�xj

)
�f��p��

Inserting this in (I.5) gives

L�f��p�=
N∑

j=1

(
Lxj

)
�p�

(
�

�xj

)
�f��p��

since p was an arbitrary point taken in U we obtain the representation of L

in the local coordinates �x1� � � � � xN �:

L=
N∑

j=1

(
Lxj

) �

�xj

� (I.6)

In particular this representation shows that the C��U�-module X�U� is free,
with basis ��/�x1� � � � � �/�xN 	.

Observe that if M ∈ X�U� then the representation of 
L�M� in the local
coordinates �x1� � � � � xN � is given by


L�M�=
N∑

j=1

{
L�Mxj�−M�Lxj�

} �

�xj

� (I.7)

I.3 Formally integrable structures

Denote by �p the set of all pairs �V� f�, where V is an open neighborhood
of p and f ∈ C��V�. In �p we introduce the following equivalence relation:
�V1� f1�∼ �V2� f2� if there is an open neighborhood V of p, V ⊂ V1∩V2, such
that f1 and f2 agree on V .

A germ of a C� function at p is an element in the quotient space C��p�
�=

�p/∼. We observe that C��p� is also a C-algebra. Given a C� function f
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6 Locally integrable structures

defined in an open neighborhood of p, the germ at p defined by f will
be denoted by f . Notice that there is a natural C-algebra homomorphism
C��p�→ C defined by f �→ f�p�.

Definition I.3.1. A complex tangent vector (to �) at p is a C-linear map

v 
 C��p�−→ C

satisfying

v�f g�= f�p�v�g�+g�p�v�f�� f � g ∈ C��p�� (I.8)

The set of all complex tangent vectors at p, denoted by CTp�, has a structure
of a C-vector space and is called the complex tangent space to � at p.

If L ∈ X��� then Lp 
 C��p�→ C defined by

Lp�f�= L�f��p�� f ∈ C��p�

belongs to CTp�. Conversely, suppose that for each p ∈ � an element
vp ∈ CTp� is given such that

p �→ vp�f� ∈ C����� ∀f ∈ C�����

Then there is L ∈ X��� such that Lp = vp for all p ∈�.
Suppose now that p ∈ U and that �U�x� is a local chart. If v ∈CTp� then,

according to (I.5),

v�f�=
N∑

j=1

gj�p�v�xj�=
N∑

j=1

v�xj�

(
�

�xj

)
p

�f�� f ∈ C��p��

In particular we conclude that �� �
�xj

�p 
 j = 1� � � � �N	 is a basis of CTp�.
The complexified tangent bundle of � is defined as the disjoint union

CT�= ⋃
p∈�

CTp��

We shall also need the notion of a complex vector sub-bundle of CT� of rank
n and corank N −n. By this we mean a disjoint union

� = ⋃
p∈�

�p ⊂ CT�

satisfying the following conditions:

(a) For each p ∈�, �p is a vector subspace of CTp� of dimension n.
(b) Given p0 ∈ � there are an open set U0 containing p0 and vector fields

L1� � � � �Ln ∈ X�U0� such that L1p� � � � �Lnp span �p for every p ∈ U0.

The vector space �p is called the fiber of � at p.
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I.4 Differential forms 7

Given a complex vector sub-bundle � of CT� and an open subset W

of �, a section of � over W is an element L of X�W� such that Lp ∈ �p

for all p ∈ W . We are now in a position to introduce our main object of
study:

Definition I.3.2. A formally integrable structure over � is a complex vector
sub-bundle � of CT� satisfying the involutive (or Frobenius) condition:

• If W ⊂� is open and L�M ∈ X�W� are sections of � over W then 
L�M�

is also a section of � over W .

The rank (resp. corank) of � will be referred to as the rank (resp. corank) of
the formally integrable structure � . Let � be a formally integrable structure
over � and fix p ∈�. There is a local chart �U�x� with p ∈ U and vector
fields L1� � � � �Ln ∈ X�U� such that �L1q� � � � �Lnq	 is a basis of �q for every
q ∈ U . If we write x = �x1� � � � � xN � and

Lj =
N∑

k=1

ajk�x�
�

�xk

then the matrix �ajk� has rank equal to n at every point; moreover, there are
c�
jk ∈ C��U�, j� k� � = 1� � � � � n, such that


Lj�Lk�=
n∑

�=1

c�
jkL�� j� k= 1� � � � � n�

Definition I.3.3. A (classical) solution for the formally integrable structure
� over � is a C1-function u on � such that Lu= 0 for every section L of �
defined in an open subset of �.

More generally, we can consider the concept of (weak) solutions for the
formally integrable structure � over �: it suffices to consider u, in the
preceding definition, belonging to the space of distributions on � (we refer
to [H2] for the theory of distributions on manifolds).

I.4 Differential forms

We shall denote by N��� the dual of the C����-module X��� and shall
refer to its elements as differential forms over � of degree one (or one-forms
for short). In other words, a one-form on � is a C����-linear map

� 
 X���→ C�����
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8 Locally integrable structures

Let � ∈N���, L ∈ X��� and suppose that L vanishes on an open subset
V ⊂�. Then ��L� also vanishes on V . Indeed, let p∈V and let g ∈C����R�

be equal to one at p and vanish on �\V . Then L= �1−g�L and consequently

��L�= �1−g���L�

vanishes at p. In fact, we have a more precise result:

Lemma I.4.1. Let � ∈ N���, L ∈ X��� and suppose that Lp = 0. Then
��L��p�= 0.

Proof. By the preceding discussion it is clear that we can restrict a one-form
on � to an open set W ⊂�, that is, given � ∈N��� there is �
W ∈N�W�

which makes the diagram

X���
�−→ C����

↓ ↓
X�W�

�
W−→ C��W�

commutative (the vertical arrows denote restriction homomorphisms). Let then
�U�x� be a local chart with p ∈ U . Then, if x= �x1� � � � � xN � we have by (I.6)

��L��p�= �U�LU��p�=
N∑

j=1

�Lxj��p��U

(
�

�xj

)
�p�= 0�

The proof of Lemma I.4.1 is complete.

If we then define

CT ∗p�
�= dual of CTp��

to each � ∈N��� we can associate an element �p ∈ CT ∗p� by the formula

�p�v�= ��L��p��

where L ∈ X��� is such that Lp = v.
As in the case for vector fields, we have a converse: if for every p ∈� an

element �p ∈ CT ∗p� is given such that

p �→ �p�Lp� ∈ C����� ∀ L ∈ X����

then there is � ∈N��� such that �p = �p, for every p ∈�.

Proposition I.4.2. CT ∗p�= ��p 
 � ∈N���	.

Proof. Let �U�x� be a local chart with p ∈ U . Formula (I.6) allows one to
define dxj ∈N�U�, j = 1� � � � �N , by the rule
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I.4 Differential forms 9

dxj

(
�

�xk

)
= �jk� j� k= 1� � � � �N�

Hence, if � ∈N�U� we have

�=
N∑

j=1

�

(
�

�xj

)
dxj� (I.9)

where ���/�xj� ∈ C��U�. If we now observe that ��dxj�p	 ⊂ CT ∗p� is the
dual basis of ���/�xj�p	⊂ CTp� then the conclusion will follow easily.

Definition I.4.3. Given f ∈ C���� we define df ∈N��� by the formula

df�L�= L�f�� L ∈ X���� (I.10)

From (I.9) we obtain the usual representation in local coordinates

df =
N∑

j=1

df
(

�

�xj

)
dxj =

N∑
j=1

�f

�xj

dxj�

We now introduce the complexified cotangent bundle of � as being the
disjoint union

CT ∗�
�= ⋃

p∈�
CT ∗p��

As before we can also introduce the notion of a complex vector sub-bundle
of CT ∗� of rank m as being a disjoint union

� = ⋃
p∈�

�p�

where each �p is a vector subspace of CT ∗p� of dimension m, satisfying the
following property:

• Given p0 ∈ � there are an open set U0 containing p0 and one-forms
�1� � � � ��m ∈N�U0� such that �1p� � � � ��mp span �p for every p ∈ U0.

As before we shall refer to the space �p as the fiber of � at the point p.

Proposition I.4.4. Let � =∪p∈��p be a complex vector sub-bundle of CT�

and set, for each p ∈�,

�⊥p
�= �� ∈ CT ∗p� 
 �= 0 on �p	�

Then �⊥
�= ∪p∈��⊥p is a complex vector sub-bundle of CT ∗�.
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10 Locally integrable structures

Proof. Given p0 ∈� there is a local chart

�U0�x�� x = �x1� � � � � xN ��

with p0 ∈ U0, and vector fields on U0

Lj =
N∑

k=1

ajk

�

�xk

� j = 1� � � � � n�

such that �L1p� � � � �Lnp	 spans �p for all p ∈ U0. After a contraction of U0

around p0 and a relabeling of the indices we can assume that the matrix
�ajk�j�k=1�����n is invertible in U0. Let �bjk�j�k=1�����n be its inverse and set

L#
j =

n∑
�=1

bj�L�� j = 1� � � � � n�

Then �L#
1p� � � � �L

#
np	 also spans �p for all p ∈ U0. Moreover, we have

L#
j =

�

�xj

+
m∑

k=1

cjk

�

�xn+k

� j = 1� � � � � n�

where cjk are smooth in U0 and m= N −n. Set

�� = dxn+�−
n∑

�=1

c��dx�� �= 1� � � � �m�

Then �1p� � � � ��mp are linearly independent for all p ∈ U0 and furthermore

���L
#
j �= dxn+��L

#
j �− cj� = 0�

Hence ��1p� � � � ��mp	 is a basis for �⊥p for each p ∈ U0.

Remark I.4.5. It is clear that the preceding argument can be reversed. If �⊥ is
a vector sub-bundle of CT ∗� then it follows that � is a vector sub-bundle
of � .

When � is a formally integrable structure over � of dimension N we shall
always denote the sub-bundle �⊥ by T ′. We shall also always denote by n

the rank of � and by m the rank of T ′. In particular, n+m= N .
We shall also use the standard notation:

Tp�
�= �v ∈ CTp� 
 v is real	�

T ∗p�
�= �� ∈ CT ∗p� 
 � is real	�
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I.5 The Frobenius theorem 11

T�
�= ⋃

p∈�
Tp��

T ∗�
�= ⋃

p∈�
T ∗p��

Given L∈X��� its (complex)-conjugate is the vector field L∈X��� defined by

L�f�= L�f�� f ∈ C�����

In particular we shall say that L is a real vector field if L = L, that is, if
LC����R� ⊂ C����R�. In the same way we can define the (complex)-
conjugate of an element in CTp�. Given a subspace �p ⊂ CTp� we define

� p

�= �v 
 v ∈ �p	�

It is clear from the definitions that if � is a complex vector sub-bundle of
CT� then the same is true for �

�= ∪p∈�� p. We shall refer to � as the
(complex)-conjugate of the sub-bundle � . Analogous definitions and results
can be introduced and obtained for CT ∗� and its fibers CT ∗p�. It is also
important to mention the equality

�
⊥ = �⊥�

which is valid for every complex vector sub-bundle � of CT�.

