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Abstract

We give a description of the continuity ideals and the kernels of homomorphisms from the algebras of
continuous functions on locally compact spaces into Banach algebras. We also construct families of prime
ideals satisfying a certain intriguing property in the algebras of continuous functions.

2000 Mathematics subject classification: primary 46H40; secondary 46J10.

Keywords and phrases: Banach algebra, algebra of continuous functions, automatic continuity, prime
ideal.

1. Introduction

Let θ : A→ B be a homomorphism from a commutative Banach algebra A into a
Banach algebra B. The continuity ideal of θ is defined to be the ideal

I(θ)= {a ∈ A | the map b 7→ θ(ab), A→ B, is continuous};

this ideal contains every ideal I in A on which θ is continuous. If A = C0(�) for some
locally compact space �, then θ is continuous on I(θ).

The aim of this paper is to characterize the ideals that are the kernels or the
continuity ideals of homomorphisms from C0(�) into Banach algebras. This is, in
some sense, a final piece of the picture of homomorphisms from C0(�) into Banach
algebras.

The study of homomorphisms from C0(�) started with the theorem of
Kaplansky [13] that every algebra norm on C0(�) majorizes the uniform norm. This
essentially provides a description of all the continuous homomorphisms from C0(�)

into Banach algebras.
Then Bade and Curtis [1] gave a detailed structural decomposition of discontinuous

homomorphisms from C0(�) into Banach algebras. The following statement of their
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104 H. L. Pham [2]

theorem also includes some improvements from [6, 17] (see also [3, 18], noting that
other improvements of this theorem can be found in [12]); see Section 2 for notation.

THEOREM 1.1. Suppose that � is a locally compact space, and that θ is a
discontinuous homomorphism from C0(�) into a Banach algebra B. Set B0 =

θ(C0(�)).

(i) The continuity ideal I(θ) is the largest ideal of C0(�) on which θ is continuous.
(ii) There exists a nonempty finite subset {p1, . . . , pn} of �[ such that

n⋂
i=1

Jpi ⊆ I(θ)⊆
n⋂

i=1

Mpi .

(iii) There exists a continuous homomorphism µ : C0(�)→ B0 such that

B0 = µ(C0(�))⊕ rad B0, µ

( n⋂
i=1

Mpi

)
· rad B0 = {0},

and µ= θ on a dense subalgebra of C0(�) containing I(θ).
(iv) Set ν = θ − µ. Then ν maps into rad B0, and the restriction of ν to

⋂n
i=1 Mpi is

a homomorphism ν′ onto a dense subalgebra of rad B0.
(v) There exist linear maps ν1, . . . , νn : C0(�)→ rad B0 such that:

(a) ν = ν1 + · · · + νn;
(b) ν′i = νi |Mpi

is a nonzero homomorphism, whenever 1≤ i ≤ n;
(c) νi (C0(�)) · ν j (C0(�))= {0} whenever 1≤ i 6= j ≤ n.

(vi) The ideals ker θ and I(θ) are always intersections of prime ideals; we have

ker θ = I(θ) ∩ ker µ and I(θ)= ker ν′ =
n⋂

i=1

ker ν′i .

For brevity, we define a radical homomorphism to be a homomorphism into a
radical Banach algebra. The above result points out the important roles of prime
ideals and of radical homomorphisms as building blocks for general (discontinuous)
homomorphisms from C0(�).

In the 1970s, Dales [2] and Esterle [6–8] independently proved that, assuming the
continuum hypothesis, every ideal I which is the intersection of a finite number of
nonmodular prime ideals in C0(�) and such that |C0(�)/I | = c is the kernel of a radical
homomorphism from C0(�) (for more details see [3]).

In fact, for some spaces �, the kernels of radical homomorphisms from C0(�)

are always finite intersections of nonmodular prime ideals [6, 15]. However, in [15],
we showed that for most metrizable, noncompact, locally compact spaces �, for
example R, there exist radical homomorphisms from C0(�) whose kernels are not
the intersection of any finite number of prime ideals.

In this paper, we show that the kernels of radical homomorphisms from C0(�)

are always intersections of (relatively) compact families of nonmodular prime
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ideals (Theorem 6.7(i)). In fact, we prove a more general result for continuity
ideals of homomorphisms from Banach algebras into commutative Banach algebras
(Corollary 4.11).

For the converse direction, we shall prove that, assuming the continuum hypothesis,
every ideal I that is the intersection of a relatively compact family P of nonmodular
prime ideals and is such that |C0(�)/I | = c and every chain in the closure of P
is countable (thus, in particular, when P itself is countable), is the kernel of a
radical homomorphism from C0(�). A similar result holds for continuity ideals of
homomorphisms from C0(�) into Banach algebras: see Section 6. We conjecture that
the countability condition in these converses is redundant (see the last paragraphs of
Section 7).

REMARK 1.2. It was proved by Solovay and Woodin that the existence of
discontinuous homomorphisms from C0(�) is not a theorem of Zermelo–Fraenkel set
theory with the axiom of choice (see [4] for more details). All results that require the
continuum hypothesis will be marked with (CH).

In the final section, we shall construct nontrivial examples of (relatively) compact
families of prime ideals in C0(�) for metrizable locally compact spaces� with infinite
limit level (Theorem 7.5). This, in particular, shows the complexity of the prime ideal
structure of C0(�) even for countable compact subspaces � of R.

2. Preliminary definitions and notation

Let A be a commutative algebra. The (conditional) unitization A# of A is defined
as the algebra A itself if A is unital, and as A with identity adjoined otherwise. The
identity of A# is denoted by eA.

A prime ideal or semiprime ideal in A must be a proper ideal. However, we consider
A itself as the intersection of the empty collection of prime ideals.

Let I be an ideal in A. Define the prime radical
√

I of I to be the intersection of
all the prime ideals in A containing I , so that

√
I = {a ∈ A | an

∈ I for some n ∈ N}.

For each element a ∈ A#, define the quotient of I by a to be the ideal

I : a = {b ∈ A | ab ∈ I }.

Clearly I ⊆ I : a.
For the definition of universal algebras, see [3, Definition 5.7.8]. For example,

the integral domain L1(R+, ω) is universal for each radical weight ω bounded near
the origin [3, Theorem 5.7.25]. Indeed, the class of universal, commutative, radical
Banach algebras has been characterized in [10] (see also [3, Theorem 5.7.28]).

For a discussion of the theory of the algebras of continuous functions, see any
of [3, 5, 11]. Here we just give some facts that are needed in our discussion.
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Let� be a locally compact space; the convention is that locally compact spaces and
compact spaces are Hausdorff and nonempty. The one-point compactification of � is
denoted by�[. Denote by C0(�) the algebra of (complex-valued) continuous functions
that vanish at infinity on �. Denote by Cc(�) the subalgebra of C0(�) consisting of
functions with compact support. For all p ∈�, define

Jp = { f ∈ C0(�) | f is zero on a neighbourhood of p},

Mp = { f ∈ C0(�) | f (p)= 0}.

When p is the point (at infinity) adjoined to � to obtain �[, we also set

Jp = Cc(�) and Mp = C0(�).

For each prime ideal P in C0(�), there exists a unique point p ∈�[ such that
Jp ⊆ P ⊆ Mp, and we say that P is supported at the point p. It can be seen that
P is modular if and only if its support point belongs to �.

We shall frequently use the important fact that, for each prime ideal P in C0(�), the
set of prime ideals containing P is a chain with respect to the inclusion relation.

For each function f continuous on�, the zero set of f is denoted by Z( f ). The set
of zero sets of continuous functions on � is denoted by Z[�].

A z-filter F on � is a nonempty proper subset of Z[�] such that:

(i) Z1 ∩ Z2 belongs to F whenever both Z1 and Z2 belong to F ;
(ii) if Z1 ∈ F , Z2 ∈ Z[�] and Z1 ⊆ Z2, then Z2 also belongs to F .

Each z-filter F corresponds to an ideal

{ f ∈ C(�) | Z( f ) ∈ F},

denoted by Z−1
[F].

Let κ be an infinite cardinal and let U be a free ultrafilter on κ . Define MU to be the
maximal ideal of Cκ consisting of all elements f ∈ Cκ such that {σ ∈ κ | f (σ )= 0} ∈
U . The field Cκ/MU is called an ultrapower, and is denoted by Cκ/U . An element
f + MU ∈ Cκ/U is an infinitesimal if

{σ ∈ κ | | f (σ )|< ε} ∈ U ∀ε > 0.

The subalgebra of infinitesimals of Cκ/U is denoted by (Cκ/U)◦.
For a well-ordered set 3, denote by o(3) the ordinal order isomorphic to 3.

3. Relatively compact families of prime ideals

In this section, let A be a commutative algebra.

DEFINITION 3.1 [15, Definition 3.1]. An indexed family (Pi )i∈S of prime ideals in A
is pseudofinite if a ∈ Pi for all but finitely many i ∈ S whenever a ∈

⋃
i∈S Pi .
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For a pseudofinite family (Pi : i ∈ S) of prime ideals where S is infinite, it is obvious
that

⋃
i∈T Pi =

⋃
i∈S Pi is either a prime ideal in A or the whole of A for each infinite

subset T of S.

DEFINITION 3.2. A family C of prime ideals in A is relatively compact if every
sequence of prime ideals in C contains a pseudofinite subsequence. The family C
is compact if it is relatively compact and contains the union of all of its pseudofinite
sequences.

Obviously, the union of finitely many pseudofinite families is relatively compact.
In the rest of this section, we shall indeed relate our notion of compactness to the usual
meaning of this terminology.

