
ON A CLASS OF FINITELY PRESENTED GROUPS 

I. D. MACDONALD 

T h e groups in question are generated by elements A and B subject to the 
relations 

AU,B) = A^ BIBM = ^ 

in which a and ft are fixed integers. We prove: 

T H E O R E M . Each group of the class just presented is finite when neither a nor ft 
equals 1, and is nilpotent. Its order is a factor of 27 (a — 1) (ft — l)e 8 where 
e is the greatest common divisor of a — 1 and ft — 1, and its nilpotency class is 
at most 8. 

We denote the commuta to r X^Y^XY by [X, F] , and Y~lXY by XY. 
If X\, Xi, . . . , Xr are elements of some group then {Xh X2, . . . , Xr) will 
mean the subgroup which they generate. T h e terms Zt(G) of the ascending 
central series of the group G are defined by taking Zi(G) to be the centre, 
and Zi+i(G) to be the subgroup such t h a t Zi+i(G)/Zi(G) is the centre of 
G/Zt(G) for i = 1,2, 

1. In this section we make some elementary remarks in preparat ion for the 
calculations by which the theorem will be proved. T h e group {A, B} defined 
above will be called G (a, ft), the number e will be as explained in the theorem, 
and C will denote the commuta to r 1/4,5] throughout . T h u s the defining 
relations of G (a, ft) become 

(1.1) Ac = Aa, 

(1.2) Bc~l = B\ 

I t is easy to see t h a t G (a, ft) is isomorphic to G (ft, a), which implies t h a t in 
discussing the various cases t h a t arise we lose nothing in taking a > ft. As 
the group G (a, a) has an automorphism of order 2 interchanging A and B, 
these two elements must have the same order. 

T h e group G(0, ft) (and likewise G (a, 0)) , is easily t rea ted. For here we have 
A = 1, C = 1 and B = B$\ the group is finite cyclic, and certainly nilpotent, 
when ft ^ 1. In the case ft = 1 we again have a cyclic group. Therefore we shall 
always assume t h a t a ^ 0 and ft 7e 0. 

If we add the relation C = 1 to those defining G (a, ft) we obtain Aa~l 

= B$~l = 1, and this clearly gives an abelian group of order (a — I) (ft — 1) 
which is a factor group of G (a, ft). Therefore if a ^ 2 and ft 9e 2 wre see t h a t 
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A CLASS OF FINITELY PRESENTED GROUPS 603 

G (a, 13) has order greater than 1 ; if this order is finite and p is a prime dividing 
(a — l)(j3 — 1), then the Sylow ^-subgroup of G (a, p) is non-trivial. 

Next we establish rules of computation for later use. We have 

(1.3) (AUCT = cwvAuaVa' 

where v > 0, w > 0 and a' = 1 + av + . . . + a(w-l)v\ for 

(AUCT = Cwv. C~WVAUCWV. . . C~2vAuC2v. C ^ C " 
/~<uov Auawv Aua2v Auav 

by (1.1). In particular we have 
(1.4) {AW)B = c^«(i+«+...+«-1) 

for w > 0, since (^M)B = (AB)W = {AC)W and (1.3) may be applied to this 
with u = v = 1. 

There is a further relation 

(1.5) (BUC~T = c^'Br***' 

where y > 0, w > 0 and /3r = 1 + $v + . . . + p»-»\ This may be proved 
similarly, and leads to 

(1.6) {BW)A = c - ^ ^ ( ^ + - . + ^ - 1 ) 

for w > 0. 
At this point it would be possible to prove that if A, B, and C are all of 

finite order then every element of G (a, fi) can be expressed as AvBqCT for 
suitable integers p, q, r, and so G (a, /3) would be finite. We omit this proof as 
finiteness of G (a, p) will be established by other means. Let us note tha t if 
Am = 1 or even if Am lies in the centre Zi(G) of G(a, (3) for some positive 
integer m, and a ^ 1, then C has finite order; for (1.4) with w = m gives 
Cm = A\ for some 0, so 

Cm = Ae = (A6)c = Aae = Cam 

by (1.1), and C(a_1)w = 1. A similar result holds if B has finite order modu lo 
Z1(G). 