I.5 The Frobenius theorem

We start by considering a real vector field

L=
N∑

j=1

aj�x�
�

�xj

defined in a neighborhood of the origin in RN . Assume that L �= 0. Then it is
possible to find local coordinates y1� y2� � � � � yN , defined near the origin, such
that

L= �

�y1

�

The proof of this result is very simple and will be recalled here.
We assume that a1�0� �= 0 and solve, in some neighborhood of the origin,

the following Cauchy problem:⎧⎨⎩
�xj/�y1 = aj�x1� � � � � xN � j = 1� � � � �N
x1�0� y2� � � � � yN �= 0
xj�0� y2� � � � � yN �= yj j = 2� � � � �N�

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511543067.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511543067.002


12 Locally integrable structures

The fact that a1�0� �= 0 implies that �y1� � � � � yN � �→ �x1� � � � � xN � is a smooth
diffeomorphism at the origin and a simple computation shows our claim.

The generalization of this result to a larger number of vector fields is the
classical Frobenius theorem:

Theorem I.5.1. Let L1� � � � �Ln be linearly independent, real vector fields
defined in a neighborhood V of the origin in RN . Assume that the sub-bundle
� of CTV generated by L1� � � � �Ln is a formally integrable structure. Then
there are local coordinates y1� y2� � � � � yN , defined near the origin, such that
� is generated by �/�y1,…, �/�yn.

Proof. We shall proceed by induction on N . The case N = 1 is trivial.
We then suppose that the result was proved for values < N . Applying the
procedure described at the beginning of this section we can make a change
of variables and assume that the given vector fields have the form:

L1 =
�

�x1

� Lj =
N∑

k=1

ajk

�

�xk

� j = 2� � � � � n�

We then introduce a new set of generators for the bundle � :

L#
1 = L1� L#

j = Lj−aj1L1� j = 2� � � � � n�

Notice that when j ≥ 2 the vector field L#
j does not involve differentiation in

the x1-variable. Thus, in a neighborhood of the origin, we have


L#
j �L

#
k�=

n∑
�=2

C�
jkL

#
�� j� k= 2� � � � � n�

If we then consider, in a neighborhood W of the origin in RN−1, the vector
fields

Mj =
N∑

k=2

ajk�0� x2� � � � � xN �
�

�xk

� j = 2� � � � � n�

as well as the sub-bundle � ′ of CTW defined by them, we conclude the
existence of a coordinate system y2� � � � � yN defined near the origin in RN−1

for which � ′ is spanned by

�/�y2� � � � � �/�yn�

This argument has the following consequence: returning to the original coor-
dinates �x1� � � � � xN �, the induction hypothesis allows us to assume from the
beginning that

ajk�0� x2� � � � � xN �= 0� j = 2� � � � � n� k > n�
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I.5 The Frobenius theorem 13

Now, the coefficient of �/�x� in the commutator 
L#
1�L

#
j � is equal to �aj�/�x1.

On the other hand,


L#
1�L

#
j �=

n∑
�=1

C�
1jL

#
� = C1

1j

�

�x1

+
n∑

�=2

C�
1j

N∑
k=2

a�k

�

�xk

�

and thus

�aj�

�x1

=
n∑

�=2

C�
1ja��� �= 2� � � � �N� j = 2� � � � � n�

Hence for each fixed � the vector �a2�� � � � � an�� satisfies a linear system of
ordinary differential equations with trivial initial condition. By the uniqueness
theorem for such systems we conclude that aj� = 0 if j = 2� � � � � n and � > n.
Thus we have

L#
j =

n∑
k=2

ajk

�

�xk

� j = 2� � � � � n�

which concludes the proof.

We now discuss the holomorphic version of the Frobenius theorem. Write
the complex coordinates in C� as z1� � � � � z�, where zj = xj+ iyj , and identify
C� � R2� by

z= �z1� � � � � z�� �→ �x1� y1� � � � � x�� y���

Given an open set � ⊂ C� denote by ���� the algebra of holomorphic
functions on �. An element L ∈ X��� is said to be a holomorphic vector
field if given any f ∈ ���� we have Lf ∈ ���� and Lf = 0. Introducing the
standard notation

�

�zj

= 1
2

{
�

�xj

− i
�

�yj

}
�

�

�zj

= 1
2

{
�

�xj

+ i
�

�yj

}
it is clear that every vector field L ∈ X��� can be written as

L=
�∑

j=1

{
aj

�

�zj

+bj

�

�zj

}
� (I.11)

where aj� bj ∈ C����; (I.11) is then a holomorphic vector field if and only
if bj = 0 and aj ∈ ����, j = 1� � � � ��.

We now state the holomorphic version of the Frobenius theorem, whose
proof is the same as that of Theorem I.5.1, working now in the holomorphic
category.
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14 Locally integrable structures

Theorem I.5.2. Let L1� � � � �Ln be linearly independent, holomorphic vector
fields defined in a neighborhood V of the origin in C�. Assume that the sub-
bundle � of CTV generated by L1� � � � �Ln is a formally integrable structure.
Then there are local holomorphic coordinates w1�w2� � � � �w�, defined near
the origin in C� such that � is generated by �/�w1,…, �/�wn.

I.6 Analytic structures

Let � be a real-analytic manifold, defined by the differentiable (real-analytic)
structure � = ��V�x�	. A function f 
 �→ C is real-analytic if for every
�V�x� ∈ � the composition f 
x−1 is real-analytic on x�V�. Given U ⊂�

an open set, we shall denote by 	�U� the space of real-analytic functions on
U . An element L ∈ X��� is said to be a real-analytic vector field on � if

L	�U�⊂	�U�� ∀U ⊂� open�

If L is given in local coordinates as in (I.6) then L is real-analytic if and only
if its coefficients Lxj , j = 1� � � � �N , are real-analytic functions.

Analogously, we shall say that � ∈N��� is a real-analytic one-form on �

if ��L� ∈	�U� for every U ⊂� open and every real-analytic vector field L.
From such definitions it is clear that one can introduce the notions of

complex analytic vector sub-bundles of CT� and of CT ∗�; in particular we
can refer to the notion of an analytic formally integrable structure over �.

Remark I.6.1. Suppose that � is now an open subset of RN and let L ∈X���

be real-analytic. Write

L=
N∑

j=1

aj�x�
�

�xj

�

Let also u ∈	��� and take an open set �C ⊂ CN , where the holomorphic
coordinates are written as �z1� � � � � zN �, such that

• �C∩RN =�;
• u, aj extend as holomorphic functions ũ, ãj on �C.

Then

Lu= �L̃ũ�
�� (I.12)

where L̃ is the holomorphic vector field

L̃=
N∑

j=1

ãj�z�
�

�zj

�
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1.8 Some special structures 15

I.7 The characteristic set

Let � ⊂ CT� be a formally integrable structure over �. The characteristic
set of � is the subset of T ∗� defined by

T 0 �= T ′ ∩T ∗�� (I.13)

We shall also write T 0
p = T ′p∩T ∗p� if p ∈�. If we recall that the symbol of

a vector field L ∈ X��� is the function

��L� 
 T ∗�→ C� ��L����= ��Lp� if � ∈ T ∗p��

then we see that � ∈ T 0
p if and only if ��L����= 0 for every section L of � .

Let �U�x�, x= �x1� � � � � xN � be a local chart on �. Take p∈U and � ∈ T ∗p�.
If we write � =∑N

j=1 �jdxjp (�j ∈ R) and L=∑N
j=1 aj��/�xj� then

��L����=
N∑

j=1

aj�p��j�

Thus, if Lj =
∑N

k=1 ajk��/�xk� are n linearly independent sections of � over
U we can describe T 0∩T ∗U by the system of equations

N∑
k=1

ajk�p��k = 0� p ∈ U� �k ∈ R� j = 1� � � � � n�

Example I.7.1 (The Mizohata operator). If we write the coordinates in �=
R2 as �x� t� then

M
�= �

�t
− it

�

�x
∈ X�R2� (I.14)

is called the Mizohata vector field or Mizohata operator. We now describe
the characteristic set of the formally integrable structure defined by M . From
the equation �− it� = 0 we get

T 0
�x�t� =

{
0 if t �= 0
��dxp 
 � ∈ R	 if p= �x�0�.

This example in particular shows that T 0 is not, in general, a vector sub-bundle
of T ∗�.

I.8 Some special structures

Let � be a formally integrable structure over �. We shall say that � defines

• an elliptic structure if T 0
p = 0, ∀p ∈�;

• a complex structure if �p⊕� p = CTp�, ∀p ∈�;
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16 Locally integrable structures

• a Cauchy–Riemann (CR) structure if �p∩� p = 0, ∀p ∈�;

• an essentially real structure if �p = � p, ∀p ∈�.

Before we proceed further we state some easy consequences of the preceding
definitions.

Proposition I.8.1. Every essentially real structure is locally generated by
real vector fields.

Proof. Given p0 ∈� we take vector fields L1� � � � �Ln which generate � in
a neighborhood of p0. By hypothesis the real vector fields �Lj , �Lj are also
sections of � . Moreover,

span �
(�Lj

)
p0

�
(�Lj

)
p0


 j = 1� � � � � n	= �p0

and consequently n of the tangent vectors
(�Lj

)
p0

�
(�Lj

)
p0

are linearly
independent. Since this remains true in a neighborhood of p0 the result is
proved.

Next we recall a very elementary but useful result.

Lemma I.8.2. If V is a vector subspace of CN =RN + iRN and if V 0 = V ∩RN

then V 0⊗
R

C� V 0+ iV 0 = V ∩V .

Proof. We only verify the equality. If x� y ∈ V 0 then x± iy ∈ V and so
V 0+ iV 0 ⊂ V ∩V . For the reverse inclusion take z ∈ V ∩V . Then

z= 1
2
�z+ z�− i

2
�iz− iz� ∈ V 0+ iV 0�

As a consequence, given any formally integrable structure � over � we have

T 0
p ⊗R

C� T ′p∩T
′
p� ∀p ∈�� (I.15)

Since for a complex structure we also have

T ′p⊕T
′
p = CT ∗p�� ∀p ∈�

we obtain:
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I.8 Some special structures 17

Corollary I.8.3. Every complex structure is elliptic.

Unlike what happens with Mizohata structures we have:

Proposition I.8.4. If � defines a CR structure over � then T 0 is a vector
sub-bundle of T ∗� of rank d

�= N −2n.

Proof. If �p∩� p = 0, for all p ∈�, then

� = � ⊕�
�= ⋃

p∈�

(
�p⊕� p

)
is a vector sub-bundle of CT� (of rank 2n) which defines an essentially
real structure over �. By Proposition I.4.4, �⊥ is a vector sub-bundle of
CT ∗� of rank d which of course satisfies �⊥

p =�
⊥
p for all p ∈�. The same

argument used in the proof of Proposition I.8.1 shows that �⊥ has local real
generators. Since these generators span T 0 the proof is complete.