Denote by5 the set of prime ideals in A. For all a1, a2, . . . , am , and b in A, define

U b
a1,...,am

= {P ∈5 | all ai ∈ P and b /∈ P}.

Then the collection of all such sets U b
a1,...,am

is a base for a topology τ . Indeed, by the
primeness, we have

U bd
a1,...,am ,c1,...,cn

= U b
a1,...,am

∩ U d
c1,...,cn

.

It is also easy to see that τ is Hausdorff. We claim that U u
0 is τ -compact for all u ∈ A.

Indeed, we see that {U u
a , U a

0 | a ∈ A} is a subbasis for the relative τ -topology on U u
0 ,

so by Alexander’s lemma, we need only show that each cover of U u
0 by sets in this

subbasis has a finite subcover. Let E, F be subsets of A such that

U u
0 =

⋃
a∈E

U u
a ∪

⋃
b∈F

U b
0 .

Set S = {uma1 · · · an | m, n ∈ N, a1, . . . , an ∈ E}, and let I be the ideal generated
by F . Assume towards a contradiction that S ∩ I = ∅. Then since S is closed under
multiplication, there exists a prime ideal P such that P ⊇ I and P ∩ S = ∅; this
implies that P ∈ U u

0 but P /∈
⋃

a∈E U u
a ∪

⋃
b∈F U b

0 , a contradiction. Thus S ∩ I 6= ∅,
so there exist k, m, n ∈ N, a1, . . . , am ∈ E , b1, . . . , bn ∈ F , and c1, . . . , cn ∈ A such
that

uka1 · · · am = b1c1 + · · · + bncn.

We can then deduce that

U u
0 =

m⋃
i=1

U u
ai
∪

n⋃
j=1

U b j
0 .

Thus τ is locally compact.
The one-point compactification of (5, τ) can be considered as the set 5 ∪ {A}; a

basis of neighbourhood for A is given by the collection of all

Ua1,...,am = {A} ∪ {P ∈5 | all ai ∈ P} where a1, a2, . . . , am ∈ A.
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PROPOSITION 3.3. Let A be a commutative algebra. Denote by 5 the set of prime
ideals in A. Define a topology τ as above. Then (5, τ) is a totally disconnected
locally compact space, and every [relatively] compact family of prime ideals in A is a
[relatively] sequentially τ -compact subset of 5 ∪ {A}.

PROOF. It remains to prove the last assertion. We claim that a pseudofinite sequence
(Pn) of prime ideals in A is τ -convergent in5 ∪ {A}. In fact, set P =

⋃
∞

n=1 Pn . Then
either P ∈5 or P = A, and in both cases (Pn) τ -converges to P . 2

REMARK 3.4. If A is either unital or C0(�) for some locally compact space �, then
the union

⋃
∞

n=1 Pn is in fact a prime ideal in A, for each pseudofinite sequence (Pn)

of prime ideals in A. Thus in the above proposition, we can replace 5 ∪ {A} by 5.

REMARK 3.5. Let us instead consider a topology σ on 5 ∪ {A} generated by

U Q
a1,...,am

= {P ∈5 ∪ {A} | P ⊆ Q and all ai ∈ P},

where Q is either a semiprime ideal in A or A itself, and a1, . . . , am ∈ Q. Then
a sequence of prime ideals in A is pseudofinite if and only if it is convergent
in (5 ∪ {A}, σ ), and so a family of prime ideals in A is [relatively] compact if
and only if it is [relatively] sequentially compact in (5 ∪ {A}, σ ). However, in
general, σ is neither Hausdorff nor locally compact. In the case where A = C0(�),
then (5 ∪ {A}, σ ) is Hausdorff (but not locally compact).

4. Homomorphisms from general commutative Banach algebras

Let θ : A→ B be a homomorphism from a commutative Banach algebra A into a
Banach algebra B. Let (an : n ∈ N) be a sequence in A. Then

I(θ) : a1a2 · · · an ⊆ I(θ) : a1a2 · · · an+1 ∀n ∈ N.

It follows easily from the stability lemma (see [3, Corollary 5.2.7] or [18, Lemma 1.6]
for the statement and proof) that there exists n0 ∈ N such that

I(θ) : a1a2 · · · an = I(θ) : a1a2 · · · an+1 ∀n ≥ n0.

Thus I(θ) is an abstract continuity ideal in the following sense.

DEFINITION 4.1. Let A be a commutative algebra. An ideal I is an abstract
continuity ideal if, for each sequence (an) in A, there exists n0 ∈ N such that

I : a1a2 · · · an = I : a1a2 · · · an+1 ∀n ≥ n0.

PROPOSITION 4.2. Let P be a relatively compact family of prime ideals in a
commutative algebra A. Then

⋂
P∈P P is an abstract continuity ideal in A.

https://doi.org/10.1017/S1446788709000329 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788709000329


[7] Homomorphisms from C0(�) 109

PROOF. Set I =
⋂

P∈P P . Assume towards a contradiction that I is not an abstract
continuity ideal. Then there exists a sequence (an) in A such that

I : a1a2 · · · an ⊂ I : a1a2 · · · an+1 ∀n ∈ N.

For all n, we see that
I : a1 · · · an =

⋂
P∈P

a1···an /∈P

P.

Thus it follows that there exists Pn ∈P such that a1 · · · an /∈ Pn but a1 · · · an+1 ∈ Pn .
The relative compactness implies that there exist n1, n2, . . . , such that n1 < n2 < · · ·

and (Pni ) is pseudofinite. However, we see that a1a2 · · · an2 ∈ Pn1 , but a1a2 · · · an2 /∈

Pni for all i ≥ 2; this contradicts the pseudofiniteness. 2

The remainder of this section is devoted to a converse of the above proposition.
Let I be an abstract continuity ideal of a commutative algebra A. Denote by P the
set of prime ideals of the form I : a for some a ∈ A. The following is a generalization
of [15, Lemma 4.3].

LEMMA 4.3. For each cardinal κ ≤ |P|, there exists a subfamily G ⊆P with the
properties that |G| ≥ κ and that |{P ∈ G | a /∈ P}|< κ for all a ∈

⋃
P∈G P.

PROOF. For each a ∈ A ∪ {eA}, let Pa be the set of prime ideals of the form I : ab
for some b ∈ A. We claim that there exists a0 ∈ A ∪ {eA} such that |Pa0

| ≥ κ and
such that either |Pa0a|< κ or I : a0a = I : a0, for each a ∈ A. Indeed, assume that the
contrary holds. Then, since |PeA

| ≥ κ , by induction, there exists a sequence (an)⊆ A
such that |Pa1···an

| ≥ κ and such that

I : a1 · · · an ⊂ I : a1 · · · an+1 ∀n ∈ N.

This contradicts the definition of an abstract continuity ideal. Hence the claim holds.
Put G =Pa0

; this obviously satisfies |G| ≥ κ . Suppose that a ∈ A and that G′ =
{P ∈ G | a /∈ P} has cardinality at least κ . Then, for each P ∈ G′, we have P : a = P
because a /∈ P . Thus G′ ⊆Pa0a , and hence |Pa0a| ≥ κ . Therefore, by the claim,
we must have I : a0a = I : a0. We now show that G′ = G. Assume towards a
contradiction that G′ 6= G, and take P ∈ G \ G′, say P = I : a0a1 for some a1 ∈ A.
Then a1 ∈ I : a0a = I : a0 since a ∈ P , so that a0a1 ∈ I . This implies that P = A,
a contradiction. This proves that G has the desired property. 2

LEMMA 4.4. The prime radical
√

I of the abstract continuity ideal I is the
intersection of the prime ideals in P.

PROOF. This is based on the commutative prime kernel theorem due to Sinclair
(see [3, Theorem 5.3.15] or [18, Theorem 11.4]; the proof in [15, Lemma 4.1] works
almost verbatim). 2
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LEMMA 4.5. Every element in P contains a minimal element.

PROOF. Assume towards a contradiction that there is a sequence (Pn = I : fn)⊆P
such that

P1 ⊃ P2 ⊃ · · · ⊃ Pn ⊃ · · ·.

For all n, choose an ∈ A such that an ∈ Pn \ Pn+1. Then we see that a1 · · · an fn ∈ I
but a1 · · · an fn+1 /∈ I . Thus

I : a1a2 · · · an ⊂ I : a1a2 · · · an+1 ∀n ∈ N;

this contradicts I being an abstract continuity ideal. 2

LEMMA 4.6. Let P be in P. Then there exists a ∈ A \ P such that a ∈ Q for all
Q ∈P with Q 6⊆ P.

PROOF. Assume that the contrary holds. Pick a1 /∈ P . Suppose that we have already
picked a1, . . . , an /∈ P . By the assumption, we can find Qn ∈P such that a1 . . . an /∈

Qn and Qn 6⊆ P . We can then choose an+1 ∈ Qn \ P . The induction can be continued.
We see that (an), (Qn) as constructed satisfy a1 · · · an /∈ Qn but a1 · · · an+1 ∈ Qn for
all n ∈ N. Let Qn = I : fn . Then we see that fn ∈ I : a1a2 · · · an+1 \ I : a1a2 · · · an;
this contradicts I being an abstract continuity ideal. 2

LEMMA 4.7. Let {Pα | α ∈ S} be a subfamily of P. Then
⋂
α∈S Pα is also an abstract

continuity ideal.

PROOF. Assume that the contrary holds. Then there exists (an) such that( ⋂
α∈S

Pα

)
: a1a2 · · · an ⊂

( ⋂
α∈S

Pα

)
: a1a2 · · · an+1 ∀n ∈ N.