The main relation to which the calculations will be applied is 

(1.7) [A,B"]c=[Aa,B], 

which is an immediate consequence of (1.1) and (1.2). 
It may be of interest to discuss briefly the group C7(l, /3) before starting on 

the proof of the theorem. This is an infinite group as an infinite cyclic factor 
group is obtained by adding the relation B = 1 to the defining pair. B ut the 
group is nilpotent, for (1.7) gives 

[A,B'] = [A,B]°-1 = [A,B] 

and so A~lB~^AB^ = A~lB~lAB, which proves that A and B^~l commute. 
Therefore the centre ZX(G) of G(l, 0) contains B^K We have Z2(G) > {B^~\C) 
and Zz(G) = G. Thus the nilpotency class is at most 3. 
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2. In this section our aim is to prove that the elements A and B in G(a, fi) 
have finite orders, provided that a ̂  1 and /3 ^ 1. The calculations differ 
slightly in the several cases specified by the signs of a and (3; we recall our 
assumption a > (3. 

CASE 1. a > 1 and /3 > 1. 

On putting w = /3 in (1.6) we find that 

(BP)A = C~^B^l^+'"+^"l) 

and so we have 

(2.1) [A,B0]a = CT1^"*) V c 

= 5aC* 

by (1.2), where 

(2.2) 8 = ^ - (1 + p + . . . + /S*"1). 

Similarly (1.4) with w = a gives 

(2.3) [Aa,B] = A-a(Aaf 

= CaA-ay 

by (1.1), where 

(2.4) y = a - (1 + a + . . . + a*"1). 

Now (1.7), (2.1), and (2.3) give 

(2.5) BSC* = CaA~a\ 

We transform both sides of (2.5) by C~l: 

(2.6) B**(f = C ^ " 7 . 

On eliminating Ca from (2.5) and (2.6) we obtain 

and on eliminating C13 from the same equations 

hence 

(2.7) CaHl4 ^—«^c^ = A (a-1)y. 

Now (2.7) and (1.1) give, since a — /3 > 0, 

(2.8) ^ ( a - 1 ) 7 = ( ^ C - D T J C - P = ^ ( 
^(a-l)(a«-^-l)7 = ^ 

And similarly 
(2.9) J JOJ -DW- ' - I ) . = L 
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When a > fi > 1, it is clear t h a t y and ô are positive and t h a t A and B have 
finite orders. 

Let us next consider the case a = fi > 1. T h e relation (2.5) gives 

C-aByCa = A~a\ 

But (1.2) gives 

By = c-aB°ayca = (c~aBycya. 
When C~aByCa is eliminated between the last two relations we have 

Therefore both A~aCC+ly and By lie in the centre of G (a, /3), and commute with 
C; so use of (1.1) gives 

(2.10) A~y = By, 

Ay = (Ay)c = Aay, 

(2.11) A(a~1)y = 1. 

Similarly we have 

(2.12) B(a~1)y = 1. 

Again A and 5 have finite orders. 
Because of the importance which the case a > 1 and (3 > 1 will later assume, 

we shall derive some more relations from those listed above. As remarked 
earlier we have proved enough to establish t h a t C has finite order, hence 
the element CAC~l is a power of A which will be writ ten as Aa~\ Thus (2.5) 
becomes 

(2.13) B8 = A-^-«yc«-t 

after the use of (1.1), and transformation by C~l and then elimination of 
C«~0 yields 

(2.14) B("-1)8 = A{a-l)ya~a 

Transformations with C according to (1.1) give 

(2.15) A(a~1)y = B("-1)B. 