In order to obtain appropriate local generators for a formally integrable struc-
ture we shall need an elementary result:

Lemma I.8.5. Let V be a complex subspace of CN of dimension m. Let
V0 = V ∩RN , d

�= dim
R
V0, �

�=m−d. Let also V1 ⊂ CN be a subspace such
that �V0⊕ iV0�⊕V1 = V and take:

��1� � � � � ��	 
 basis for V1� ���+1� � � � � �m	 
 real basis for V0�

If we write �j = �j+ i�j , j = 1� � � � � �, then:

��1� � � � � ��� ��+1� � � � � �m	 is a basis for V ; (I.16)

��1� � � � � �m��1� � � � ���	 is linearly independent over R� (I.17)

�+m≤ N� (I.18)

Proof. Notice that (I.16) is trivial since ���+1� � � � � �m	 is also a basis for
V0⊕ iV0.

Next we notice that V ∩V 1 = 0. Indeed, let z ∈ V ∩V 1. Then z ∈ V1 ⊂ V

and consequently �z��z ∈ V0, which gives z ∈ �V0⊕ iV0�∩V1 = 0. Hence

��1� � � � � ��� �1� � � � � ��� ��+1� � � � � �m	

is linearly independent. In particular, 2�+d= �+m≤N and (I.17) holds.

Given a formally integrable structure � over � and fixing p ∈ � we shall
apply Lemma I.8.5 with the choices

V = T ′p� V0 = T 0
p �
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18 Locally integrable structures

If ��1� � � � � ��� ��+1� � � � � �m	 is the basis given in (I.16) we first take a system
of local coordinates

x1� � � � � x�� y1� � � � � y�� s1� � � � � sd� t1� � � � � tn′

vanishing at p such that, writing zj = xj+ iyj we have

dzj
p = �j� dsk
p = ��+k� j = 1� � � � � �� k= 1� � � � � d�

Afterwards we take one-forms �1� � � � ���� �1� � � � � �d which spanT ′ in a neigh-
borhood of p and such that

�j
p = dzj
p� �k
p = dsk
p� j = 1� � � � � �� k= 1� � � � � d�

If L is a complex vector field on � defined near p we can write it in the form

L=∑
j

Aj

�

�zj

+∑
j

Bj

�

�zj

+∑
k

Ck

�

�sk
+∑

�

D�

�

�t�
�

If, furthermore, L is a section of � we necessarily must have Aj = Ck = 0 at
p for all j and k. Since �+n′ = n, it follows that after a linear substitution
we can find a set of local generators of the sub-bundle � in a neighborhood
of p of the form

Lj =
�

�zj

+
�∑

j′=1

ajj′
�

�zj′
+

d∑
k=1

bjk

�

�sk
� j = 1� � � � � �� (I.19)

L̃� =
�

�t�
+

�∑
j′=1

ã�j′
�

�zj′
+

d∑
k=1

b̃�k

�

�sk
� �= 1� � � � � n′� (I.20)

where the coefficients ajj′ , ã�j′ , bjk, b̃�k all vanish at p.
We notice that the elliptic case corresponds to the situation when d = 0,

the complex case to the one when d = n′ = 0, and the CR case to the one
when n′ = 0.

Next we introduce a generalization of the structure defined by the Mizohata
operator (cf. Example I.7.1).

Definition I.8.6. We shall say that a formally integrable structure � over
� is a generalized Mizohata structure at p0 ∈� if �p0

= �p0
.

Thus in the case of generalized Mizohata structures the coordinates vanishing
at p0 can be taken as �s1� � � � � sm� t1� � � � � tn� [d =m, n= n′ in this case] and
� is spanned by the vector fields

L� =
�

�t�
+

d∑
k=1

b̃�k�s� t�
�

�sk
� �= 1� � � � � n�
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I.9 Locally integrable structures 19

where b�k = 0 at the origin for every �� k.
Finally we recall the classical notion of the so-called CR functions:

Definition I.8.7. Given a CR formally integrable structure � over �, any
classical solution (for the formally integrable structure � ) is called a CR
function.

Needless to add, we can also introduce the concept of CR distributions, etc.

I.9 Locally integrable structures

A complex vector sub-bundle � of CT�, of rank n, is said to define a locally
integrable structure if given an arbitrary point p0 ∈ � there are an open
neighborhood U0 of p0 and functions Z1� � � � �Zm ∈ C��U0�, with m= N −n,
such that

span �dZ1p� � � � �dZmp	= �⊥p � ∀p ∈ U0� (I.21)

If one observes that the differential of a smooth function g is a section of
�⊥ if and only if Lg = 0 for every section of � , it follows easily that every
locally integrable structure satisfies the Frobenius condition. Hence, every
locally integrable structure defines a formally integrable structure.

We have:

• The formally integrable structure � is locally integrable if and only if, given
p0 ∈� and vector fields L1� � � � �Ln which span � in an open neighborhood
U0 of p0, there are an open neighborhood V0 ⊂ U0 of p0 and smooth
functions Z1� � � � �Zm ∈ C��V0� such that:

dZ1∧ � � �∧dZm �= 0 in V0�

LjZk = 0� j = 1� � � � � n� k= 1� � � � �m�

Thus, checking local integrability is equivalent to looking for a maximal
number of nontrivial solutions to the (in general overdetermined) homoge-
neous system defined by a fixed set of independent sections of � .

Theorem I.9.1. Every essentially real structure is locally integrable.

Proof. By Frobenius Theorem I.5.1, in conjunction with Proposition I.8.1,
given p ∈� we can find a local chart �U�x�, x = �x1� � � � � xN �, with p ∈ U ,
such that

�

�xj

� j = 1� � � � � n
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20 Locally integrable structures

are sections of � over U . It suffices to take

Zk = xk+n� k= 1� � � � �m�

Theorem I.9.2. Every analytic formally integrable structure is locally
integrable.

Proof. We shall prove that if L1� � � � �Ln are linearly independent, real-
analytic vector fields in an open ball B centered at the origin in RN such that


L��L��=
n∑

�=1

C
�
��L��

where C
�
�� ∈ 	�B�, then we can find real-analytic functions Z1� � � � �Zm

defined in a neighborhood of the origin and satisfying

LjZ� = 0� j = 1� � � � � n� �= 1� � � � �m�

dZ1∧ � � �∧dZm �= 0�

We write

Lj =
N∑

k=1

ajk

�

�xk

and take an open, connected set U ⊂CN such that U ∩RN = B and such that
there are ãjk, C̃

�
�� ∈ ��U� satisfying

ãjk = ajk� C̃
�
�� = C

�
�� in B�

Consider then the holomorphic vector fields in U :

L̃j =
N∑

k=1

ãjk

�

�zk

�

By analytic continuation the coefficients of the holomorphic vector fields


L̃�� L̃��−
n∑

�=1

C̃
�
��L̃�

must vanish identically in U since they vanish on B and the former is
connected. By the holomorphic version of the Frobenius theorem we can
find holomorphic functions W1� � � � �Wm defined in an open neighborhood
V ⊂ U of the origin in CN such that

L̃jW� = 0� j = 1� � � � � n� �= 1� � � � �m�
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I.10 Local generators 21

dW1∧ � � �∧dWm �= 0�

It suffices then to set Zk

�= Wk
V∩B in order to obtain the desired solutions
(cf. (I.12)).

Example I.9.3. For the Mizohata vector field (I.14) we have MZ = 0 in R2,
where Z�x� t�= x+ it2/2. Notice that dZ �= 0 everywhere.

I.10 Local generators

In this section we shall construct appropriate local coordinates and local
generators of the sub-bundle T ′ when the structure � is locally integrable.
Once more we shall apply Lemma I.8.5.

Let p ∈ � and let also G1� � � � �Gm be smooth functions defined in a
neighborhood of p such that dG1� � � � �dGm span T ′. As in Section I.8 we
make the choices: V = T ′p, V0 = T 0

p . If ��1� � � � � ��� ��+1� � � � � �m	 is the basis
given in (I.16) then we can find �cjk� ∈ GL�m�C� such that

m∑
k=1

cjkdGk�p�= �j� j = 1� � � � � ��

m∑
k=1

cjkdGk�p�= �j� j = �+1� � � � �m�

We then set

Zj =
m∑

k=1

cjk �Gk−Gk�p�	 � j = 1� � � � � ��

W� =
m∑

k=1

c�+��k �Gk−Gk�p�	 � �= 1� � � � � d�

It is clear that dZ1� � � � �dZ��dW1� � � � �dWd also span T ′ in a neighborhood of
p. If we further set

xj =�Zj� yj = �Zj� s� =�W�

then (I.17) gives that

dx1� � � � �dx��dy1� � � � �dy��ds1� � � � �dsd

are linearly independent at p. We are now ready to state and prove the
following important result:
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22 Locally integrable structures

Theorem I.10.1. Let � be a locally integrable structure defined on a manifold
�. Let p ∈� and d be the real dimension of T 0

p . Then there is a coordinate
system vanishing at p,

�x1� � � � � x�� y1� � � � � y�� s1� � � � � sd� t1� � � � � tn′	

and smooth, real-valued functions �1� � � � ��d defined in a neighborhood of
the origin and satisfying

�k�0�= 0� d�k�0�= 0� k= 1� � � � � d�

such that the differentials of the functions

Zj�x� y�= zj

�= xj+ iyj� j = 1� � � � � �� (I.22)

Wk�x� y� s� t�= sk+ i�k�z� s� t�� k= 1� � � � � d� (I.23)

span T ′ in a neighborhood of the origin. In particular, we have �+d = m,
�+n′ = n and also

T 0
p = span �ds1
0� � � � �dsd
0	� (I.24)

Proof. The proof follows almost immediately from the preceding discussion:
it suffices to take smooth, real-valued functions t1� � � � � tn′ defined near p and
vanishing at p such that

dx1� � � � �dx��dy1� � � � �dy��ds1� � � � �dsd�dt1� � � �dtn′

are linearly independent. Notice that dWk�p� = ��+k is real, from which we
derive that d�k = 0 at the origin.