Choose bn ∈ A such that a1 · · · anbn /∈
⋂
α∈S Pα but a1 · · · an+1bn ∈

⋂
α∈S Pα for

all n. Then choose αn ∈ S such that a1 · · · anbn /∈ Pαn . We have Pαn = I : fαn for
some fαn ∈ A. We see that a1 · · · anbn fαn /∈ I but a1 · · · an+1bn fαn ∈ I . Thus

I : a1a2 · · · an ⊂ I : a1a2 · · · an+1 ∀n ∈ N;

this contradicts I being an abstract continuity ideal. 2

LEMMA 4.8. Let J be a semiprime ideal in A. Let a, b ∈ A be such that J : a and
J : b are prime ideals. Then the following are equivalent.

(a) J : a ⊆ J : b.
(b) ab /∈ J .
(c) J : a = J : b.
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PROOF. To show that (a) implies (b), we note that since J is semiprime and J : b is a
proper ideal in A, we must have b /∈ J : b. So b /∈ J : a, and therefore ab /∈ J .

To show that (b) implies (c), we observe that condition (b) implies that a /∈ J : b.
Let f ∈ J : a. Then f a ∈ J ⊆ J : b, and so f ∈ J : b by the primeness of J : b. Thus
J : a ⊆ J : b. Similarly, J : b ⊆ J : a. 2

REMARK 4.9. In the case where I is semiprime, since P is the set of prime ideals of
the form I : a, the above lemma shows that, if P = I : a ∈P, then P is minimal in P,
a ∈ A \ P , and a ∈ Q whenever Q ∈P \ {P}.

We can now state the main result of this section.

THEOREM 4.10. Suppose that I is an abstract continuity ideal of a commutative
algebra A. Denote by P0 the set of minimal ideals among the prime ideals of the
form I : a for some a ∈ A. Then:

(i)
√

I =
⋂

P∈P 0
P;

(ii) P0 is a relatively compact family of prime ideals.

PROOF. The first assertion follows from Lemmas 4.4 and 4.5. For the second, let
(Pn)⊆P0. We can assume that Pn where n ∈ N are distinct. Set J =

⋂
∞

n=1 Pn . By
Lemma 4.6, there exists an ∈

⋂
i 6=n Pi \ Pn , and so Pn = J : an . Let a ∈ A be such

that J : a is a prime ideal. We claim that J : a ∈ {Pn}. Indeed, we see that a /∈ J , and
thus a /∈ Pn0 for some n0. So aan0 /∈ J . By Lemma 4.8, we deduce that J : a = Pn0 .
It then follows from Lemmas 4.7 and 4.3 (applied to J , with κ being the first infinite
cardinal ℵ0) that (Pn) must have a pseudofinite subsequence. 2

COROLLARY 4.11. Let θ : A→ B be a homomorphism from a Banach algebra A
into a commutative Banach algebra B. Then

√
I(θ) is the intersection of a relatively

compact family of prime ideals of the form I(θ) : a for some a ∈ A.

REMARK 4.12. Since ker θ ⊆ I(θ) and A/ker θ is commutative, all the previous
definitions and results still make sense in this case.

PROOF. It can be seen that, for all a ∈ A,

(I(θ)/ker θ) : (a + ker θ)= (I(θ) : a)/ker θ.

So by the stability lemma, we see that I(θ)/ker θ is an abstract continuity ideal in
A/ker θ . The rest follows from the theorem. 2

COROLLARY 4.13. Let θ : A→ B be an epimorphism from a Banach algebra A onto
a commutative Banach algebra B. Then

√
I(θ) is the intersection of a finite number

of prime ideals of the form I(θ) : a for some a ∈ A and there exists k ∈ N such that
√

I(θ)= {a ∈ A | ak
∈ I(θ)}.

PROOF. This is proved in the same way as [15, Corollary 4.7]. 2
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LEMMA 4.14. Let I be an abstract continuity ideal of C0(�) for a locally compact
space �. Then I is either a semiprime ideal or the whole of C0(�).

PROOF. The proof is the same as the proof that the continuity ideal of a discontinuous
homomorphism from C0(�) into a Banach algebra is semiprime ([6, 17], see also
[3, Theorem 5.4.31]). 2

COROLLARY 4.15. Let � be a locally compact space.

(i) Let I be an abstract continuity ideal in C0(�). Denote by P the set of prime
ideals of the form I : f for some f ∈ C0(�). Then:

(a) I =
⋂

P∈P P;
(b) P is a relatively compact family of prime ideals.

(ii) Conversely, let P be a relatively compact family of prime ideals in C0(�). Then⋂
P∈P P is an abstract continuity ideal in C0(�).

COROLLARY 4.16. Let � be a locally compact space. Then each homomorphism
from C0(�) into a Banach algebra is continuous on the intersection of a relatively
compact family of prime ideals of the form I(θ) : f for some f ∈ C0(�).

5. (Relatively) compact families of prime ideals in C0(�)

In this section, let� be a locally compact space, and let P be a nonempty relatively
compact family of prime ideals in C0(�). Denote by Q the collection of all the ideals
that are unions of countably many ideals in P. We call Q the closure of P; we shall
show that it is indeed the smallest compact family of prime ideals containing P.

Note that an ideal in Q is automatically prime in C0(�), and that the union of each
pseudofinite sequence of prime ideals in C0(�) is again a prime ideal in C0(�); this
follows from the next lemma.

LEMMA 5.1. The union of finitely many prime ideals in C0(�) either is one of the
given prime ideals or is not even a linear space. The union of countably many prime
ideals in C0(�) is not equal to C0(�).

PROOF. We prove the second clause only; the proof of the first is similar. Let (Pn :

n ∈ N) be a sequence of prime ideals in C0(�). For all n ∈ N, choose fn ∈ C0(�) \ Pn .
We can assume that 0≤ fn ≤ 2−n . Set f =

∑
∞

n=1 fn . Then f ∈ C0(�) but f /∈ Pn
since f ≥ fn for all n ∈ N. 2

LEMMA 5.2. Each chain in Q is well ordered with respect to inclusion; that is, each
nonempty chain in Q has a smallest element.

PROOF. Assume that the contrary holds. Then we can find an infinite chain in Q:
· · · ⊂ Qn ⊂ · · · ⊂ Q1. For all n, choose Pn ∈P such that Pn ⊆ Qn but Pn 6⊆ Qn+1.
By the relative compactness of P, we can assume without loss of generality that
(Pn : n ∈ N) is a pseudofinite sequence. Set Q =

⋃
∞

n=1 Pn . Then Q ∈Q, and for
each n ∈ N, either Qn ⊆ Q or Q ⊆ Qn (since both contain Pn). Since Pn−1 6⊆ Qn , we
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have Qn ⊆ Q for all n ≥ 2. Choose a ∈ Q2 \ Q3. Then a /∈ Qn , and so a /∈ Pn for all
n ≥ 3. However, a ∈ Q =

⋃
∞

n=1 Pn . This contradicts the pseudofiniteness of (Pn). 2

LEMMA 5.3. Q is compact.

PROOF. Let (Qn) be a sequence in Q. Let Pn ∈P such that Pn ⊆ Qn . Since P is
relatively compact, we can assume without loss of generality that (Pn) is pseudofinite;
its union is denoted by Q. We see that either Qn ⊆ Q or Q ⊆ Qn . If there are infinitely
many Qn contained in Q, then those Qn form a pseudofinite sequence, following
from the pseudofiniteness of (Pn). On the other hand, if there are infinitely many Qn
containing Q, then those Qn form a chain, and the previous lemma enables us to find
a nondecreasing sequence of ideals. Thus Q is relatively compact. The result then
follows from the definition of Q. 2

LEMMA 5.4. Q is the set of unions of pseudofinite sequences of ideals in P.

PROOF. We only need to prove that each ideal Q ∈Q is the union of a pseudofinite
sequence in P. For this purpose,we can suppose without loss of generality that P is
countable and that Q is the union of P. It is obvious that, in this case, any chain in Q
is countable.

Case 1: Q is the union of a chain of ideals in Q \ {Q}. By the countability
and well-ordering of the chain, there exists a chain Q1 ⊂ Q2 ⊂ · · · ⊂ Q such that
Q =

⋃
∞

n=1 Qn . For all n, choose Pn ∈P such that Pn ⊆ Qn+1 but Pn 6⊆ Qn . Since
P is relatively compact, without loss of generality, we can assume that (Pn) is
pseudofinite; its union is denoted by Q′. Then Q′ ⊆ Q, and for each n ≥ 2, either
Qn ⊆ Q′ or Q′ ⊆ Qn (since both contain Pn−1). Since Pn 6⊆ Qn , we must have
Qn ⊆ Q′ for all n ≥ 2. So Q = Q′.

Case 2: Q is not the union of any chain of ideals in Q \ {Q}. Then any P ∈
Q \ {Q} is contained in a maximal element of Q \ {Q}. Since Q cannot be the union
of any finite number of prime ideals properly contained in Q, either Q= {Q}, which
implies that Q ∈P, or there exist infinitely many maximal elements of Q \ {Q}.
In the latter case, let Qn , where n ∈ N, be distinct maximal elements of Q \ {Q}.
Choose Pn ∈P such that Pn ⊆ Qn . By the relative compactness of P and without
loss of generality, we can assume that (Pn : n ∈ N) is a pseudofinite sequence. Set
Q′ =

⋃
∞

n=1 Pn . Then Q′ ∈Q, and for each n ∈ N, either Qn ⊆ Q′ or Q′ ⊆ Qn .
Assume towards a contradiction that Q′ 6= Q. The maximality of the ideal Qn in
Q \ {Q} implies that Q′ ⊆ Qn for all n ∈ N. This implies that {Qn | n ∈ N} form a
chain, contradicting the maximality and distinction of the ideals Qn . Thus Q′ = Q.