W e further find t h a t 
* (a-1)7 __ / j ( a - l ) 7 % C _ Aa(a-l)y A ( a - l ) 2 T _ .. 

and as each term in (2.15) similarly has order dividing fi — 1, there results 

(2.16) ^ . ( « - D T ^ ^ ^ - D a = L 

T h e expression obtained by raising both sides of (2.13) to the power /3 — 1 
may be simplified by means of (1.3), and this with (2.15) shows t h a t Ci0~1)(a~0) 

e {A}; similarly O " 1 ^ - ^ 6 {B}. Thus 

(2.17) c(«-i)(*-i)(«-« = l f 

and we have by (1.1) 
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/{. — /x — J\. \ 

hence and similarly 
(2.18) ^ - D c - f l - i = ^ M . ! = ^ 

CASE 2. a < 0 a»d /3 < 0. 

By putting w = — /3 in (1.6) we obtain 

(2.19) (B~y = c ^ i l + ^ - + ^ ~ l \ 

[A,Bfi]c = C~\B-&)AB$C 

= (J-1+^B^{2+^+'"+^~^~1)C 

by (1.2), where 

(2.20) v = 2 + 0 + . . . + 0-*-1. 
Similarly (1.4) with w = — a gives 

(2.21) (A~a)B = C-^«(l+a+...+a— ^ 

where 

(2.22) £ = 2 + a + . . . + a""-1. 

Now (1.7), (2.19), and (2.21) give 

(2.23) BvC~a = C+A-"*. 

We note the similarity between equations (2.5) and (2.23). Indeed, (2.23) 
may be developed just as (2.5) was earlier to yield the fact that A and B are 
of finite orders in general—we omit the details of this process. However, 
closer attention is necessary when a — /3 = 0 or £ = 0 or 77 = 0, for these are 
circumstances in which the general argument given in case 1 would here break 
down. Elementary algebra shows that .£ = 0 only if a = —2, hence 77 = 0 
only if 0 = - 2 . 

Let us consider the case a = /3 < 0. If in addition a 9^ —2, it will be found 
that the argument for a = (3 > 1 may be adapted to show that A and B 
have finite orders, as required. When a = (3 = —2 we abandon (1.7) in favour 
of the relation 

[A,BT = [A'.B], 
which we simplify by means of the following consequences of (1.6) and (1.4): 

(BY = C-iB10, {Ai)B=CiA1\ 
Thus we obtain 

C-'B^C'B'C2 = A-4 C'A1", 

and some applications of (1.1) and (1.2) reduce this to 

527C4 = C'A''1. 
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Now we proceed as when a = /3 > 1, and obtain 

A'i7 = Bn. 

This shows that A and B both have order dividing 81. 
Next we examine the situation when a = — 2. We may suppose that /3 < — 2. 

The relation (2.23), still valid, gives 

(2.24) B" = IT*-2, 

5 ' = C^) 0" 1 = B9\ 

(2.25) .B05-1''' = C(*-1)(/3+2) = i. 

Now application of (1.1) shows that 

(2.26) A = ^ - l ) ( " + 2 ) = ^ c - ^ - D C ^ 

(_2)(/3-l)(^+2)_i = 

Again 4̂ and 5 have finite orders. 
Lastly we must consider what happens when 0 = — 2, and so « = — 1 . 

As £ - 2 and 77 = 0, (2.23) becomes C = A2] so A = Ac = A~\ A2 = C = 1. 
Next 5 = £ c _ 1 = 5 - 2 , which gives J53 = 1. Therefore G ( - l , - 2 ) is cyclic 
of order 6. 

CASE 3. a > 1 awd 0 < 0. 

Defining 77 and 7 as in (2.20) and (2.4) respectively, we find that 

[A,B*]C= (fB\ 
[Aa,B] = C°A~ay; 

these relations are found just as (2.19) and (2.3) were. Now (1.7) becomes 

(2.27) B" = Ca-*A-a\ 

On transforming this by C~l and eliminating Ca~& we find 

(2.28) Aia~1)y = B^~l)\ 

This relation may be treated like (2.10) to yield 

(2.29) A(a~1)2y = B**-**-»' = 1. 