Since we have

�Wk

�sk′
�0�0�0�= �kk′ � k� k′ = 1� � � � � d�

we can introduce, in a neighborhood of the origin in R2�+d+n′ , the vector
fields

Mk =
d∑

k′=1

�kk′�z� s� t�
�

�sk′
� k= 1� � � � � d (I.25)

characterized by the relations

MkWk′ = �kk′ � (I.26)

Consequently the vector fields

Lj =
�

�zj

− i
d∑

k=1

��k

�zj

�z� s� t�Mk� j = 1� � � � � �� (I.27)
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L̃� =
�

�t�
− i

d∑
k=1

��k

�t�
�z� s� t�Mk� �= 1� � � � � n′ (I.28)

are linearly independent and satisfy

LjZj′ = L̃�Zj′ = LjWk = L̃�Wk = 0

for all j� j′ = 1� � � � � �, �= 1� � � � � n′, and k= 1� � � � � d. Hence

L1� � � � �L�� L̃1� � � � � L̃n′ span � in a neighborhood of the origin. (I.29)

Notice that the one-forms

dz1� � � � �dz��dz1� � � � �dz��dW1� � � � �dWd�dt1� � � � �dtn′ (I.30)

span CT ∗� near the origin. Moreover, the dual basis of (I.30) is given by

L 
1� � � � �L

 
��L1� � � � �L��M1� � � � �Md� L̃1� � � � � L̃n′ � (I.31)

where

L 
j =

�

�zj

− i
d∑

k=1

��k

�zj

�z� s� t�Mk� j = 1� � � � � �� (I.32)

Finally we observe that

the vector fields (I.31) are pairwise commuting. (I.33)

Indeed it suffices to notice that if P�Q are any two of the vector fields (I.31)
and if F is any one of the functions �Zj�Zj�Wk� t�	, the fact that (I.30) is
dual to (I.31) gives

dF �
P�Q��= 
P�Q��F�= 0�

from which we obtain that 
P�Q�= 0.
In many cases we do not need the precise information provided by Theorem

I.10.1 and the following particular case is enough:

Corollary I.10.2. Same hypotheses as in Theorem I.10.1. Then there is a
coordinate system vanishing at p,

�x1� � � � � xm� t1� � � � � tn	

and smooth, real-valued �1� � � � ��m defined in a neighborhood of the origin
and satisfying

�k�0�0�= 0� dx�k�0�0�= 0� k= 1� � � � �m�

such that the differentials of the functions

Zk�x� t�= xk+ i�k�x� t�� k= 1� � � � �m� (I.34)

span T ′ in a neighborhood of the origin.
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24 Locally integrable structures

If we write Z�x� t�= �Z1�x� t�� � � � �Zm�x� t�� then Zx�0�0� equals the identity
m×m matrix. Hence we can introduce, in a neighborhood of the origin in
RN , the vector fields

Mk =
m∑

�=1

�k��x� t�
�

�x�

� k= 1� � � � �m (I.35)

characterized by the relations

MkZ� = �k�� (I.36)

Consequently the vector fields

Lj =
�

�tj
− i

m∑
k=1

��k

�tj
�x� t�Mk� j = 1� � � � � n (I.37)

are linearly independent and satisfy LjZk = 0, for j = 1� � � � � n, k= 1� � � � �m.
The same argument as before gives:

L1� � � � �Ln span � in a neighborhood of the origin; (I.38)
L1� � � � �Ln�M1� � � � �Mm are pairwise commuting and (I.39)
span CTRN in a neighborhood of the origin in RN .

Let U be an open set of Rn and assume, given a smooth function ! 
 U→Rm,
!�t� = ��1�t�� � � � ��m�t��. We shall call a tube structure on Rm×U the
locally integrable structure � on Rm×U for which T ′ is spanned by the
differentials of the functions

Zk = xk+ i�k�t�� k= 1� � � � �m�

A tube structure � has remarkably simple global generators. Indeed if we set,
as usual, Z = �Z1� � � � �Zm� we have Zx�x� t�= I , the identity m×m matrix,
for every �x� t� ∈Rm×U . This gives Mk = �/�xk and consequently the vector
fields (I.37) take the form

Lj =
�

�tj
− i

m∑
k=1

��k

�tj
�t�

�

�xk

j = 1� � � � � n� (I.37′)

Observe that these vector fields span � on Rm×U .
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I.11 Local generators in analytic structures

When � is real-analytic then the functions �k in Corollary I.10.2 can be taken
real-analytic. We keep the notation established in the preceding section and
consider the equation

Z�x� t�− z= 0

for �x� t� z� ∈ Cm×Cn×Cm in a neighborhood of the origin. Since

�Z

�x
�0�0�= I

we can find, by the implicit function theorem, a holomorphic function x =
H�z� t�= �H1�z� t�� � � � �Hm�z� t�� defined in a neighborhood of the origin in
Cm×Cn satisfying

H�0�0�= 0� H�Z�x� t�� t�= x�

We set

Z#
k�x� t�

�=Hk�Z�x� t��0�� k= 1� � � � �m�

Then we also have

LjZ
#
k = 0� j = 1� � � � � n� k= 1� � � � �m�

dZ#
1 ∧ � � �∧dZ#

m �= 0�

Moreover, Z#
k�x�0�= xk for every k. Hence, if we consider the real-analytic

diffeomorphism

�x� t� �→ �X�T�= ��Z#�x� t�� t�

in these new variables we can write Z#
k�X�T� = Xk+ i!#

k�X�T� where now
we have !#

k�X�0�= 0 for every k. Summing up we can state:

Corollary I.11.1. Let � be a locally integrable real-analytic structure
defined on a real-analytic manifold �. Let p ∈ �. Then there is a real-
analytic coordinate system vanishing at p,

�x1� � � � � xm� t1� � � � � tn	

and real-analytic, real-valued �1� � � � ��m defined in a neighborhood of the
origin and satisfying

�k�x�0�= 0� k= 1� � � � �m

such that the differentials of the functions

Zk = xk+ i�k�x� t�� k= 1� � � � �m (I.40)

span T ′ in a neighborhood of the origin.
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26 Locally integrable structures

Remark I.11.2. We point out that in the coordinates �x� t� given by Corollary
I.11.1 it is elementary to find the unique analytic solution u to the Cauchy
problem: {

Lju= 0 j = 1� � � � � n�
u�x�0�= h�x�

(I.41)

where h is real-analytic. Indeed,

u�x� t�= h�Z#
1�x� t�� � � � �Z

#
m�x� t��

solves (I.41) and in order to see that this is the unique analytic solution it
suffices to notice that if v is analytic, if v�x�0�= 0, and if Ljv= 0 for every
j then v must vanish identically since all its derivatives vanish at the origin.

Uniqueness for the distribution solutions of (I.41) holds when the structure
is only C�. This, though, is a much deeper result and its discussion will be
postponed to Chapter II.

I.12 Integrability of complex and elliptic structures

The celebrated theorem of Newlander and Nirenberg ([NN]) states that every
complex structure is locally integrable. We shall postpone the proof of this
result to the appendix of this chapter and now we will apply it to prove the
more general statement that in fact every elliptic structure is locally integrable.
This result is due to L. Nirenberg.

Theorem I.12.1. Let � be an elliptic structure over a smooth manifold �.
Then � is locally integrable.

Proof. By (I.15) we have T ′p∩T
′
p = 0 for every p ∈� and then

T ′ ⊕T
′ �= ⋃

p∈�

(
T ′p⊕T

′
p

)
is a vector sub-bundle of CT ∗� of rank 2m. In particular, if n is the dimension
of �, we obtain that 2m≤ n. Thus

� ∩� �= ⋃
p∈�

(
�p∩� p

)= ⋃
p∈�

(
T ′p⊕T

′
p

)⊥
is a vector sub-bundle of CT�. By the argument that led to the proof of
Proposition I.8.1 we see then that

� ∩T�
�= ⋃

p∈�

(
�p∩Tp�

)
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I.12 Integrability of complex and elliptic structures 27

is a vector sub-bundle of T�. Notice that

n′
�= dim

R

(
�p∩Tp�

)= n−2m� p ∈��

Let p0 ∈� be fixed. By the Frobenius Theorem I.5.1 we can find a coordinate
system �x1� � � � � x2m� t1� � � � � tn′� around p0 such that � ∩T� is generated near
p0 by the vector fields

�

�tj
� j = 1� � � � � n′�

Next we select m complex vector fields

Lk =
2m∑
�=1

ak��x� t�
�

�x�

in such a way that L1� � � � �Lm� �/�t1� � � � � �/�tn′ span � in a neighborhood of
p0. After a linear substitution (as in the proof of Proposition I.4.4) we can
assume that the vector fields Lk take the form

Lk =
�

�xk

+
2m∑

�=m+1

bk��x� t�
�

�x�

� k= 1� � � � �m�

Since � is a formally integrable structure, we know 
�/�t��Lk� must be a
linear combination of L1� � � � �Lm, �/�t1� � � � � �/�tn′ . Due to the special form
of the vector fields Lk these brackets must vanish identically, that is:

2m∑
�=m+1

�bk�

�t�
�x� t�

�

�x�

= 0� ∀�� k�

Consequently, the functions bk� do not depend on t1� � � � � tn′ in a full neigh-
borhood of p0. Since, moreover,

L1� � � � �Lm�L1� � � � �Lm�
�

�t1

� � � � �
�

�tn′

span CT� it follows that L1� � � � �Lm�L1� � � � �Ln′ are linearly independent.
We conclude then that L1� � � � �Lm define a complex structure (in the x-space)
in a neighborhood of p0. By the Newlander–Nirenberg theorem there are
Z1�x�� � � � �Zm�x� with linearly independent differentials such that

LkZ� = 0� k� �= 1� � � � �m�

Since, moreover,

�Z�

�tj
= 0� �= 1� � � � �m� j = 1� � � � � n′

the proof is complete.
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28 Locally integrable structures

Theorem I.10.1 gives a particularly simple local representation for an elliptic
structure. Let � and � be as in Theorem I.12.1 and fix p ∈ �. With the
notation as in Theorem I.10.1 we have d = 0, � = m and thus there is a
coordinate system

�x1� � � � � xm� y1� � � � � ym� t1� � � � tn′�

vanishing at p such that, setting zj = xj + iyj , the differentials dzj span T ′

near p, and the vector fields �/�zk, �/�tj span � near p. Notice also that
n′ = 0 corresponds to the case when � defines a complex structure.

I.13 Elliptic structures in the real plane

In this section we depart a bit from the spirit we have adopted in the expo-
sition up to now and make use of some standard results on Fourier analysis
and pseudo-differential operators in order to study elliptic structures in two-
dimensional manifolds. The results contained here are not necessary for the
comprehension of the remaining parts of the chapter and the section can be
avoided in a first reading.

If � is an open subset of R2 any sub-bundle � of CT� of rank one
defines a formally integrable structure over �, for the involutive condition
is automatically satisfied. Suppose that � contains the origin and let L be a
complex vector field that spans � in a neighborhoord of 0. After division by
a nonvanishing smooth factor it can be assumed that, in suitable coordinates
�x1� x2�, we can write

L= �

�x2

+a�x1� x2�
�

�x1

�

As at the beginning of Section I.5 we can find a smooth diffeomorphism
�x� t� �→ �x1� x2�, x2 = t, which reduces �L to �/�t. Since also �/�x1 is a
multiple of �/�x in these new variables, L can be written as a nonvanishing
multiple of

L• =
�

�t
+ ib�x� t�

�

�x
� (I.42)

where b is smooth and real-valued. Since both L and L• span � in a neigh-
borhood of the origin of R2, there is no loss of generality in assuming that
our original L takes the form (I.42).