In both cases, Q is the union of a pseudofinite sequence in P. 2

In summary, we have the following proposition.

PROPOSITION 5.5. The closure Q of P satisfies the following conditions.

(i) Q is the set of unions of pseudofinite sequences of ideals in P.
(ii) Q is compact.
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(iii) Every chain in Q is well ordered with respect to the inclusion.
(iv)

⋂
P∈P P =

⋂
Q∈Q Q.

From (i), we see that Q is the smallest compact family of prime ideals containing
P. Property (iii) also shows that the intersection of P is equal to the intersection of its
minimal elements.

In the remainder of the section, we consider Q to be any compact family of prime
ideals in C0(�).

LEMMA 5.6. Let P be in Q. Then there exists a ∈ A \ P such that a ∈ Q for all
Q ∈Q with Q 6⊆ P.

PROOF. Assume that the contrary holds. As in Lemma 4.6, we can construct (an)⊆ A
and (Qn)⊆Q such that a1 . . . an /∈ Qn but a1 . . . an+1 ∈ Qn for all n ∈ N. By
compactness, (Qn) has a pseudofinite subsequence (Qni ). However, a1 . . . an2 ∈ Qn1

but a1 . . . an2 /∈ Qni for all i ≥ 2; this contradicts the pseudofiniteness. 2

We say that an ideal Q is a roof of Q if it is the union of the ideals in a maximal
chain in Q. A roof must be either a prime ideal in C0(�) or C0(�) itself.

LEMMA 5.7. Q has only finitely many roofs. Also, there are only finitely many
maximal modular ideals in C0(�) such that each of them contains an ideal in Q.

PROOF. We shall prove that there are only finitely many disjoint maximal chains in
Q; the lemma then follows. Assume to the contrary that Cn , where n ∈ N, are disjoint
maximal chains in Q. Pick Qn ∈ Cn . Without loss of generality, we can suppose that
(Qn) is pseudofinite; its union is denoted by Q. We see that Q ∈Q, and since Q ⊇ Qn
and Cn is maximal, we have Q ∈ Cn for all n ∈ N, contradicting the disjointness of the
chains Cn . 2

For a function f ∈ C0(�), we can define a new function f/
√
| f |, also in C0(�), as

follows: (
f
√
| f |

)
(x)=


f (x)
√
| f (x)|

when x ∈� and f (x) 6= 0

0 when x ∈� and f (x)= 0.

REMARK 5.8. If P is a prime ideal in C0(�) and f ∈ P , then the function f/
√
| f |

defined above is also in P .

The following lemma and proposition are inspired by a suggestion of an anonymous
referee of an initial version of [15].

LEMMA 5.9. Suppose that Q is a compact family of prime ideals in C0(�) with a
maximum element Q. Set I =

⋂
P∈Q P. Let a ∈ C0(�) \ Q and let b ∈ Q. Then there

exists s ∈ Q such that as − b ∈ I .

PROOF. It is standard that for each prime ideal P ⊆ Q, there exists s ∈ Q such that
as − b ∈ P .
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Assume towards a contradiction that for all s ∈ Q, as − b /∈ I . Initially, set
s1 = 0, b1 = b − as1 = b, and Q1 = {P ∈Q | b1 /∈ P}. Suppose that we have already
constructed sn ∈ Q, bn = b − asn , and Qn = {P ∈Q | bn /∈ P} such that

Qn ⊂ · · · ⊂Q1.

Since bn /∈ I by the assumption, Qn 6= ∅. Choose Pn ∈Qn . We see that bn ∈ Q,
and so bn/

√
|bn| ∈ Q. Thus there exists s′ ∈ Q such that as′ − (bn/

√
|bn|) ∈ Pn . Now

we set sn+1 = sn + s′
√
|bn|,

bn+1 = b − asn+1 =

(
bn
√
|bn|
− as′

)√
|bn|,

and Qn+1 = {P ∈Q | bn+1 /∈ P}. We see that Qn+1 ⊂Qn; Pn ∈Qn \Qn+1. Thus
the construction can be continued inductively.

In particular, when m, n ∈ N, we have bm ∈ Pn if m > n, but bm /∈ Pn if m ≤ n. The
compactness implies that there exists a pseudofinite subsequence (Pni ). However, this
contradicts the fact that bn2 ∈ Pn1 , but bn2 /∈ Pni for all i ≥ 2. 2

PROPOSITION 5.10. Suppose that � is noncompact and Q is a compact family of
nonmodular prime ideals in C0(�) with a maximum element Q. Set I =

⋂
P∈Q P.

Let P ∈Q, and let A be a subalgebra of C0(�). Suppose that C0(�)= A + P and
A ∩ P is the intersection of a subfamily of Q. Let B be a subalgebra of A such that B
is maximal with respect to the property that B ∩ Q ⊆ I . Then C0(�)= B + Q.

PROOF. When a − b ∈ I we also write a = b mod I .
Note that I ⊆ A ∩ P . By maximality of B we see that I ⊆ B, so indeed B ∩ Q = I .

We can also check, using the maximality of B again, that B 6= I . Moreover, I is
nonmodular in B; for otherwise, Q would be modular in B + Q (because B/I ∼=
(B + Q)/Q), and from the primeness of Q we could deduce that Q is modular in
C0(�), which would be a contradiction. Thus I is indeed a nonmodular prime ideal in
B, and hence, a prime ideal in B#.

We claim that for each a ∈ A \ Q and each b ∈ A ∩ Q, there exists s ∈ A ∩ Q
such that as − b ∈ I . Indeed, by the previous lemma, there exists s ∈ Q such that
as − b ∈ I . Write s = c + p where c ∈ A and p ∈ P . Then ap + (ac − b) ∈ I ⊆ A
implies that ap ∈ A ∩ P . Since a /∈ Q and A ∩ P is the intersection of a family of
prime ideals contained in Q, we must have p ∈ A ∩ P . Thus s = c + p ∈ A ∩ Q.

We shall prove that A = B + (A ∩ Q); the proposition then follows. Indeed,
assume towards a contradiction that B + (A ∩ Q)⊂ A. Let a ∈ A such that a /∈
B + Q. By the maximality of B, there exists a polynomial q(X) in B#

[X ] \ I [X ] such
that q(a) ∈ Q. Let q(X) be such a polynomial of smallest degree. By multiplying with
some element in B \ I , we can further suppose that the coefficients of q(X) are in B.
Then we see that q ′(a) ∈ A \ Q, where q ′(X) is the formal derivative. Let s ∈ C0(�).
Then

q(a + q ′(a)s)= q(a)+ q ′(a)2s + · · · + q ′(a)nq(n)(a)
sn

n!
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where q(k)(X) is the formal kth derivative of q(X). By the claim, there exists
d ∈ A ∩ Q such that

q(a)= q ′(a)2d mod I. (5.1)

So for all s ∈ C0(�),

q(a + q ′(a)s)= q ′(a)2
(

d + s + · · · + q ′(a)n−2q(n)(a)
sn

n!

)
mod I.

Since (A/(A ∩ P))∼= C0(�)/P is radical and (C0(�)/P)# is Henselian, there exists
s ∈ A such that

d + s + · · · + q ′(a)n−2q(n)(a)
sn

n!
∈ A ∩ P ⊆ Q

(by [3, Theorem 2.4.30 and Proposition 1.6.3]). It follows that s ∈ Q (so s ∈ A ∩ Q)
and

q(a + q ′(a)s) ∈ A ∩ P.

If we set b = a + q ′(a)s, then b ∈ A \ (B + Q), q(b) ∈ P , and q(X) is a polynomial
of smallest degree among all the polynomials in B#

[X ] \ I [X ] such that q(b) ∈ Q.
Hence, without loss of generality, we can assume from the start that q(a) ∈ P . In

this case, d ∈ P by (5.1), so d ∈ A ∩ P . Again, since C0(�)/I is radical and C0(�)
#/I

is Henselian, there exists t ∈ C0(�) such that

d + t + · · · + q ′(a)n−2q(n)(a)
tn

n!
∈ I ⊆ A ∩ P.

Now A ∩ P is an ideal in C0(�), and so t ∈ A ∩ P . Set c = a + q ′(a)t . Then
c ∈ A \ (B + Q), q(c) ∈ I , and q(X) is a polynomial of smallest degree among all
the polynomials in B#

[X ] \ I [X ] such that q(c) ∈ Q. The maximality of B implies
that there exists a polynomial p(X) with coefficients in B# such that p(c) ∈ Q \ I .
We see that there exist u ∈ B \ I and a polynomial h(X) with coefficients in B#

such that up(X)= q(X)h(X) mod I ; this is possible since I is prime in B#. Then
up(c)= q(c)h(c)= 0 mod I . Since u /∈ Q (otherwise, u ∈ B ∩ Q = I ) and I is
the intersection of some prime ideals contained in Q, we deduce that p(c) ∈ I ; a
contradiction. 2

A special case of the previous proposition is when A = C0(�).

6. Homomorphisms from C0(�)

In this section, we shall show the connection between continuity ideals as well as
the kernels of homomorphisms from C0(�) into Banach algebras and intersections
of (relatively) compact families of prime ideals. One direction is an immediate
consequence of the results in Section 4, so most of this section concerns the converse.

We shall need some basic complex algebraic-geometry results; we are indebted
to [14] for these. For a set S ⊆ C[Z1, Z2, . . . , Zn], denote by V(S) the variety (that
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is, common zero set) of S in Cn . For each prime ideal Q in C[Z1, . . . , Zn], the
variety V(Q) is irreducible. The topology considered on complex spaces will be the
Euclidean topology. We shall need the fact that, for each irreducible variety V and
each variety W not containing V , the set V \W is dense and (relatively) open in
V [14, Ch. IV, Theorem 2.11].