We see that A and B are elements of finite order except perhaps when r? = 0. 
Then (2.27) becomes 

(2.30) Aay = Ca+\ 

since /3 = — 2. This relation may be treated as (2.24) was, giving 

(2.31) A™ = 5 <-» < - l ) ( " + , ) - i = 1. 

Therefore, whenever a > 1 and 0 < 0, 4̂ and B are of finite orders. 
This completes the proof of the fact that the orders of A and B are finite 

if a 7* 1 and 0 ^ 1 . The consequence that C has finite order was noted earlier. 
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3 . The present section is devoted to a result in number theory which seems 
necessary to prove nilpotence and which also serves t o establish finiteness of 
G ( a , 0 ) . 

LEMMA.* Suppose m divides nm — \ where m is some positive integer and 

n 9e 1 is some integer. If m = q\q2 ...<?& for primes qt such that gi < q2 < . . . 

< qk and mt = qiq2 . . . qt for 1 < i < k, with m0 = 1, then 

(i) mt divides nmi~1 — 1 for 1 < i < k; and 

(ii) wii divides (nmi — l)/(n — 1) for 1 < i < k. 

Proof. We may neglect the simple case which arises when n = — 1 and 
qi = 2. By Fermat ' s theorem and by hypothesis we have 

nqi~l=l and nm = 1 (mod qt) 

for 1 < i < fe; so the choice of the primes qt now ensures t h a t nmi~l = 1 
(mod qi). Another useful fact is t h a t (nmi — l)/(nmi~l — 1) is divisible by 
qt where 1 < i < k, for the number in question is equal to the sum of Em
powers of nmi~l and we have jus t proved t h a t nmi~l = l ( m o d g O -

T h e proof of (i) is by induction on i. T h e case i = 1, t h a t is, the s t a t emen t 
t h a t qi divides n — 1, has already been established. We assume inductively 
t h a t mt is a factor of nmi-1 — 1, which of course divides nmi — 1, for 1 < i < k ; 
and as qi+i also divides nmi — 1, we have shown t h a t m î + i = w ^ l + i is a 
factor provided t h a t qt 9^ qi+\. Bu t when qt = qi+i an earlier remark shows 
t h a t qi+i divides (nmi —l)/(nmi-1 — 1), so again m^q^x divides nmi — 1. 
This completes the inductive proof of (i). 

We may again use induction for (ii). There is no difficulty when i = 1 
as the required fact was proved earlier. In general we consider (nmi+l — 1) 
I{n — 1), with inductive hypothesis t h a t mt divides (nmi — l)/(n — 1), and 
since qi+x is known to divide (nmi+1 — l)/(nmi — 1) for 1 < i < k, we see t h a t 
mtqi+i divides (nmi+l — l)/(n — 1). This completes the inductive proof of (ii). 

COROLLARY. If qk does not divide n — 1, then m divides (nm/Qk — l)/(n — 1). 

4. In this section we consider supersolubility and finiteness of G (a, P) 
along with the question of wha t primes divide the group order, always assuming 
t h a t a y* 1 and /3 9* 1. 

Let us suppose t h a t A and B have orders /JL and v respectively. Application of 
(1.4) with w = JJL gives 

1 = (A")B = C'A""' 

where / / = (a" - l ) / ( a - 1), so CM Ç {^4}, and (1.1) gives 

*This lemma together with the proof of the nilpotence of G(a, 0) is due to the referee, to 
whom I record my thanks. 
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Since it now appears that /x divides aM — 1, the lemma asserts that /x divides 
//, and so we have CM = 1; similarly we can prove that C = 1. If X is the 
greatest common factor of /x and v then Cx = 1. 