The structure � is elliptic if and only if L and L are linearly independent
at every point. This is equivalent to saying that the function b in (I.42) never
vanishes (in the p.d.e. terminology, L is an elliptic operator). We shall now
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I.13 Elliptic structures in the real plane 29

recall the standard elliptic estimates satisfied by L and its transpose tL in a
neighborhood of the origin. Let

L0 =
�

�t
+ ib�0�0�

�

�x
� (I.43)

If � ∈ C�c �R2� then taking Fourier transforms gives

� �L0����� ��= �i�−b�0�0���� ������ ���

Since b�0�0� �= 0 we have

�2+�2 ≤max
{

1�
1

b�0�0�2

}

i�−b�0�0��
2

and thus by Parseval’s formula we obtain, in Sobolev norms,

���1 ≤ C ��L0��0+���0� � � ∈ C�c �R2�� (I.44)

where for any real s we denote by ���s the norm in the Sobolev space L2
s �R

2�

(see Section II.3.2 for the definition of Sobolev norms). We select an open
neighborhood of the origin U ⊂� such that 
b�x� t�−b�0�0�
 ≤ 1/�2C� for
�x� t� ∈ U . If � ∈ C�c �U� then by (I.44)

���1 ≤ C ��L��0+� �L−L0���0+���0�

= C ��L��0+� �b�x� t�−b�0�0���x�0+���0�

≤ C ��L��0+���0�+
1
2
���1�

and thus

���1 ≤ 2C ��L��0+���0� � � ∈ C�c �U�� (I.45)

Let now V ⊂⊂ U be an open set and let also � ∈ C�c �U� be identically equal
to one in V . We denote by " the operator ‘multiplication by �’ and by # the
operator �1−$�1/2. For a real number s and for � ∈ C�c �V�, we obtain

���s+1 = �#s"����1 ≤ �"#s��1+C1���s
since the commutator between #s and " has order s− 1. If we now apply
(I.45) we obtain

���s+1 ≤ C2 ��L"#s��0+�"#s��0+���s	
≤ C3 ���"#s�L��0+���s	

since both "#s and its commutator with L have order s. We then obtain:

• For every V ⊂⊂ U open and every s ∈ R there is C• > 0 such that

���s+1 ≤ C• ��L��s+���s	 � � ∈ C�c �V�� (I.46)
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30 Locally integrable structures

Proposition I.13.1. If u ∈ 
′�U� and Lu ∈ L2�s
loc�U� then u ∈ L2�s+1

loc �U�. In
particular, if u ∈
 ′�U� and Lu ∈ C��U� then u ∈ C��U�.

Proof. Let W ⊂⊂ V ⊂⊂ U be open sets and let � ∈ C�c �V� be identically
equal to one in W . Since there is � ≤ s such that u ∈ L2��

loc �V� it will suffice
to show that �u ∈ L2

�+1, for iteration of the argument will give the result.
Let B% = &% ∗ ·, where �&%	 is the usual family of mollifiers in R2. We have

B%��u�→ �u in L2
� as %→ 0 and also

LB%��u�= B%L��u�+ 
L�B%���u�
%→0−→ L��u� in L2

�

by Friedrich’s lemma, since L��u� ∈ L2
� . Thus, if take %n→ 0 and if we apply

(I.46) for s = � and � = B%m
��u�−B%n

��u� we conclude that �B%n
��u�	 is a

Cauchy sequence in L2
�+1. Hence �u ∈ L2

�+1 and the proof is complete.

We shall now derive from (I.45) an estimate for the transpose of L which
will lead us to a solvability result. If we notice that tL=−L− ibx�x� t� then
from (I.45) we obtain, for some constant C ′ > 0,

���1 ≤ C ′ ��tL��0+���0� � � ∈ C�c �U�� (I.47)

Now, it is elementary that

���0 ≤ 2���t�0� � ∈ C�c �U��

where �= sup�
t
 
 �x� t� ∈ U	. Consequently, if we further contract U about
the origin in order to achieve 2�C ′ ≤ 1/2, from (I.47) we finally obtain

���0 ≤ 2C ′�tL��0� � ∈ C�c �U�� (I.48)

Proposition I.13.2. For every f ∈L2�U� there is u∈L2�U� such that Lu= f

in U .

Proof. Given f ∈ L2�U� consider the functional

tL� �→
∫

f�x� t���x� t�dxdt (I.49)

defined on �tL� 
 � ∈ C�c �U�	, where the latter is considered as a subspace
of L2�U�. By (I.48) it follows that (I.49) is well-defined and continuous. By
the Hahn–Banach theorem we extend (I.49) to a continuous functional � on
L2�U� and by the Riesz representation theorem we find u ∈ L2�U� such that

��g�=
∫

g�x� t�u�x� t�dxdt� g ∈ L2�U��
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In particular, if � ∈ C�c �U�

��tL��=
∫

f�x� t���x� t�dxdt�

which is precisely the meaning of the equality Lu= f in the weak sense.

Corollary I.13.3. Let D⊂⊂U be an open disk centered at the origin. Then

LC��D�= C��D�� (I.50)

Proof. Given f ∈ C��D� we extend it to an element f̃ ∈ C�c �U� and by
Proposition I.13.2 we find u ∈ L2�U� solving Lu= f̃ in U . Finally, by Propo-
sition I.13.1, we have u ∈ C��U� and thus its restriction to D belongs to
C��D�.

Still under the assumption that L is elliptic we apply (I.50) in order to find
v ∈ C��D� such that

Lv=−ibx� (I.51)

If we set

u�x� t�=
∫ x

0
ev�x′�t�dx′

we get

Lu�x� t� =
∫ x

0
vt�x

′� t�ev�x′�t�dx′ + ib�x� t�ev�x�t�

=
∫ x

0
�−ibvx− ibx� �x

′� t�ev�x′�t�dx′ + ib�x� t�ev�x�t�

= −i
∫ x

0
�x �bev	 �x′� t�dx′ + ib�x� t�ev�x�t�

= ib�0� t�ev�0�t��

Then if we set

Z�x� t�= u�x� t�− i
∫ t

0
b�0� t′�ev�0�t′�dt′ (I.52)

we obtain

LZ = 0� Zx = ev �= 0� (I.53)

that is, our original elliptic structure � is locally integrable. We have thus
obtained a proof of the Newlander–Nirenberg theorem in the particular case
when N = 2. We emphasize for this situation the conclusion that we have
reached at the end of Section I.12:
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32 Locally integrable structures

Corollary I.13.4. If L is an elliptic operator in an open subset �⊂R2 and
if p ∈� then we can find local coordinates �x� y� vanishing at p such that L
can be written, in a neighborhood of p, as

L= g�x� y�

{
�

�x
+ i

�

�y

}
�

where g never vanishes.

Remark I.13.5. Our discussion indeed leads to a general criterion that char-
acterizes when a rank one formally integrable structure � ⊂ CT�, � ⊂ R2

open, is locally integrable. Suppose that � is spanned, in a neighborhood of
the origin, by the vector field (I.42).

Proposition I.13.6. The following properties are equivalent:

�†� there is Z ∈ C� near the origin solving LZ = 0, Zx �= 0;
�‡� there is v ∈ C� near the origin solving (I.51).

Proof. We have already presented the argument that �‡�⇒ �†�. For the
reverse implication we notice that

0= �LZ�x = L�Zx�+ ibxZx

and consequently

L�log�Zx��= Z−1
x L�Zx�=−ibx�

I.14 Compatible submanifolds

Let � be a smooth manifold. A subset � of � is called an embedded
submanifold (or submanifold for short) of � if there is r ∈ �0�1� � � � �N	 for
which the following is true:

• Given p0 ∈� arbitrary there is a local chart �U0�x�, with p0 ∈ U0 and
x = �x1� � � � � xN �, such that

U0∩� = �q ∈ U0 
 xr+1�q�= xr+1�p0�� � � � � xN �q�= xN �p0�	�

When p0 runs over � the pairs �U0�x0�, where

x0 = �x1
U0∩�� � � � � xr 
U0∩���

make up a family � ∗ that satisfies properties (1) and (2) of Section I.1 Hence
� is a smooth manifold of dimension r. We shall refer to the number N − r

as the codimension of � (in �).
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Let p∈� and denote by C���p� the space of germs of smooth functions on
� at p. It is clear that the restriction to � defines a surjective homomorphism
o f C-algebras C��p�→ C���p� which gives us then a natural injection

'p 
 CTp�� CTp�� (I.54)

By transposition we thus obtain a surjection

�'p�
∗ 
 CT ∗p�−→ CT ∗p�� (I.55)

whose kernel will be denoted by CN ∗
p� . We shall sometimes refer to the

disjoint union

CN ∗�
�= ⋃

p∈�
CN ∗

p� (I.56)

as the complex conormal bundle of � in �.
Let now U ⊂� be open and let � ∈N�U�. Given L ∈X�U ∩�� the map

p �→ (
'∗p��p�

)
�Lp�

is easily seen to be smooth on U ∩� . By the discussion that precedes
Proposition I.4.2, there is a form �• ∈N�U ∩�� such that

�•p = �'p�
∗��p�

for every p ∈ U ∩� . We shall denote �• by '∗� and shall refer to it as
the pullback of � to U ∩� . It is clear that '∗ is a homomorphism which is
moreover surjective when U ∩� is closed in U . Observe also that

'∗�df�= d�f 
U∩��� f ∈ C��U�� (I.57)

Let now � be a formally integrable structure over �, with T ′ = �⊥, and
let � ⊂� be a submanifold. If p ∈� we set

� ���p
�= �p∩CTp�� � ���

�= ⋃
p∈�

� ���p� (I.58)

With orthogonal now taken in the duality �CTp��CT ∗p�� we have

�'p�
∗�T ′p�= � ���⊥p � (I.59)

since the left-hand side is the image of the composition

T ′p� CT ∗p�
�'p�

∗
−→ CT ∗p�

and consequently is equal to the orthogonal to the kernel of the composition

CTp�� CTp�−→ CTp�/�p�
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34 Locally integrable structures

Definition I.14.1. We shall say that � is compatible with the formally inte-
grable structure � if � ��� defines a formally integrable structure over � .

When � is compatible with � then, according to our previous notation,

T ′���p
�= � ���⊥p = �'p�

∗�T ′p�

(cf. (I.59)). The next result gives a very useful criterion:

Proposition I.14.2. The submanifold � is compatible with � if (and only if)

p �→ dim� ���p is constant on � . (I.60)

Proof. We must prove that (I.60) implies that � ��� is a vector sub-bundle
of � which satisfies the Frobenius condition.

First we observe that (I.60) and (I.59) give the existence of � such that

dim�'p�
∗�T ′p�= �� ∀p ∈�� (I.61)

Let p0 ∈� and take �1� � � � ��m ∈N�U0�, where U0 is an open subset of �

that contains p0, such that ��1�q� � � � � ��m�q span T ′q for every q ∈ U0. Select
j1� � � � � j� such that {

�'∗�j1
�p0

� � � � � �'∗�j�
�p0

}
form a basis for �'p0

�∗�T ′p0
�. Then{
�'∗�j1

�p� � � � � �'
∗�j�

�p
}

will still be linearly independent when p belongs to an open neighborhood V0

of p0 in � and consequently, thanks to (I.61), will form a basis to �'p�
∗�T ′p�

for all such p. By the remark that follows Proposition I.4.4 we conclude that
� ��� is a vector sub-bundle of � .

To conclude the argument it suffices to observe that if U is an open subset
of � and if L�M ∈X�U� are such that Lp�Mp ∈CTp� for every p ∈ U ∩�
then 
L�M�p ∈ CTp� also for every p ∈ U ∩� . This property will easily
imply that � ��� satisfies the Frobenius condition.

Proposition I.14.3. If � is a locally integrable structure over � and if �
is a submanifold of � which is compatible with � then � ��� is a locally
integrable structure over � .