NOTATION. For clarity, we shall use X i , Y j for variables, xi , y j for complex numbers,
and ai , b j for elements of an algebra. When there is no ambiguity, we shall use
boldface characters to denote tuples of elements of the same type; for example, we set

X = (X1, X2, . . . , Xm) or y = (y1, . . . , yn).

In the case where X = (X1, . . . , Xm), we also denote by CX the corresponding space
Cm .

LEMMA 6.1. Let m, n ∈ N, and let Q be a prime ideal in C[X, Y ], where X =
(X1, . . . , Xm) and Y = (Y1, . . . , Yn). Consider QX = Q ∩ C[X] as a prime ideal
in C[X]. Let V be the variety of Q, and let VX be the variety of QX . Let π be
the natural projection CX,Y → CX . Then π : V → VX and there exists a dense open
subset U of V such that π : U → VX is an open map.

PROOF. Obviously, π maps V to VX . Without loss of generality, take a transcendental
basis (X1, . . . , Xk) for C[X] modulo QX . We consider Ck

= CX1,...,Xk . Denote by
π1 the natural projection CX,Y → Ck , and by π2 the natural projection CX → Ck .

By [15, Lemma 6.3], there exist dense open subsets U of V and UX of VX , such
that π1 : U → Ck and π2 : UX → Ck are open maps. Inspecting the proof of [15,
Lemma 6.3], we see that UX can be chosen as VX \ V0, where V0 is a proper subvariety
of VX , and that π2 is a local homeomorphism from UX onto an open subset of Ck .
Since V0 has dimension at most k − 1 [14, Ch. IV], by shrinking UX if necessary, we
can further require that

π2(UX ) ∩ π2(VX \UX )= ∅. (6.1)

Let W = π1(U ) ∩ π2(UX ). Then W is an open set in Ck . It can be seen that W is
dense in π1(U ). Set

U ′ =U ∩ π−1
1 (W ).

Then U ′ is a dense open subset of U , by the openness of π1 : U → Ck , and hence a
dense open subset of V .

We claim that π : U ′→ VX is an open map. Indeed, let (x, y) ∈U ′ be arbitrary.
Then (x1, . . . , xk) ∈W , and so x ∈UX by (6.1). Choose 1X to be a neighbourhood
of x in UX such that π2 is a homeomorphism from1X onto an open subset of Ck . Let
1 be any neighbourhood of (x, y) in U ′ contained in π−1(1X ) ∩U ′. Then we see
that π(1)⊆1X and π2(π(1))= π1(1), which is open in Ck by the openness of π1
on U ′. It follows that π(1) is open in 1X and thus in VX . 2
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PROPOSITION 6.2. Let A = C0(�) for a locally compact space �, and let Q be a
nonempty compact family of nonmodular prime ideals in A. Suppose that every chain
in Q is countable. Then there exist a cardinal κ , a free ultrafilter U on κ , and a
homomorphism θP : A→ (Cκ/U)◦ for each P ∈Q, such that:

(a) ker θP = P for all P ∈Q; and
(b) the set {θP(a) | P ∈Q} is finite for all a ∈ A.

Note that � must be noncompact and A must be nonunital. Since each P ∈Q is a
nonmodular prime ideal in A, it is a prime ideal in A#. For all Q ∈Q, set

QQ = {P ∈Q | P ⊆ Q},

and set IQ =
⋂

P∈Q Q
P . We begin the proof of Proposition 6.2 with some lemmas.

LEMMA 6.3. Suppose that Q∗, Q∗ ∈Q and A∗ and A∗ are subalgebras of A, such
that Q∗ ⊆ Q∗ and A∗ ⊇ A∗. Suppose further that A∗ ∩ Q∗ ⊆ IQ∗ , A∗ ∩ Q∗ = IQ∗ ,
and A∗ + Q∗ = A. Let C be a chain in QQ∗ where each ideal in C contains Q∗. Then
we can find subalgebras AQ ⊆ A where Q ∈ C satisfying the following conditions.

(i) AQ ∩ Q = IQ and A = AQ + Q for all Q ∈ C.
(ii) Whenever Q1, Q2 ∈ C and Q1 ⊆ Q2, then A∗ ⊇ AQ1 ⊇ AQ2 ⊇ A∗.

PROOF. Assume towards a contradiction that the lemma fails for some instance of
Q∗, Q∗, A∗, A∗, and C; we can further require that o(C) is smallest among such
instances (note that C is well ordered by Proposition 5.5(iii)).

Now A∗ ∩ Q∗ =
⋂

P∈Q Q∗
P is the intersection of a subfamily of QQ , and

A∗ ∩ Q ⊆ A∗ ∩ Q∗ ⊆ IQ∗ ⊆ IQ,

for all Q ∈ C. Thus we are in a situation where Proposition 5.10 applies.
Proposition 5.10 implies that C is infinite; otherwise, we can use finite induction to

construct (AQ : Q ∈ C). If C is order isomorphic to ω, the first infinite ordinal, say

C= {Q1 ⊂ Q2 ⊂ · · · },

then Proposition 5.10 also enables us to construct (AQn ) inductively.
In general, there exists a sequence (Qn) in C converging to Q∞ =

⋃
Q∈C Q

in the order topology (this is where our proof needs the countability condition in
Proposition 6.2). If Q∞ ∈ C, we can construct AQ∞ by Proposition 5.10. As in the
previous paragraph, we can then find AQn for all n ∈ N satisfying both conditions
(i) and (ii). The ideals Qn divide C \ {Q∞} into chains that are order isomorphic
to ordinals strictly smaller than o(C). The minimality of o(C) (and the assumption)
then imply that we can extend the present collection {AQ} to all Q ∈ C that satisfy
conditions (i) and (ii).

Thus we have a contradiction in either case. 2
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LEMMA 6.4. We can find subalgebras AQ ⊆ A for all Q ∈Q satisfying the following
conditions.

(i) AQ ∩ Q = IQ and A = AQ + Q for all Q ∈Q.
(ii) AQ1 ⊇ AQ2 whenever Q1, Q2 ∈Q and Q1 ⊆ Q2.

PROOF. This follows from the previous lemma, Zorn’s lemma, and the fact that all
prime ideals containing a given prime ideal in A = C0(�) form a chain. 2

Let κ be the set of all tuples of the form (δ;G; a1, . . . , am), where δ > 0, G is
a nonempty finite subset of Q, and (a1, . . . , am) is a nonempty finite sequence of
distinct elements in A. Define a partial order ≺ on κ by setting

(δ;G; a1, a2, . . . , am)≺ (δ
′
;G′; a′1, a′2, . . . , a′m′)

if δ > δ′, G⊆G′, {a1, . . . , am} is a subset of {a′1, a′2, . . . , a′m′}. Then (κ,≺) is a net.
Fix an ultrafilter U on κ majorizing this net.

LEMMA 6.5. Let (AQ : Q ∈Q) be as in Lemma 4.6. Let w = (δ;G; a1, . . . , am) ∈ κ .
Then, for each P ∈G, we can find a tuple

τP(w)= x(P) = (x (P)1 , . . . , x (P)m ) in Cm

satisfying all the following conditions.

(i) p(x (P)1 , . . . , x (P)m )= 0 for all p ∈ C[X1, . . . , Xm] with p(a1, . . . , am) ∈ P.

(ii) x (P)k 6= 0 for all 1≤ k ≤ m with ak /∈ P.

(iii) |x (P)k | ≤ δ for all 1≤ k ≤ m.

(iv) x (P)k = x (Q)k for all 1≤ k ≤ m and all P, Q ∈G such that P ⊆ Q and ak ∈ AQ .

PROOF. Set X = (X1, . . . , Xm). Further, set aP
= (a1, . . . , am) ∩ AP and X P

=

(X i : ai ∈ AP) for all P ∈G. Without loss of generality, we can assume that none of
these is empty. Note that, if P, Q ∈G and P ⊆ Q, then aQ

⊆ aP and X Q
⊆ X P .

Denote by πP the projection from CX onto CX P , and by πP Q the projection from
CX P onto CX Q whenever P, Q ∈G and P ⊆ Q . We also conveniently consider CX P

as a subspace of CX .
For each Q ∈G, define

Q̃ = {p ∈ C[X] | p(a) ∈ Q},

Q̂ = {p ∈ C[X Q
] | p(aQ) ∈ Q}.

We see that if P, Q ∈G and P ⊆ Q, then P̃ ⊆ Q̃ are prime ideals in C[X], and
Q̂ = Q̃ ∩ C[X Q

] is a prime ideal in C[X Q
]. Since AQ ∩ Q = AQ ∩ P in this case,

Q̂ = {p ∈ C[X Q
] | p(aQ) ∈ P} = P̃ ∩ C[X Q

];

and thus Q̂ = C[X Q
] ∩ P̂ .
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It follows from Lemma 6.1 that there exist, for all Q ∈G, dense open subsets UQ
of V(Q̃) and WQ of V(Q̂), such that:

(1) πQ : UQ→WQ is an open map;
(2) πP Q : WP →WQ is an open map whenever P, Q ∈G and P ⊆ Q.

(There are only finitely many varieties here.)
For each Q ∈G, set

VQ =
⋃

1≤r≤m
ar /∈Q

{x = (x1, . . . , xm) | xr = 0}.

Then VQ is a variety that does not contain V(Q̃), and so V(Q̃) \ VQ is also a dense
open subset of V(Q̃) because V(Q̃) is irreducible. Therefore, UQ \ VQ is again a dense
open subset of V(Q̃).