We shall examine the case \x = v first, taking the common order of A and B 
to be m. This case arises when a = fi, and the more general case will be reduced 
to it. Then m divides am — 1, the conditions of the lemma are satisfied, and 
we adopt the definitions of qt and Wj therein. 

Next we define certain subgroups of G (a, f$) : 

Ui= {Am-1,Bm-1,CMi-l}9 

Vi = {Am,Bm'\Cmi-l}t 

Wt= {Ami
1B

mi,Cmi-1} 

for 1 < i < k. Thus 

G(a, P) = Ui>...>Ut>Vt>Wi> Uw > . . . > Wk > 1. 

Now (1.4) with w = mi gives 
/ J mi\ B /TMI J ami' 

where mt divides m( = {ami — l ) / ( a — 1) by the lemma. Therefore, and 
similarly, 

(4.1) (.4mi)* G {Am\ Cmi\, 

(4.2) (5mi)A € { B ^ . O . 

By (1.1) we have 

where mi+\ divides m / ' = 1 — aw* by the lemma for 0 < i < k. Thus we 
have 

(4.3) (Cmi)A 6 {,4wi+1, C™}, 
(4.4) (Cmi)B e {Bmi+1,Cm}. 

Because A and B have finite orders and because (4.1)-(4.4) hold, every 
conjugate of the three given generators of Ui lies in Ui. Thus Uiy and similarly 
Vi and Wu are all normal subgroups of G (a, /3). 

Since it follows that each of the factor groups Ut/Vu Vi/Wt and Wt/Ui+i 
has order qt or 1, (we take Uk+i = 1), the group G (a, (3) is finite and super-
soluble. 

In the case /x ^ v we have Cx = 1 and so in the usual way Aa _ 1 = 1. 
Therefore ax — 1 is divisible by /x, which in turn is divisible by X; the lemma 
shows that X' = (ax — I)/(a — 1) is divisible by X. Now (1.4) with w = X 
gives 

(4X)B = C\4ttV 6 Mx}, 

that is, {̂ 4X} is normal in G (a, 0). Similarly {B*} is normal. Putting 2V = {Ax, 
J3X}, we examine the orders /x0 and y0 of A and 5 respectively modulo N. 
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Clearly /x0 and v0 divide X. Since A*Q Ç N we have A*1» G {#x}> say Au° = £ r X ; 
similarly 5"° = AsX. Hence 

and we have /x0 = ô = A. Since the two obvious generators of G (a, ff)/N have 
equal orders we know t h a t G (a, /3)/N is finite supersoluble by earlier reasoning, 
so G (ay /3) has the same properties. 

We shall now prove t h a t the only primes dividing /x are factors of a — 1. 
Considering the case n = v> we suppose t h a t qt is not a factor of a — 1 and 
t h a t g* ^ g i + i or i = fe, and we let 4̂ have order cr modulo Ut+i. If g* divides 
the order of A, we have by (1.4) 

(Aa/Qi)B = caiqiAaa' 

where a' = (a*^* — l ) / ( a — 1) is divisible by <J, because of the corollary to 
the lemma. T h u s 

(A"qi)B s C " " (modulo Ut+i). 

But it may be deduced from (1.2) t h a t 

(C,Qi)B =*B'"C"qi 

where <J" — /3a/Qi — 1 is divisible by a, by the lemma. As A and B have the 
same order modulo Ut+i we have proved t h a t 

A*/*i _ CIK ( m o d u l o Ut+ju 

Use of (1.1) in the usual way shows t h a t A^~1)<r/qi G Ut+U so A'/Qi G Ui+i 
as ^i is prime to a — 1. This contradic ts the assumption t h a t A has order cr 
modulo Ui+i. T h e conclusion is t h a t the prime divisors of /x and *> are factors 
of a — 1 and /3 — 1 respectively. 