Proof. It follows from the proof of Proposition I.14.2 in conjunction
with (I.57).
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I.14 Compatible submanifolds 35

Example I.14.4. Generic submanifolds of complex space. As in Section I.5
we shall write the complex coordinates in C� as z1� � � � � z�, where zj = xj+iyj .
If f is a smooth function on an open subset of C� we shall write, as usual,

�f =
�∑

j=1

�f

�zj

dzj� (I.62)

�f =
�∑

j=1

�f

�zj

dzj� (I.63)

Definition I.14.5. Let � be a submanifold of C� of codimension d. We
shall say that � is generic if given p0 ∈� there are an open neighborhood
U0 of p0 in C� and real-valued functions &1� � � � � &d ∈ C��U0� such that

� ∩U0 = �z ∈ U 
 &k�z�= 0� k= 1� � � � � d	

and

�&1� � � � � �&d are linearly independent at each point of � ∩U0.

Notice that every one-codimensional submanifold of C� is automatically
generic. Denote by � 0�1 the sub-bundle of CTC� which defines the complex
structure on C�, that is, the sub-bundle spanned by the vector fields �/�zj ,
j = 1� � � � ��.

Proposition I.14.6. If � is a generic submanifold of C� of codimension d

then � is compatible with � 0�1. Moreover, � 0�1��� is a locally integrable,
CR structure for which n and m satisfy:

dim� = 2n+d� m= �= n+d�

The sub-bundle T ′��� is spanned by the differentials of the restriction to �
of the complex coordinate functions on C�.

Proof. Let p ∈� . A vector
∑�

j=1 aj��/�zj�p belongs to CTp�∩� 0�1
p if and

only if
�∑

j=1

aj

�&k

�zj

�p�= 0� k= 1� � � � � d�

Since � is generic it follows that

dim
C

(
CTp� ∩� 0�1

p

)= �−d� ∀p ∈��

By Propositions I.14.2 and I.14.3 we conclude that � is compatible with � 0�1

and that � 0�1��� is locally integrable. Moreover, since �� 0�1�p∩ �� 0�1�p = 0
for every p ∈ C� we obtain
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36 Locally integrable structures

� 0�1���p∩� 0�1���p = 0� ∀p ∈��

which shows that � 0�1��� defines a CR structure over � . Finally, we
have n

�= rank� 0�1��� = �− d and thus dim� = 2�− d = 2n+ d and
m= dim�−n= n+d.

The last statement follows immediately from the proof of Proposition I.14.2.

I.15 Locally integrable CR structures

When � defines a locally integrable CR structure over � then, according to
Proposition I.8.4, d

�= dimT 0
p = N −2n, for all p ∈�. Using Theorem I.10.1

we obtain m= N −n= n+d, � =m−d = n and n′ = N −2�−d = 0. We
summarize:

• Given p ∈� there is a coordinate system vanishing at p,

�x1� � � � � xn� y1� � � � � yn� s1� � � � � sd	

and smooth, real-valued functions �1� � � � ��d defined in a neighborhood
of the origin and satisfying

�k�0�= 0� d�k�0�= 0� k= 1� � � � � d� (I.64)

such that the differentials of the functions

Zj = xj+ iyj� j = 1� � � � � n� (I.65)

Wk = sk+ i�k�z� s�� k= 1� � � � � d (I.66)

span T ′ in a neighborhood of the origin.

Notice that � is spanned, in a neighborhood of the origin, by the pairwise
commuting vector fields (I.27), where � = n and there is no t-variable.

Suppose that �= ��1� � � � ��d� is defined in a neighborhood U of the origin
in Cn×Rd. Then the map

F 
 U → Cn+d� F�z� s�= �z� s+ i��z� s�� (I.67)

has rank 2n+d and consequently F�U� is an embedded submanifold of Cn+d

of dimension 2n+d (and of codimension d).
Now we write the coordinates in Cn+d as

�z1� � � � � zn�w1� � � � �wd��

where w = s+ it, wj = sj+ itj . Then F�U� is defined by the equations

&k�z�w�
�= �k�z� s�− tk = 0� k= 1� � � � � d�

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511543067.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511543067.002


I.15 Locally integrable CR structures 37

Since
�&k

�w�

= 1
2

{
��k

�s�
+ i�k�

}
� k� �= 1� � � � � d�

we conclude, taking into account (I.64), that F�U� is generic if U is taken
small enough so that ∥∥∥∥��

�s
�z� s�

∥∥∥∥≤ 1
2
� �z� s� ∈ U� (I.68)

By Proposition I.14.6 the complex structure � 0�1 on Cn+d defines a locally
integrable CR structure � �F�U�� on F�U� for which the sub-bundle T ′�F�U�

is spanned by the differentials of the restrictions of the functions z1� � � � � zn,
w1� � � � �wd to F�U�. Since in the local coordinates �z� s� we have

zj
F�U� = Zj�z� s�� wk
F�U� =Wk�z� s�

(cf. (I.65), (I.66)), we can state:

Proposition I.15.1. Every locally integrable CR structure can be locally
realized as the CR structure induced by the complex structure on a generic
submanifold of the complex space.

Remark I.15.2. Let � be a tube structure on Rm×U (cf. Section I.10). Thus
U is an open subset of Rn and we assume given smooth, real-valued functions
�1� � � � ��m on U such that T ′ is spanned by the differential of the functions
Zk = xk+ i�k�t�, k= 1� � � � �m. Recall that � is then spanned on Rm×U by
the vector fields (I.37′). Let us now assume that � is also a CR structure.
Let d =m−n be the rank of the characteristic set T 0 (cf. Proposition I.8.4).
Since � being CR demands that T ′�x�t�+T ′�x�t� = CT ∗�x�t��R

m×U� for every
�x� t� ∈ Rm×U , we must then have

rank!′�t�= n� ∀t ∈ U�

where ! = ��1� � � � ��m�. This implies that �
�= !�U� is an embedded

submanifold of Rm of dimension n and it is clear that � can be realized
as the CR structure induced by the complex structure on the generic subman-
ifold Rm+ i� of Rm+ iRm = Cm.

One very important model of a CR structure is the Hans Lewy structure.
We take as � the space C×R, where the coordinates are written as z= x+ iy

and s, and consider the formally integrable structure � spanned by the Hans
Lewy vector field (or operator)

L= �

�z
− iz

�

�s
� (I.69)
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38 Locally integrable structures

Since L and L are linearly independent at every point it follows that � defines
a CR structure which is furthermore locally integrable, since the differential
of the functions z and W = s+ i
z
2 span T ′ on C×R. Notice also that the
Hans Lewy structure can be globally realized as the CR structure induced on
the hyperquadric

Q
�= ��z�w� ∈ C2 
 w = s+ it� t = 
z
2	 (I.70)

by the complex structure on C2.
More generally, given %j ∈ �−1�1	, j = 1� � � � � n, we can consider the CR

structure � on Cn×R spanned by the pairwise commuting vector fields

Lj =
�

�zj

− i%jzj

�

�s
� j = 1� � � � � n� (I.71)

Such a structure is also locally integrable for the differential of the functions
z1� � � � � zn and W = s+ i��z�, with

��z�=
n∑

j=1

%j
zj
2�

span T ′ on Cn×R.

I.16 A CR structure that is not locally integrable

In this section we shall prove the following quite involved result:

Proposition I.16.1. Let

%1 = 1� %j =−1� j = 2� � � � � n� (I.72)

There is a smooth function g�z� s� defined in an open neighborhood � of the
origin in Cn×R and vanishing to infinite order at z1 = 0, such that if we set

L#
j =

�

�zj

− i%jzj�1+g�z� s��
�

�s
� j = 1� � � � � n� (I.73)

then the following is true:

(a) the vector fields L#
j are pairwise commuting;

(b) if h is a C1 function near the origin satisfying L#
j h = 0 �j = 1� � � � � n�

then ��h/�s��0�0�= 0.

Before we embark on the proof we shall state and prove the important conse-
quence of this result:
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I.16 A CR structure that is not locally integrable 39

Corollary I.16.2. The vector fields (I.73) span a CR structure which is not
locally integrable in any neighborhood of the origin.

Indeed, first we notice that L#
1� � � � �L

#
n�L

#
1� � � � �L

#
n are linearly independent

over � which together with property (a) shows that (I.73) define a CR structure
over �.

Now, given any smooth solution h to the system

L#
j h= 0� j = 1� � � � � n� (I.74)

we necessarily have ��h/�zj��0�0� = 0 for all j = 1� � � � � n. By property (b)
we then obtain dh=∑n

j=1 ajdzj at the origin and hence any set h1� � � � � hn+1

of smooth solutions to (I.74) must have linearly dependent differentials at
the origin. In particular, the CR structure defined by the vector fields (I.73)
cannot be locally integrable.

Proof of Proposition I.16.1. The first step in the proof is the construction
of the function g. In the complex plane we denote the variable by w = s+ it

and consider a sequence of closed, disjoint disks �Dj	, all of them contained
in the sector �w 
 
s
< t	 and such that Dj → �0	 as j→�.

Let F ∈ C��C�R� have support contained in the union of the disks Dj and
satisfy

F�w� > 0� ∀w ∈ int �Dj�� ∀j� (I.75)

As before we shall write W�z� s�= s+ i��z�, with

��z�= 
z1
2−
z2
2− � � �−
zn
2� (I.76)

Lemma I.16.3. The function F 
W vanishes to infinite order at z1 = 0.

Proof. Denote by H the Heaviside function. For every � ∈Z+ there is C� > 0
such that


F�w�
 ≤ C��tH�t����

Then


F�W�z� s��
 ≤ C� ���z�H���z���� �

Since moreover ��z�H���z��≤ 
z1
2, the lemma is proved.

We then set

g�z� s�
�= F�W�z� s��

z1−F�W�z� s��
� (I.77)
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40 Locally integrable structures

Since

g�z� s�= F�W�z� s��

z1

1
1−F�W�z� s��/z1

it follows from Lemma I.16.3 that g is smooth in an open neighborhood of
the origin in Cn×R and that g vanishes to infinite order at z1 = 0.