Set
1= {x = (x1, . . . , xm) : |xr |< δ when 1≤ r ≤ m}.

Finally, set U ′Q = (UQ \ VQ) ∩1 and W ′Q =WQ ∩1. Note that the origin 0 is

in V(Q̃) and V(Q̂) for all Q ∈G. So U ′Q and W ′Q are nonempty open subsets of

V(Q̃) and V(Q̂) respectively.
Conditions (i), (ii), and (iii) will be satisfied as long as we choose x(Q) ∈U ′Q for all

Q ∈G. We now turn our attention to condition (iv).
Fix P, Q ∈G such that P ⊆ Q. Now UP \ VP is dense in V(P̃) and U ′Q ⊆ V(Q̃)⊆

V(P̃), so πQ(U ′P) ∩ πQ(U ′Q) is dense (and open) in πQ(U ′Q) (which is open in WQ).
Note that πQ(U ′P)= πP Q[πP(U ′P)]. In fact, we see that πP Q(D) ∩ πQ(U ′Q) is dense
and open in πQ(U ′Q) for every dense open subset D of πP(U ′P).

Thus we can define a dense open subset DQ of πQ(U ′Q) (in CX Q ) for each Q ∈G

as follows. For all P minimal in G, set DP = πP(U ′P). Then define inductively

DQ =
⋂

P∈G
P⊂Q

πP Q(DP) ∩ πQ(U
′

Q).

The nonemptiness of the sets DP then allows us to pick tuples αQ
∈ DQ for all

Q ∈G, such that αQ
= πP Q(α

P) when P, Q ∈G and P ⊆ Q. (This can be done
inductively, starting from the maximal elements in G; note that G is finite and that
the prime ideals containing a given prime ideal form a chain.) Finally, for all Q ∈G,
choose x(Q) ∈U ′Q (in Cm

= CX ) such that πQ(x(Q))= αQ . It can be checked that
these are the desired tuples. 2

PROOF OF PROPOSITION 6.2. We retain the notation of the previous lemmas. Define
ξP : A→ Cκ for all P ∈Q as follows. For each a ∈ A andw = (δ;G; a1, . . . , am) ∈ κ ,
if P ∈G and if a is in (a1, . . . , am), say a = ak (there is at most one such k),
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then set ξP(a)(w)= τP(w)(k); otherwise, set ξP(a)(w)= 0. Define θP(a) to be the
equivalence class in Cκ/U containing ξP(a).

It follows from Lemma 6.5 that θP is an algebra homomorphism from A into
(Cκ/U)◦ with ker θP = P , for all P ∈Q. Moreover, whenever P, Q ∈G, P ⊆ Q
and a ∈ AQ , we have θP(a)= θQ(a).

Let (Pn) be any pseudofinite sequence in Q, and let Q =
⋃
∞

n=1 Pn . Let a ∈ A. Write
a = b + x , where b ∈ AQ and x ∈ Q. Then x ∈ Pn for all n > n0 for some n0 ∈ N.
Therefore θPn (a)= θPn (b)= θQ(b) for all n > n0. Thus the sequence (θPn (a)) is
eventually constant.

Finally, assume towards a contradiction that the set {θP(a) | P ∈Q} is infinite for
some a ∈ A. Let (Pn) be a sequence in Q such that all θPn (a) are distinct. By the
compactness of Q, we can assume that (Pn) is pseudofinite. However, the previous
paragraph shows that the set {θPn (a) | n ∈ N} is finite. This contradiction concludes
the proof of Proposition 6.2. 2

REMARK 6.6. The idea of mapping into an ultrapower in the above proposition
generalizes the approach in [5] of the theorem of Esterle [9] on embedding integral
domains into radical Banach algebras.

We are now ready to prove our main results.

THEOREM 6.7. Suppose that � is a locally compact space.

(i) Let θ be a homomorphism from C0(�) into a radical Banach algebra R. Then
ker θ is the intersection of a (relatively) compact family of nonmodular prime
ideals in C0(�).

(ii) (CH) Let I be the intersection of a relatively compact family P of nonmodular
prime ideals in C0(�) such that every chain in the closure of P is countable.
Suppose that

|C0(�)/I | = c.

Then there exists a homomorphism θ from C0(�) into a radical Banach algebra
such that ker θ = I .

PROOF. (i) Since θ maps into a radical algebra, we see that ker θ : f is nonmodular
for each f ∈ C0(�). Theorem 1.1 shows that ker θ = I(θ), and so it is an
abstract continuity ideal in C0(�). The result then follows from Corollary 4.15(i).
Proposition 5.5 then allows us to pass from a relatively compact family of prime ideals
to a compact family of prime ideals with the same intersection.

(ii) Let Q be the closure of P. Then every chain in Q is countable, every ideal in
Q is nonmodular, and I =

⋂
P∈Q P .

Let θP : C0(�)→ (Cκ/U)◦, where P ∈Q, be the homomorphisms defined in
Proposition 6.2. Let B be the subalgebra of (Cκ/U)◦ generated by all the images
of θP for all P ∈Q. Then B is a nonunital integral domain. Also

|B| =

∣∣∣∣ ⋃
P∈Q

θP(C0(�))

∣∣∣∣= ∣∣∣∣ ⋃
a∈C0(�)

{θP(a) | P ∈Q}

∣∣∣∣= c,
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since, for each b ∈ a + I ,

{θP(b) | P ∈Q} = {θP(a) | P ∈Q},

which is finite. Thus [9] there exists an embedding ψ : B→ R0 where R0 is any
universal radical Banach algebra. Then the map

θ : C0(�)→
∏

P∈Q

R0, a 7→ ((ψ ◦ θP)(a) : P ∈Q)

is a homomorphism with kernel
⋂

P∈Q P = I . It follows from Proposition 6.2 that
the image of θ is contained in the radical of `∞(Q, R0). 2

THEOREM 6.8. Suppose that � is a locally compact space.

(i) Let θ be a homomorphism from C0(�) into a Banach algebra B. Then I(θ) is
the intersection of a (relatively) compact family of prime ideals in C0(�).

(ii) (CH) Let I be the intersection of a relatively compact family P of prime ideals
in C0(�) such that every chain in the closure of P is countable. Suppose that

|C0(�)/I | = c.

Then there exists a homomorphism θ from C0(�) into a Banach algebra such
that I(θ)= I .

PROOF. (i) The continuity ideal I(θ) is an abstract continuity ideal in C0(�). The
result then follows from Corollary 4.15(i) and Proposition 5.5.

(ii) Denote by P0 the set of nonmodular ideals in P. Let Q′ be the closure of
P \P0. By Lemma 5.7, Q′ has only finitely many roofs. Denote by Q1, . . . , Qn the
roofs of Q′, and set Pi = {P ∈P \P0 | P ⊆ Qi }.

Let 1≤ k ≤ n. First, it is easy to see that Qk is a modular prime ideal. Pick
a modular identity u for Qk , and pick a /∈ Qk . Then a − au ∈ Qk , and so, by
Lemma 5.9, there exists v ∈ Qk such that a − au − av ∈

⋂
P∈P k

P . It follows easily
that u + v is a modular identity for

⋂
P∈P k

P; denote it by uk .
Theorem 6.7 shows that there exists a homomorphism θ0 from C0(�) into a radical

Banach algebra R0 such that ker θ0 =
⋂

P∈P 0
P . Similarly, when 1≤ k ≤ n, there

exists a homomorphism θk from Mk into Rk such that ker θk =
⋂

P∈P k
P , where Mk

is the maximal modular ideal containing Qk . We extend θk to a homomorphism from
C0(�) into R#, setting θk(uk)= eRk . It still remains true that ker θk =

⋂
P∈P k

P .
It follows from the result of Bade and Curtis that I(θk)= ker θk when

0≤ k ≤ n. Thus the homomorphism θ : C0(�)→
∏n

k=0 R#
k defined by θ(a)=

(θ0(a), . . . , θn(a)) satisfies

I(θ)=
n⋂

k=0

I(θk)=
⋂

P∈P

P = I,

as required. 2
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REMARK 6.9. Let I be the intersection of a relatively compact family P of prime
ideals in C0(�). Suppose that I is also the intersection of a countable family of prime
ideals. Denote by P∗ the set of minimal elements in P. Then P∗ is also relatively
compact, and I =

⋂
P∈P ∗

P , by Proposition 5.5(iii). Since I is the intersection of
a countable family of prime ideals, we see that P∗ is countable (using Lemma 5.6).
Since P∗ is countable, it is obvious that every chain in the closure of P∗ is countable.

7. Examples on metrizable locally compact spaces

For examples of pseudofinite sequences of prime ideals in C0(�), see [15]. In this
section, we shall construct relatively compact families of prime ideals that are not
unions of finitely many pseudofinite families.

For the entire section, fix a well-ordered set κ . Set κ(0) = κ . For all n ∈ N, define
κ(n) inductively as the set of limiting elements in κ(n−1). We shall only consider
those κ for which κ(n) = ∅ for some n ∈ N. This condition forces κ to be countable.
Let d be the largest integer for which κ(d) 6= ∅; we call it the depth of κ . For simplicity,
we also suppose that κ has the largest element, max κ , and that κ(d) = {max κ}.
Otherwise, we can always replace κ by a bigger well-ordered set.

For all α ∈ κ define l(α) to be the largest integer l for which α ∈ κ(l). We define
a relation ≺ on κ as follows: for all α, β ∈ κ , we write α ≺ β if β is the smallest
element in κ such that β ≥ α and l(β)= l(α)+ 1. We then define a partial order �
on κ as follows: for all α, β ∈ κ , we write α� β if there exists a finite sequence
α = γ1 ≺ γ2 ≺ · · · ≺ γn = β. Note that, for each α ∈ κ , there is exactly one chain
α = γ1 ≺ γ2 ≺ · · · , which must be finite, and the ultimate end point of this chain is
max κ . We also set

κ0 = {β ∈ κ | l(β)= 0}.