When [x 9^ v the above a rgument applied to G (a, ($)/N shows t h a t if a 
prime factor p of \x does not divide a — 1 then £ divides the order of xV, t h a t 
is, p divides /JL/\. We have from (1.4) with w — ii/p 

( 4 ^ ) B = CA**', 

where C / p = 1 because Cx = 1, and / / = (<WP - l ) / ( a - 1). T h e fact t h a t 
/i divides ocx — 1 shows t h a t bo th /x and fx/p divide a^,v — 1. A t this point 
the lemma shows t h a t ix/p divides /x'. Since /x divides both (a — 1) / / and 
pLxf, and a — 1 is prime to p, we see t h a t /x divides \x , and so A^^ = 1, a con
tradict ion. Again we have shown t h a t the only primes dividing the order of 
A are factors of a — 1 ; and a similar result abou t B and /S — 1 is clearly t rue . 
These are the only primes dividing the order of G (a, p) as is clear from the 
proof of supersolubility. 

5. In order to prove t h a t G (a, (3) is ni lpotent and to find a bound on the 
class, only the case a > 1 and 0 > 1 need be considered. For if ix and v are 
the orders of A and B, the relations 
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are satisfied, which shows t h a t G (a, 0) is a factor group of G (a + 2/x, /3 + 2*>). 
Here « + 2/x > 1 and 0 + 2v > 1 as /x > |a — 1| and v > |/3 — 1|. Hence 
if G (a, 0) is nilpotent for a > 1 and 0 > 1, then every G (a, (3) is ni lpotent ; 
and if there is a G (a, /3) of class precisely c we may t ake it t h a t a > 1 and 
j 8 > 1. 

We consider a prime p dividing the order of A, note t h a t p divides a. — 1, 
and ask wha t power of £ divides (a — 1)7, which is associated with the order 
of A. Let us suppose for the moment t ha t a — 1 is prime to 6, and put 
a = 1 + kpn where k and p are coprime. By (2.4) we have 

(a - 1)7 = 1 + (a - 2)ct 

= ! + ( « - 2){1 + G)(a - 1) + (?)(« - l ) 2 + G)(a - l ) 3 + . . .} 

= (a - l ) 3 + (a - 2XS)(a ~ I ) 2 + (« - 2) (Î) (a - l ) 3 + . . . 

= {1 + *(« " 2)a} (a ~ l ) 3 + *(a ~ 2) 2(a - l ) 4 a + . . . . 

Bu t here we have 

2 + (a - 2)a = 2 + ( - 1 + kpn)(l + kpn) s 1 (mod p). 

T h u s the assumption on a — 1 shows t h a t £3re bu t not £3w+1 divides (a — 1)7. 

A similarly elementary calculation, which is omitted, shows t h a t this result 

holds whatever the nature of a — 1, with these exceptions: 

(i) if p = 2 the required power is 2 3 n _ 1 ; 

(ii) if £ n = 3 and & = 2 (mod 3), the required power is 34 . 

A similar result holds for (/? — 1)5. 
In order to prove nilpotence when a — 1 and £ — 1 are both prime to 6 

a number of congruences will be needed. These are s ta ted wi thout detailed 
proof as they are easily deduced from binomial expansions: 

(5.1) a{(aia~1)Z - I)/{a - 1)} s (a - l ) 3 (mod (a - l ) 4 ) ; 

(5.2) a{(a€* - l ) / ( a - 1)} ss e3 (mod (a - l )e 3 ) ; 

(5.3) a{(a* - I)/{a - 1)} = e (mod* 3 ) ; 

(5.4) a{(a e - l ) / ( a - 1)} s e (mode 2 ) ; 

(5.5) a(a"1)e2 - 1 s (a - 1) V (mod (a - l )3e). 