We shall now proceed to the proof of (a). We shall write

L#
j = Lj− i%jzjg�z� s�

�

�s
�

(cf. (I.76), (I.73)). Since 
Lj�Lk�= 0 and Ljzk = 0 for all j and k we obtain


L#
j �L

#
k�=−i

{
%kzkLjg− %jzjLkg

} �

�s
� (I.78)

Now

Ljg =
z1

�z1−F 
W�2
Lj�F 
W�

and an easy computation making use of the chain rule gives

Lj �F�W�z� s��	=−2i%jzj

�F

�w
�W�z� s���

Hence from (I.78) we obtain


L#
j �L

#
k� =

−iz1

�z1−F 
W�2

{
%kzkLj�F 
W�− %jzjLk�F 
W�

} �

�s

= −2z1

�z1−F 
W�2

{
%kzk%jzj− %jzj%kzk

} �

�s
= 0�

We now start to prove (b). For this we set

(�z� s�= h�z�0� � � � �0� s�

and will show that ��(/�s��0�0�= 0. We assume that ( is C1 in a set of the
form

V = ��z� s� ∈ C×R 
 
z
< r� 
s
< �	

and observe that

L(− izf�z� s�
�(

�s
= 0� (I.79)

where L is the Hans Lewy operator given in (I.79) and

f�z� s�= F�s+ i
z
2�
z−F�s+ i
z
2�

is smooth in V (contracting V if necessary).
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I.16 A CR structure that is not locally integrable 41

Let U
�= �w = s+ it ∈ C 
 
s
< �� 0 < t < r2	 and assume that Dj ⊂ U for

all j. Define

I�w�=
∫

z
=√t

(�z� s�dz� w ∈ U� (I.80)

By Stokes’ theorem we have

I�w�=
∫

z
≤√t

�(

�z
�z� s�dz∧dz= 2i

∫ 2)

0

∫ √
t

0

�(

�z
�&ei�� s�&d&d�

from where we obtain

�I

�t
�w�= i

∫ 2)

0

�(

�z
�
√

tei�� s�d� =
∫

z
=√t

1
z

�(

�z
�z� s�dz�

Consequently,

�I

�w
�w�= i

2

∫

z
=√t

1
z
�L(��z� s�dz (I.81)

(cf. (I.79)). From (I.79), (I.81) and from the fact that F is supported in the
union of the disks Dj we conclude that I is a holomorphic function of w in the
connected open set U\∪j Dj . Since, moreover, I�w�→ 0 when t→ 0+ the
Schwarz reflection principle implies that I vanishes identically in U\∪j Dj .
In particular,

I ≡ 0 on �Dj� ∀j. (I.82)

Next we consider, for each j, the map

�Dj×S1 −→ R3� �w��� �→ �
√

tei�� s� (I.83)

whose image defines a torus Tj ⊂ V . If we set

u
�= ( dz∧dW � (I.84)

where W �z� s� = s+ i
z
2, we have
∫
Tj
u = 0 for all j, as a consequence of

(I.82). Consequently, ∫
Sj

du= 0� ∀j� (I.85)

where Sj is the solid torus whose boundary is equal to Tj .
We shall now exploit property (I.85). Since dz�dz�dW are linearly inde-

pendent we can write

d( = Adz+Bdz+CdW � (I.86)
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where A, B and C are continuous functions. If we apply both sides of (I.86)
to L we obtain that B = L(, since Lz = LW = 0. Hence, from (I.84) we
obtain

du = �L(�dz∧dz∧dW 

= izf�z� s�
�(

�s
dz∧dz∧ds

= −2zf�z� s�
�(

�s
dx∧dy∧ds�

which in conjunction with (I.85) gives∫
Sj

zf�z� s�
�(

�s
dxdyds = 0� ∀j� (I.87)

Now we observe that zf�z� s� = F�s+ i
z
2�*�z� s�, where * is smooth and
satisfies *�0�0�= 1. From (I.87) we conclude the existence of points Pj�Qj ∈
Sj such that

�
{
*�Pj�

�(

�s
�Pj�

}
= �

{
*�Qj�

�(

�s
�Qj�

}
= 0

for all j. It suffices to let j→� to obtain that ��(/�s��0�0�= 0 and hence
to conclude the proof of the proposition.

I.17 The Levi form on a formally integrable structure

Let � be a formally integrable structure over a smooth manifold � and let
� ∈ T 0

p , � �= 0 be fixed (recall that in particular � ∈ T ∗p�⊂ CT ∗p�). We start
with the following result:

Lemma I.17.1. Let L and M be sections of � in a neighborhood of p. If
either Lp = 0 or Mp = 0 then �

(

L�M�p

)= 0.

Proof. We take complex vector fields L1� � � � �Ln which span � at each point
in a neighborhood of p.

Assume for instance that Mp = 0 (for the other case the argument is anal-
ogous). Then we can write

M =
n∑

j=1

gjLj�
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where gj are smooth functions and gj�p�= 0 for all j = 1� � � � � n. We have


L�M�=
n∑

j=1

{(
Lgj

)
Lj+gj
L�Lj�

}
and thus �

(

L�M�p

) = 0 since ��Lj
p� = 0 (because � is real) and
gj�p�= 0.

From Lemma I.17.1 it follows that the following definition is meaningful:

Definition I.17.2. The Levi form of the formally integrable structure � at
the characteristic point � ∈ T 0

p , � �= 0 is the hermitian form on �p defined by

L�p����v�w�= 1
2i

�
(

L�M�p

)
� (I.88)

where L and M are smooth sections of � defined in a neighborhood of p and
satisfying Lp = v, Mp = w.

Given a hermitian form H on a finite-dimensional complex vector space V ,
its main invariants are the subspaces V+, V− and V⊥ of V , which give a
decomposition

V = V+⊕V−⊕V⊥

and are characterized by:

• v �→ H�v� v� is positive definite on V+;
• v �→ H�v� v� is negative definite on V−;
• V⊥ = �v ∈ V 
 H�v�w�= 0� ∀w ∈ V	.

Thus H is itself positive definite (resp. positive negative) if V = V+ (resp.
V = V−). More generally, H is said to be positive (resp. negative) if V− = �0	
(resp. V+ = �0	). Also, H is said to be nondegenerate if V⊥ = �0	. Finally,
we recall that it is common to call the positive integer 
dimV+−dimV−
 the
signature of H. Notice that the signature does not change after multiplication
of H by a nonzero real number.

A formally integrable structure � over � is nondegenerate if given any
� ∈ T 0

p , � �= 0 the Levi form L�p��� is a nondegenerate hermitian form.
We now describe the Levi form for a formally integrable CR structure over

�. Let p ∈�, � ∈ T 0
p , � �= 0. According to the results described in Section

I.8 we can find a system of coordinates

�x1� � � � � xn� y1� � � � � yn� s1� � � � � sd�
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vanishing at p and vector fields of the form

Lj =
�

�zj

+
d∑

j′=1

ajj′�z� s�
�

�zj′
+

d∑
k=1

bjk�z� s�
�

�sk
� j = 1� � � � � n�

with ajj′�0�0�= bjk�0�0�= 0 for all j� j′� k, which span � in a neighborhood
of the origin in R2n+d. Notice, moreover, that T 0

p is equal to the span of
�ds1
0� � � � �dsd
0	.

Write �= �1ds1
0+ � � �+�ddsd
0 and denote by �Ajj′� the matrix of the Levi
form L�p��� with respect to the basis

{
��/�z1�p� � � � � ��/�zn�p

}
of �p. Thus, by

definition, Ajj′ = L�p���

(
��/�zj�p� ��/�zj′�p

)
and then

Ajj′ =
1
2i

��1ds1
0+ � � �+�ddsd
0��
Lj�Lj′ �p�

= 1
2i

d∑
k=1

�k

{
Ljbj′k−Lj′bjk

}
�0�0��

that is

Ajj′ =
1
2i

d∑
k=1

�k

{
�bj′k

�zj

�0�0�− �bjk

�zj′
�0�0�

}
� (I.89)

As an example, let us consider the CR structure defined by the vector fields
L#

j given by (I.73). In this case d = 1 and we take � = ds
0. We also have
bj =−i%jzj�1+g�z� s��, where g vanishes to infinite order at z1 = 0. Then

�bj′

�zj

�0�0�=−i%j�jj′

and (I.89) gives

�Ajj′�= diag �%1� � � � � %n	�

Thus, Corollary I.16.2 has provided an example of a nondegenerate CR
structure, defined in a neighborhood of the origin in Cn×R, for which the
signature of the Levi form at �ds
0 ∈ T 0

0 , � �= 0 is equal to n−1.
In connection with this example we mention the following deep result

which gives a positive answer to the problem of local integrability (or local
realizability, as we have seen in Proposition I.15.1) for certain classes of
CR structures. It shows that the value of the signature of the Levi form plays
a crucial role.

Recall that by Proposition I.8.4 the characteristic set of a CR structure is a
sub-bundle of the cotangent bundle.

Theorem I.17.3. Let � be a nondegenerate CR structure over a smooth
manifold � and assume that its characteristic set has rank equal to one. Let
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n denote the rank of � (and thus the dimension of � is equal to 2n+ 1).
Suppose that for some p ∈� the signature of the Levi form at � ∈ T 0

p , � �= 0,
is equal to n. If n≥ 3 then � is locally integrable in a neighborhood of p.

Finally, we shall compute the expression of the matrix �Ajj′� of the Levi form
when � is locally integrable and CR. Invoking the local coordinates described
at the beginning of Section I.15, and in particular the functions (I.66) satisfying
(I.64), we see that we can take the vector fields Lj in the form (cf. (I.27))

Lj =
�

�zj

− i
d∑

k=1

��k

�zj

�z� s�Mk� j = 1� � � � � n�

where

Mk =
d∑

k′=1

�kk′�z� s�
�

�sk′
� k= 1� � � � � d�

characterized by the relations Mk �sk′ + i�k′	= �kk′ . In particular, (I.64) gives

�kk′�0�0�= �kk′ � (I.90)

According to our previous notation, we have ajj′ ≡ 0 for all j� j′ and

bjk =−i
d∑

k′=1

��k′

�zj

�k′k�

Again by (I.64) and by (I.90) we have

�bjk

�zj′
�0�0�=−i

�2�k

�zj′�zj

�0�0�

and then by (I.89) we obtain

Ajj′ =
d∑

k=1

�k

�2�k

�zj′�zj

�0�0�� (I.91)

Example I.17.4. The following discussion justifies our terminology and
makes a connection with the theory of several complex variables.

Let U be an open subset of Cn+1 with a smooth boundary. Let & ∈
C��Cn+1�R� be such that U = �z 
 &�z� < 0	 and that d& �= 0 on �U =
�z 
 &�z�= 0	. We say that U satisfies the Levi condition at the point p ∈ �U

if the restriction of the hermitian form

� �→
n+1∑
j�k=1

�2&

�zj�zk

�p��j�k

to the space Tp = �� ∈ Cn+1 

∑n+1

j=1 ��&/�zj��p��j = 0	 is positive.
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The Levi condition is independent of the choice of the defining function
&: it is also a holomorphic invariant. After a translation and a C-linear
tranformation we can assume that 0 ∈ �� and that the tangent space to ��

at the origin is given by the real-hyperplane �w = 0, where now we are
writing the complex coordinates as �z1� � � � � zn�w�. We can also assume that
the exterior normal to � at the origin is the vector �0� � � � �0�−i� ∈ Cn+1.

By the implicit function theorem we conclude the existence of a smooth,
real-valued function � satisfying ��0�0� = 0, d��0�0� = 0 such that & can
be written, near the origin and in these new complex variables, as

&�z�w�= ��z��w�−�w� (I.92)

Since then T0 = ��n+1 = 0	, the Levi condition at the origin can be written
as:

n∑
j�k=1

�2�

�zj�zk

�0�0��j�k ≥ 0� ∀� ∈ Cn� (I.93)

The boundary of U is a one-codimensional submanifold of Cn+1 and conse-
quently it is generic. The complex structure � 0�1 of Cn+1 induces on �U a
CR structure � 0�1��U� and, according to the discussion in Section I.15, the
differentials of the functions

Zj = zj� j = 1� � � � � n� W�z� s�= s+ i��z� s�

span T ′��U� near the origin [we are writing s = �w and considering �z� s�

as local coordinates in �U ]. From (I.91) we obtain the following equiva-
lent statement to (I.93): the Levi form of the CR structure � 0�1��U� at the
characteristic point ds
0 is positive.