LEMMA 7.1. The relation� on the well-ordered set κ has the following properties.

(i) If β� α and α ∈ κ0 then β = α.
(ii) If γ � α and γ � β then either α� β or β� α.
(iii) If β� α and β ≤ γ ≤ α then γ � α.
(v) If β� α and β 6= α then there exists γ ∈ κ0 such that β < γ < α (and so

γ � α).

PROOF. The proof is routine. 2

We start our construction with the following general lemma.

LEMMA 7.2. Let A be a commutative algebra and Q be an ideal that either is prime
in A or is A itself. Suppose that we have ( fα : α ∈ κ)⊆ Q and a semiprime ideal
I ⊆ Q with the following properties.

(i) fα /∈ I and I : fα ⊆ Q for all α ∈ κ .
(ii) fα fβ ∈ I whenever both α 6� β and β 6� α in κ .
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(iii) If g fα ∈ I for some α ∈ κ then g fβ ∈ I for all β� α.
(iv) If g fβ0 ∈ I for some β0 ∈ κ0, then, whenever α� β0, there exists β1 ∈ κ0 with

β1� α such that g fβ ∈ I for all β ∈ κ0 with β1 ≤ β ≤ α.

Then there exist prime ideals Pα , where α ∈ κ , such that:

(a) fα /∈ Pα and I : fα ⊆ Pα ⊆ Q for all α ∈ κ;
(b) Pα =

⋃
β�α,β 6=α Pβ for all α ∈ κ;

(c) if g ∈ Pα for some α ∈ κ then there exists β1 ∈ κ0 with β1� α such that g ∈ Pβ
for all β ∈ κ0 with β1 ≤ β ≤ α.

PROOF. We prove the lemma by induction on the depth d of κ .
If d = 0, then κ = {0}. Conditions (i) to (iv) reduce to I being semiprime, f0 /∈ I

and I : f0 ⊆ Q. It follows that I ∩ S = ∅, where S = { f k
0 , f k

0 f | k ≥ 1, f ∈ A \ Q} is
closed under multiplication. Therefore, we can find a prime ideal P0 such that I0 ⊆ P0
and P0 ∩ S = ∅, and so P0 ⊆ Q and f0 /∈ P0. We see that P0 is the required prime
ideal.

Now, suppose that the result holds whenever the depth is less than d . By Zorn’s
lemma, we can find a semiprime ideal J containing I such that J is maximal with
respect to conditions (i) to (iv).

Claim 1: If f /∈ Q then J : f = J . Indeed, it is clear that J : f is semiprime and
satisfies conditions (i) to (iv). So the maximality of J implies J : f = J .

Claim 2: If f /∈ J then J : f ⊆ Q. For otherwise, there would exist g ∈ J : f \ Q,
and so f ∈ J : g = J , by Claim 1; this is a contradiction.

Set P =
⋃
α∈κ J : fα . Then P ⊆ Q. Condition (iii) implies that

P =
⋃
α∈κ0

J : fα

and condition (iv) implies that P is an ideal, by choosing α =max κ .

Claim 3: If f /∈ P then J : f = J . Indeed, it is easy to see that J : f is semiprime
and satisfies conditions (i) to (iv) (the least obvious one is (i), however, since f /∈ P ,
f fα /∈ J , and so fα /∈ J : f and (J : f ) : fα = J : f fα ⊆ Q by Claim 2). So the
maximality of J implies J : f = J .

Claim 4: P is either prime in A or A itself. Indeed, if f, g /∈ P , then, by Claim 3,

g /∈
⋃
α∈κ

J : fα =
⋃
α∈κ

(J : f ) : fα = P : f .

Thus f g /∈ P .
Let α1 < α2 < · · · be the nonlimiting elements in κ(d−1); their limit is max κ . Set

κ1 = {α ∈ κ | α ≤ α1}, and κn = {α ∈ κ | αn−1 < α ≤ αn} for all n ≥ 2. Each κn has
depth d − 1, and κ =

⋃
∞

n=1 κn ∪ {max κ}.
For all n ∈ N, we see that ( fα : α ∈ κn), J , and P are such that ( fα : α ∈ κn)⊆ P

and J ⊆ P , and conditions (i) to (iv) hold, with κn replacing κ , J replacing I , and P
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replacing Q. So, by induction, there exist prime ideals Pα , where α ∈ κn , satisfying
conditions (a) to (c) (with obvious modifications). Set Pmax κ = P .

Note that if β� α <max κ then both α and β belong to the same κn for some
n ∈ N. We see that the combined family (Pα : α ∈ κ) obviously satisfies conditions (a)
to (c) (with J replacing I ); the only one that we really need to check is condition (c)
when α =max κ , but this follows from the facts that J : β ⊆ Pβ ⊆ Pmax κ , that

Pmax κ =
⋃
β∈κ0

J : fβ ,

and that J satisfies condition (iv). 2

Now, let � be a metrizable locally compact space. We define a nonincreasing
sequence (∂(n)�[ : n ∈ Z+) of compact subsets of �[ as follows:

(i) put ∂(0)�[ =�[;
(ii) for all n ∈ Z+, define ∂(n+1)�[ to be the set of all limit points of ∂(n)�[.

Define ∂(∞)�[ =
⋂

n∈Z+ ∂
(n)�[. By the compactness, either ∂(∞)�[ is nonempty or

∂(l)�[ is empty for some l ∈ Z+.
To construct nontrivial pseudofinite sequences of prime ideals in C0(�) it is

necessary that there exists p ∈ ∂(∞)�[; this follows from [15, Proposition 8.7].
Remark that all uncountable Polish spaces possess such a point p, and there are even
countable compact subspaces of R satisfying this condition.

We need some further preparations. For each β ∈ κ \ {max κ}, there exists a unique
α ∈ κ such that β ≺ α. We define t (β) to be the number of γ ∈ κ such that γ ≺ α and
γ ≤ β; there are only finitely many such γ . For each β ∈ κ0, there exists a unique
(α1, . . . , αd−1) ∈ κ such that

β ≺ α1 ≺ · · · ≺ αd−1 ≺max κ;

set w(β)=max{t (β), t (α1), . . . , t (αd−1)}. For all k ∈ N,

|{α ∈ κ0 | w(α)≤ k}| = kd .

Adjoin∞ to N to obtain its one-point compactification N[; the convention is that
∞> n for all n ∈ N and 2−∞ = 0. Define 4 to be the subset of the product space
(N[)κ0 consisting of all elements (nα : α ∈ κ0)with the property that there exists a finite
set F ⊆ κ0 such that nα =∞ when α ∈ κ0 \ F and such that nα ≥max{w(β) | β ∈ F}
when α ∈ F . It is easy to see that 4 is a closed subset of (N[)κ0 .

LEMMA 7.3. Let� be a metrizable locally compact space and p ∈ ∂(∞)�[. Then the
space 4 can be continuously embedded into �[ such that the point ∞= (∞,∞, . . .)

is mapped into p.

PROOF. As shown in [15, Lemmas 9.1 and 9.2], the compact subset

1= {0} ∪
{ k∑

i=1

2−ni

∣∣∣∣ k, n1, n2, . . . , nk ∈ N and k ≤ n1 < · · ·< nk

}
of R is continuously embedded in �[ such that 0 is mapped into p.
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Choose an injective map r : κ0 × N→ N such that r(α, j)≥ jd for all α ∈ κ0 and
j ∈ N; this is possible since κ0 is countable. For convenience, for all α ∈ κ0, we also
set r(α,∞)=∞. Define a map τ from 4 into [0, 1] as follows: for all (nα)α∈κ0 ∈4,
set

τ : (nα)α∈κ0 7→

∑
α∈κ0

2−r(α,nα).

Then we see that τ is well defined, injective and continuous.
Let (nα)α∈κ0 ∈4 be arbitrary. Set F = {α ∈ κ0 | nα <∞}. Then F is a finite subset

of κ0, and nα ≥ k =max{w(β) | β ∈ F} for all α ∈ F . So we see that, for α ∈ F ,

r(α, nα)≥ nd
α ≥ kd

= |{β ∈ κ0 | w(β)≤ k}| ≥ |F |.

From this, we deduce that τ maps 4 into 1, and the lemma follows. 2

LEMMA 7.4. Let � be a metrizable locally compact space, and let p ∈ ∂(∞)�[.
Then there exist a family of prime ideals (Pα : α ∈ κ) in C0(�), where each ideal is
supported at p, and a family of functions ( fα : α ∈ κ) in C0(�) such that:

(a) fα /∈ Pα and fβ ∈ Pα whenever both β 6� α and α 6� β;
(b) Pα =

⋃
β�α,β 6=α Pβ for all α ∈ κ;

(c) for all α ∈ κ , if g ∈ Pα then there exists β1 ∈ κ0 with β1� α such that g ∈ Pβ
for all β ∈ κ0 with β1 ≤ β ≤ α.

PROOF. It follows from the previous lemma that we only need to consider the case
where �=4 and p =∞. Thus suppose that �=4 and p =∞.

For each α ∈ κ0 define

Zα = {(nβ)β∈κ0 ∈4 | nα =∞},

and for all α ∈ κ \ κ0 define
Zα =

⋂
β∈κ0
β�α

Zβ .