T h e result about (a — 1)7 proved above and (2.16) give 

(5.6) A{a~l)Z€ = 1 

while (2.14) shows t h a t A^~1^ Ç Zi(G). Thus by (1.4) with w = (a - l ) 3 

and by (5.1) we have 
,(a-l)3 __ (£(<*-*>*\B _ /-(a-D3^(«-D3 

and so C^"1 ) 3 = 1; similarly C ( ^ 1 ) 3 = 1. Hence 

(5.7) Cz = 1, 
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and A commutes with C(a~1)e2. Application of (1.1) shows t h a t the order of 
A is a factor of a(a~1)t2 — 1, and so, by (5.6) and (5.5), also a factor of 
(a — l)2e2 . Because A commutes with C*z by (5.7) i ts order divides a*z — 1 
and also (a — l )e 3 as we now see from (5.2). Therefore, and similarly, 

(5.8) A*-1)lZ = Bw-1)f° = 1. 

We can now show t h a t A*z is central in G (a, 13), for (1.4), (5.8), (5.2), and 
(5.7) give 

(A*)B = C*A* = A€\ 

Therefore, and similarly, 

(5.9) {A*\BtZ} <Z,{G). 

Next we prove t h a t C*2 G Z2(G): 

[A,C*] = A*, 

<}> = a
e l - 1 = 0 (mod e3) 

by (1.1) and (5.3). Similarly [B, C«2] G ZX{G). 
This enables us to prove t h a t A*2 Ç Z3(G). For 

(A*Y = Cc2^, 
,/, = a {( a < 2 _ i ) / ( a _ l )} = e

2 (mod e3) 

by (1.4) and (5.3). T h u s Z8(G) > {^£2,^€2, O 2 } . 
We summarize the remaining steps as they present no further difficulty. 

W e find t h a t O G Z4(G) by (5.4) and then t h a t Zh(G) > {A% B% Ce} by 
(5.4) again. I t follows easily t h a t C 6 Z6(G) and t h a t Z7(G) = G (a, (3), t h a t 
is, t he group is ni lpotent of class 7 or less. 

I t is convenient t o deduce the bound on the order of G {a, 13) here. T a k e a 
prime p such t h a t pn bu t no higher power of p divides e and consider t he 
Sylow ^-subgroup. In consequence of (2.14) we have t h a t Ap3n Ç [B] or 
Bp3n € {A}, while (2.16) and (5.7) give ApAn = Bpin = 1 and CpZn = 1 respec
tively. The order of the Sylow ^-subgroup is a factor of p10n. Hence the order 
of G(a, (3) is a factor of (a - l)(/3 — l)e8 . 

A number of other cases which will not be examined in detail here arise 
when we drop the restriction t h a t a — 1 and (3 — 1 are prime to 6. T h e class 
may be as high as 8 for some groups and the bound on the order should be 
increased to 27 (a — l)(/3 — l)e8 . We do not go into the proofs as they are 
essentially similar to the case already considered. 

Nor do we settle the complicated question of the precise order and class of 
every G (a, f3). In many cases these are much less t han our bounds, as may be 
seen from (2.13), (2.17), and (2.18) when a j * 0 and from (2.10) otherwise. 
T o determine whether the bounds are a t ta ined would involve construct ion 
of the groups by means of extension theory, for instance, and the groups 
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G (a, 0) are awkward in this respect; the extensions would not normally split. 
We note that a likely group of class 8 is G (34, 7). 

Only a few of the groups G (a, ff) are well known. If a and 0 are such that 
e = l then it follows that C = 1 and G (a, /3) is cyclic of order (a — 1) (0 — 1). 
In particular G (a, 2) is cyclic of order 0 — 1 and G (2, 2) is trivial. It is easy 
to show that the groups G(3, 3), G(3, —1) and G(—1, —1) are all isomorphic 
to the generalized quaternion group of order 16. Again, after construction of 
G(l + pn, 1 + pn) as an extension of its commutator subgroup, it appears 
that this group has order p7n and class 5 if p is an odd prime. 
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