To obtain an invariant statement let us first denote by T 1�0 the orthog-
onal sub-bundle

(
� 0�1

)⊥
. Given an open set U with a smooth boundary �U

as above, and given p ∈ �U , the map '∗p 
 CT ∗pCn+1 → CT ∗p �U induces an
isomorphism

�p 
 T 1�0
p

∼−→ T ′p��U��

Let � ∈ T 0
p ��U�, � �= 0. We shall say that � is inward pointing if

� (�−1
p ���

)
�v� > 0

for every v ∈ TpC
n+1 which is inward pointing toward U . In the preceding

set-up, when p = 0 and & is given by (I.92), then �−1
0 ��ds
0� = �dw
0 and

then � = �ds
0 is inward pointing if and only if � > 0. Summing up we can
state:
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Proposition I.17.5. Let U ⊂ Cn+1 be an open set with a smooth boundary.
Then U satisfies the Levi condition at p ∈ �U if and only if the Levi form
associated with the CR structure � ��U� is positive at every � ∈ T 0

p ��U�, � �= 0
which is inward pointing.

Appendix: Proof of the Newlander–Nirenberg theorem

In this appendix we shall present an argument due to B. Malgrange ([Mal])
which leads to the proof of the Newlander–Nirenberg theorem. We start by
recalling some of the results we need from the theory of nonlinear elliptic
equations.

Let us consider then an overdetermined system of nonlinear partial differ-
ential equations

!
[
x� "u� �x1

"u� � � � � ��"u� � � �]= 0� 
�
 ≤M� (I.94)

where x varies in an open subset � of RN ,

"u= �u1� � � � � uq� ∈ CM���Rq��

! = ��1� � � � ��p� is smooth and real-valued and q ≤ p. The system (I.94) is
elliptic at "u0 ∈ CM���Rq� in � if the linear differential operator

"v �→ d
d�

!
[
x� "u0+�"v� �x1

�"u0+�"v�� � � � � ���"u0+�"v�� � � � ] 
�=0 (I.95)

is elliptic in the following sense: if

� 
 �× �RN\�0	�→ L�Rq�Rp�

denotes the principal symbol of (I.95) then

rank��x���= q� ∀�x� �� ∈�×RN\�0	 �
We call �I�95� the linearization of (I.94) at "u0.

Here is an important remark that will be quite important in what follows:
if x0 ∈� and if

"v �→ d
d�

!
[
x0� "u0�x0�+�"v� �x1

�"u0��x0�+��x1
�"v�� � � �] 
�=0 (I.96)

is an elliptic linear system (with constant coefficients!) then (I.94) is elliptic at
"u0 in a neighborhood of x0. Accordingly, we shall call (I.96) the linearization
of (I.94) at "u0 at the point x0.
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48 Locally integrable structures

The two main results that are essential for Malgrange’s argument are:

• If "u is a CM -solution of (I.94), if (I.94) is elliptic at "u in the sense just
defined, and if the function ! is real-analytic then "u is real-analytic.

• Now assume that q = p and that (I.94) is elliptic at "u0 ∈ CM���Rq�. Let
x0 ∈� be such that

!
[
x0� "u0�x0�� �x1

"u0�x0�� � � � � �
�"u0�x0�� � � �

]= 0�

Then there are %0 > 0, C > 0 and 0 < � < 1 such that for every 0 < %≤ %0

there is a smooth solution "u% to (I.94) on 
x−x0
< % satisfying the bounds


��
("u%�x�− "u0�x�

) 
 ≤ C%M−
�
+�� 
x−x0
< %� 
�
 ≤M�

We now embark on the proof of the Newlander–Nirenberg theorem. The
starting point is the description of the special generators presented after
Lemma I.8.5, particularly the vector fields given by (I.19), taking into account
that when the structure is complex then d = n′ = 0. In other words, we can
assume that our (complex) formally integrable structure is defined, in an open
neighborhood of the origin in Cm, by the pairwise commuting vector fields

Lj =
�

�zj

+
m∑

k=1

ajk�z�
�

�zk

� j = 1� � � � �m� (I.97)

where ajk = 0 at the origin. For technical reasons, which are going to be
clear in the argument, it is convenient to assume that ajk�z� = O�
z
2�, and
this property can be achieved after performing a local diffeomorphism of the
form z′ = z+Q�z� z�, where Q is a homogeneous polynomial of degree two in
�z1� � � � � zm� z1� � � � � zm� chosen suitably. We leave the details of this (simple)
computation to the reader.

Malgrange’s key idea is to show the existence of a local diffeomorphism
w = H�z�, defined near the origin in Cm, such that, in the new variables
w1� � � � �wm, the structure has a set of generators which have real-analytic
coefficients. This implies the sought-for conclusion thanks to Theorem I.9.2.

In order to shorten the notation and make the computations more apparent,
we shall describe all the systems involved in vector and matrix notation. Thus
we set

"L=
⎡⎢⎣ L1

���

Lm

⎤⎥⎦ �
�

�z
=

⎡⎢⎢⎣
�

�z1

���
�

�zm

⎤⎥⎥⎦ �
�

�z
=

⎡⎢⎢⎣
�

�z1

���
�

�zm

⎤⎥⎥⎦
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and rewrite the system (I.97) as

"L= �

�z
+A�z�

�

�z
�

where A�z� denotes the matrix �ajk�z�	.
Let w =H�z� be a local diffeomorphism near the origin in Cm satisfying

Hz�0� is invertible. (I.98)

Since
�

�z
= tHz

�

�w
+ tHz

�

�w
�

�

�z
= tHz

�

�w
+ tHz

�

�w
�

a new set of generators for the structure is defined, in the new variables
w1� � � � �wm, by the system

"L• = �

�w
+B�w�

�

�w
� (I.99)

where

B�w�= (
tHz+A tHz

)−1
� tHz+A tHz� 
z=H−1�w� � (I.100)

If L•1� � � � �L
•
m denote the components of "L• then a fortiori we must have


L•j �L
•
k�= 0� ∀j� k= 1� � � � �m� j < k�

Writing B = �bjk	 this property is equivalent to

�bk�

�wj

− �bj�

�wk

−
m∑

r=1

{
bkr�w�

�bj�

�wr

−bjr�w�
�bk�

�wr

}
= 0� ∀j� k� �� j < k� (I.101)

We emphasize: given any local diffeomorphism H satisfying (I.98) then
equations (I.101) are satisfied by B = �bjk	 defined by (I.100).

The system (I.101) together with the additional equations

m∑
j=1

�bjk

�wj

= 0� k= 1� � � � �m (I.102)

make up a system of quasi-linear partial differential equations in the unknowns
�bjk	. Let us write "V = ��b1�1��b1�2� � � � ��bm�m−1��bm�m� ∈ R2m2

. Then
systems (I.101) and (I.102) can be written as

� "V ++� "V� ", "V�= 0� (I.103)

where � is an elliptic linear operator with constant coefficients and + is a
bilinear form in its arguments. It then follows that there is a small number
� > 0 such that if 
B�0�
 ≤ � then (I.101), (I.102) is elliptic at B in an open
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neighborhood of the origin. Hence any such B is a real-analytic function of
w and the argument will be complete if we can show that a diffeomorphism
H satisfying (I.98) can be chosen in such a way that B, defined by (I.100), is
a solution of (I.102) satisfying 
B�0�
 ≤ � .

We are left to solve the determined system
m∑

j=1

�

�wj

[(
tHz+A tHz

)−1
� tHz+A tHz�

]
jk
= 0� k= 1� � � � �m� (I.104)

whose unknown is ��H�z���H�z�� (we look at (I.104) as a determined system
of 2m real equations). It is important to emphasize that these equations are
now being considered in the z1� � � � � zm variables.

Since A�z�=O�
z
2� it is easily seen that H0�z�= z satisfies (I.104) at the
origin. Furthermore, taking

H�z�=H0�z�+�G�z�

then for � ∈ R, 
�
 small we have(
tHz+A tHz

)−1
� tHz+A tHz�= A+�

[
tGz+AF

]+O��2�

for some F smooth. Furthermore, since

�

�w
= tH−1

z

�

�z
− tH−1

z
tHz

�

�w

we obtain
�

�wj

= �

�zj

+O��� �

Hence, using once more the fact that A�z�= O�
z
2�, we can easily conclude
that the linearization of (I.104) at H0 at the origin can be identified, in a
natural way, with the complex operator

G �→
(

m∑
j=1

�

�zj

[
tGz

]
j1
� � � � �

m∑
j=1

�

�zj

[
tGz

]
jm

)

=
(

m∑
j=1

�2G1

�zj�zj

� � � � �
m∑

j=1

�2Gm

�zj�zj

)
�

which is clearly elliptic (in the usual sense). We conclude that there are %0 > 0,
C> 0 and �< 1 such that for every 0 < %≤ %0 there is a smooth solution H%

to (I.104) satisfying

�H%−H0�C2�z

z
≤%	 ≤ C%2+�� % ≤ %0� (I.105)

In particular, if % > 0 is small enough we can ensure that:
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• H% is a local diffeomorphism near the origin satisfying (I.98);
• B defined by (I.100) satisfies 
B�0�
 ≤ � .

The proof is complete.

Notes

The first treatment of formally and locally integrable structures as presented
here appeared in [T4], the main point for this being the discovery of the
Approximation Formula by M. S. Baouendi and F. Treves in 1981 ([BT1]);
such structures were then studied extensively in [T5]. The pioneering work
though seems to be the article by Andreotti-Hill ([AH1]), where the concept
of what we now call a real-analytic locally integrable structure was introduced
in its full generality.

This introductory chapter contains mainly results that have already been
presented in standard textbooks. We mention, for instance, the Frobenius
theorem, whose proof was taken from L. Hörmander’s book [H4] and the
integrability of elliptic vector fields in the plane, of which we give an almost
self-contained proof, depending only on very simple facts concerning commu-
tators of certain pseudo-differential operators that can be found, for instance,
in [Fo].

As mentioned in the text, Theorem I.12.1 is due to L. Nirenberg ([N2])
and the proof we present was taken from [T5].

Proposition I.16.1 is a particular case of a more general result due to H.
Jacobowitz and F. Treves ([JT1]). We also refer to [JT2] where the same
authors study, via a category argument, the set of all formally integrable
CR structures of rank n on an open subset of R2n+1 whose Levi form has, at
each nonzero characteristic point, signature n−1.

Theorem I.17.3 was originally due to M. Kuranishi ([Ku1], [Ku2]) in the
case n≥ 4. Later, T. Akahori ([Ak]) presented an improvement to Kuranishi’s
argument which allowed him to prove Theorem I.17.3 also for the case n= 3.
The case n= 2 is still an open problem, whereas when n= 1 the conclusion
is false, according to [N3] (see also Theorem I.12.1). A proof of Theorem
I.17.3 can also be found in [W3].

Finally, Malgrange’s proof of the Newlander–Nirenberg theorem that we
presented in the appendix was taken from [N1], where the use of a solvability
result on elliptic determined systems of nonlinear partial differential equations
makes the argument a bit simpler.
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