Then choose fα ∈ C(4) such that Zα = Z( fα). Let F be the z-filter generated by all
Zα ∪ Zβ where α, β ∈ κ , α 6� β and β 6� α. Then define I = Z−1

[F]. Obviously I
is a semiprime ideal, I ⊆ M∞, and ( fα : α ∈ κ)⊆ M∞.

It is sufficient to prove that ( fα), I , and M∞ satisfy conditions (i) to (iv) of
Lemma 7.2.

First, for all γ ∈ κ , we see that f ∈ I : fγ if and only if

Z( f ) ∪ Zγ ⊇
n⋂

k=1

(Zαk ∪ Zβk ),

where αk 6� βk and βk 6� αk for each k. We see from Lemma 7.1 that, for all k, one
of the following three cases must happen:

(1) αk 6� γ and γ 6� αk ;
(2) γ 6� βk and βk 6� γ ;
(3) αk � γ , βk � γ , αk 6� βk and βk 6� αk .
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Thus we see that f ∈ I : fγ implies that

Z( f ) ∪ Zγ ⊇
r⋂

i=1

Z%i ∩

s⋂
j=1

(Zσ j ∪ Zζ j ),

where %i 6� γ and γ 6� %i for all i , and σ j � γ , ζ j � γ , σ j 6� ζ j and ζ j 6� σ j for
all j . In particular, we see that σ j < γ whenever 1≤ j ≤ s, and so, by Lemma 7.1(iv),
there exists β ∈ κ0 such that

β >max{σ j | 1≤ j ≤ s} and β� γ.

These also imply that β 6� σ j if 1≤ j ≤ s and β 6� %i if 1≤ i ≤ r . Thus for all

k ≥ w(β), we set n(k)β = k and n(k)α =∞ when α 6= β, and then

(n(k)α : α ∈ κ0) ∈

( r⋂
i=1

Z%i ∩

s⋂
j=1

Zσ j

)
\ Zγ ⊆ Z( f ).

On the other hand, limk→∞(n
(k)
α : α ∈ κ0)=∞ in 4. It follows that ∞ ∈ Z( f ).

Hence, I : fγ ⊆ M∞ and fγ /∈ I , so condition (i) of Lemma 7.2 holds.
It is obvious that conditions (ii) and (iii) of Lemma 7.2 are satisfied by the

definitions of I and the sets Zα .
Now, let β0, α ∈ κ and let g ∈ C(4) be such that l(β0)= 0, β0� α, β0 6= α (these

imply that α /∈ κ0) and g fβ0 ∈ I . Then, from the previous discussion, noting that
l(β0)= 0,

Z(g) ∪ Zβ0 ⊇

r⋂
i=1

Z%i or Z(g)⊇
r⋂

i=1

Z%i \ Zβ0,

where β0 6� %i , which implies that α 6� %i for all i . We claim that

Z(g)⊇
r⋂

i=1

Z%i ∩

⋂
γ∈κ0

w(γ )≤w(β0)

Zγ .

Indeed, let (nγ : γ ∈ κ0) 6=∞ be in the right-hand-side set. Then, nγ =∞ whenever
γ � %i for some i or w(γ )≤ w(β0) for all γ ∈ κ0. Set F = {γ ∈ κ0 | nγ <∞}. Then
F is a nonempty finite set and

nγ ≥max{w(β) | β ∈ F}>w(β0) ∀γ ∈ F.

Thus by setting n(k)β0
= k when k ≥max{w(β) | β ∈ F} and n(k)γ = nγ when γ 6= β0,

we obtain

(n(k)γ : γ ∈ κ0) ∈

r⋂
i=1

Z%i \ Zβ0 ⊆ Z(g).

On the other hand, we see that limk→∞(n
(k)
γ : γ ∈ κ0)= (nγ : γ ∈ κ0) in 4. It follows

that (nγ : γ ∈ κ0) ∈ Z(g). The claim follows.
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Set
A = {γ ∈ κ0 | γ � α and w(γ )≤ w(β0)}

and
B = {%i | 1≤ i ≤ r, %i � α}.

By Lemma 7.1(iv), we can choose β1 ∈ κ0 such that β1� α and

β1 >max(A ∪ B); (7.1)

note that max(A ∪ B)� α and max(A ∪ B) 6= α. Let β ∈ κ0 be such that β1 ≤ β ≤ α.
Then β� α. We see that %i 6� β when 1≤ i ≤ r ; otherwise we see that %i = β� α

but then β ≥ β1 > %i by (7.1), contradicting %i = β. We also see that β 6� %i when
1≤ i ≤ r ; otherwise either %i � α or α� %i , and we have already ruled out α� %i
from the beginning of the previous paragraph, so %i � α, and again, this and (7.1)
imply that β ≥ β1 > %i , contradicting β� %i . We also see that β 6� γ and γ 6� β for
all γ ∈ κ0 with w(γ )≤ w(β0); otherwise γ = β� α. However, this and (7.1) imply
that β ≥ β1 > γ . Thus

Z(g) ∪ Zβ ⊇
r⋂

i=1

(Z%i ∪ Zβ) ∩
⋂
γ∈κ0

w(γ )≤w(β0)

Zγ ∪ Zβ ∈ F;

and so g fβ ∈ I . Hence, condition (iv) of Lemma 7.2 is also satisfied. 2

We now state the main theorem of this section.

THEOREM 7.5. Suppose that p ∈ ∂(∞)�[ where � is a metrizable locally compact
space, and that κ is a well-ordered set as above. Then there exists a compact family of
prime ideals (Pα : α ∈ κ) in C0(�), where each ideal is supported at p, satisfying the
following conditions.

(a) (Pαn : n ≥ n0) is a pseudofinite sequence with union Pα for some n0 ∈ N
whenever (αn) converges to α in the order topology of κ .

(b) Pα ⊆ Pβ if and only if α� β.

Let P be any relatively compact family of prime ideals with the same intersection as⋂
α∈κ Pα . Then the closure of P contains a chain of length d + 1. In particular, P is

not the union of any finite collection of many pseudofinite subfamilies of prime ideals
when d > 1.

PROOF. Let (Pα : α ∈ κ) be the family constructed in Lemma 7.4.
(a) Without loss of generality, we assume that αn 6= α for all n ∈ N. There exists

n0 ∈ N such that αn � α for all n ≥ n0. We see that Pαn ⊆ Pα for all n ≥ n0 and

Pα =
⋃
β∈κ0
β�α

Pβ .

So by Theorem 7.5(c), for each g ∈ Pα , there exists β1 ∈ κ0 with β1� α such that
g ∈ Pβ for all β ∈ κ0 with β1 ≤ β ≤ α. Choose n1 ≥ n0 such that αn ≥ β1 for all
n ≥ n1. Let n ≥ n1 be arbitrary. Pick β ′ ∈ κ0 such that β ′� αn . If β ′ ≤ β1,
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then β1� αn by Lemma 7.1(iii), and so g ∈ Pβ1 ⊆ Pαn . Otherwise β1 < β
′, then

g ∈ Pβ ′ ⊆ Pαn . Thus (Pαn : n ≥ n0) is a pseudofinite sequence whose union is Pα .
(b) This is a consequence of Lemma 7.4(a) and (b).
In the order topology, κ is a compact metrizable space; each sequence in κ has a

convergence subsequence. The compactness of {Pα | α ∈ κ} thus follows from (a).
Let P be a relatively compact family of prime ideals such that⋂

P∈P

P = I =
⋂
α∈κ

Pα.

Denote by P∗ the subfamily consisting of minimal elements of P. By Proposi-
tion 5.5(iii), we see that

⋂
P∈P ∗

P = I . Lemma 5.6 shows that, for each P ∈P∗
there exists fP /∈ P but fP ∈ Q for all Q ∈P∗ \ {P}; in particular, P = I : fP . This
and Lemma 4.8 then imply that P∗ is exactly the set of prime ideals of the form I : f
for some f ∈ C0(�). Similarly, {Pα | α ∈ κ0} is also exactly the set of prime ideals of
the form I : f for some f ∈ C0(�). Thus

P∗ = {Pα | α ∈ κ0} and its closure is {Pα | α ∈ κ}.

Therefore, whenever α0 ≺ α1 ≺ · · · ≺ αd =max κ , we have a chain of length d + 1 in
the closure of P∗, namely Pα0 ⊂ · · · ⊂ Pαd . Obviously, this shows that P cannot be
the union of any finite number of pseudofinite families when the depth of κ is larger
than 1. 2

REMARK 7.6. Since the cardinality of C(4) is c, we see that, for (Pα : α ∈ κ) as in
the above theorem, ∣∣∣∣C0(�)

/⋂
α∈κ

Pα

∣∣∣∣= c.

Let � be any metrizable locally compact space with ∂(∞)� 6= ∅. Let P be a
relatively compact family of prime ideals in C0(�). Since we are mostly interested
in
⋂

P∈P P , by passing to the minimal elements of P, we can suppose that P 6⊂ Q
for each distinct P, Q ∈P. Let us call a family satisfying this condition reduced.

QUESTION. Is there a reduced relatively compact family of prime ideals P in C0(�)

whose closure contains an uncountable chain or (merely) an infinite chain? If there
exists such a reduced family P whose closure contains an uncountable chain, is it still
possible to remove the countability condition from Theorems 6.7 and 6.8?

We know that every chain in the closure of a relatively compact family of prime
ideals must be well ordered (Proposition 5.5(iii)). However, we show in [16] the
existence of uncountable well-ordered chains of prime ideals in C0(�). We also
show in [16] that there is an uncountable, nonredundant, pseudofinite family of prime
ideals in C0(�), thus, in particular, showing that there exists an uncountable, reduced,
relatively compact family of prime ideals (however, every chain in the closure of a
pseudofinite family of prime ideals has length at most 2).
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