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Abstract

We give a description of the continuity ideals and the kernels of homomorphisms from the algebras of
continuous functions on locally compact spaces into Banach algebras. We also construct families of prime
ideals satisfying a certain intriguing property in the algebras of continuous functions.
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1. Introduction

Let 6: A — B be a homomorphism from a commutative Banach algebra A into a
Banach algebra B. The continuity ideal of 9 is defined to be the ideal

Z()={a € A|the map b+ 6(ab), A — B, is continuous};

this ideal contains every ideal I in A on which 8 is continuous. If A = Cy(£2) for some
locally compact space €2, then 6 is continuous on Z(0).

The aim of this paper is to characterize the ideals that are the kernels or the
continuity ideals of homomorphisms from Cy(€2) into Banach algebras. This is, in
some sense, a final piece of the picture of homomorphisms from Cy(£2) into Banach
algebras.

The study of homomorphisms from Cy(€2) started with the theorem of
Kaplansky [13] that every algebra norm on Co(£2) majorizes the uniform norm. This
essentially provides a description of all the continuous homomorphisms from Cy(£2)
into Banach algebras.

Then Bade and Curtis [1] gave a detailed structural decomposition of discontinuous
homomorphisms from Cy(€2) into Banach algebras. The following statement of their
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104 H. L. Pham 2]
theorem also includes some improvements from [6, 17] (see also [3, 18], noting that
other improvements of this theorem can be found in [12]); see Section 2 for notation.

THEOREM 1.1. Suppose that 2 is a locally compact space, and that 0 is a
discontinuous homomorphism from Co(2) into a Banach algebra B. Set By =

0(Co(£2)).
(1)  The continuity ideal Z(0) is the largest ideal of Co(S2) on which 6 is continuous.
(ii) There exists a nonempty finite subset {p1, . .., pn} of 2 such that

ﬁ Ty CI() < ﬂ M,,.
i=1 i=1

(i) There exists a continuous homomorphism (v : Co(2) — Bg such that
n
Bo = u(Co(%)) @ rad B, u( N Mpi) rad By = {0},
i=1

and = 0 on a dense subalgebra of Co(S2) containing Z(0).
(iv) Set v =0 — u. Then v maps into rad By, and the restriction of v to (\i_; M pi LS
a homomorphism V' onto a dense subalgebra of rad By.
(v)  There exist linear maps vy, . . ., v, : Co() — rad By such that:
@ v=vit+-Fv
(b) vlf = ;| My, is a nonzero homomorphism, whenever 1 <i <n;
(©) i (Co(R2)) - v;(Co(2)) = {0} whenever 1 <i # j <n.

(vi) The ideals ker 0 and T(0) are always intersections of prime ideals; we have

n
ker@ =Z(0) Nkerp and T(0)=kerv' = |kerv].
i=1

For brevity, we define a radical homomorphism to be a homomorphism into a
radical Banach algebra. The above result points out the important roles of prime
ideals and of radical homomorphisms as building blocks for general (discontinuous)
homomorphisms from Cy(£2).

In the 1970s, Dales [2] and Esterle [6—8] independently proved that, assuming the
continuum hypothesis, every ideal I which is the intersection of a finite number of
nonmodular prime ideals in C(£2) and such that |Cy(£2) /1| = c is the kernel of a radical
homomorphism from Cy(€2) (for more details see [3]).

In fact, for some spaces €2, the kernels of radical homomorphisms from Cy(£2)
are always finite intersections of nonmodular prime ideals [6, 15]. However, in [15],
we showed that for most metrizable, noncompact, locally compact spaces €2, for
example R, there exist radical homomorphisms from Cy(£2) whose kernels are not
the intersection of any finite number of prime ideals.

In this paper, we show that the kernels of radical homomorphisms from Co(£2)
are always intersections of (relatively) compact families of nonmodular prime
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ideals (Theorem 6.7(i)). In fact, we prove a more general result for continuity
ideals of homomorphisms from Banach algebras into commutative Banach algebras
(Corollary 4.11).

For the converse direction, we shall prove that, assuming the continuum hypothesis,
every ideal [ that is the intersection of a relatively compact family I3 of nonmodular
prime ideals and is such that |Co(2)/I| = ¢ and every chain in the closure of T
is countable (thus, in particular, when 3 itself is countable), is the kernel of a
radical homomorphism from Cy(£2). A similar result holds for continuity ideals of
homomorphisms from Co(£2) into Banach algebras: see Section 6. We conjecture that
the countability condition in these converses is redundant (see the last paragraphs of
Section 7).

REMARK 1.2. It was proved by Solovay and Woodin that the existence of
discontinuous homomorphisms from Cy(£2) is not a theorem of Zermelo—Fraenkel set
theory with the axiom of choice (see [4] for more details). All results that require the
continuum hypothesis will be marked with (CH).

In the final section, we shall construct nontrivial examples of (relatively) compact
families of prime ideals in Co(£2) for metrizable locally compact spaces €2 with infinite
limit level (Theorem 7.5). This, in particular, shows the complexity of the prime ideal
structure of Co(£2) even for countable compact subspaces 2 of R.

2. Preliminary definitions and notation

Let A be a commutative algebra. The (conditional) unitization A" of A is defined
as the algebra A itself if A is unital, and as A with identity adjoined otherwise. The
identity of A* is denoted by e4.

A prime ideal or semiprime ideal in A must be a proper ideal. However, we consider
A itself as the intersection of the empty collection of prime ideals.

Let I be an ideal in A. Define the prime radical /I of I to be the intersection of
all the prime ideals in A containing /, so that

VI1={aeAl|a" eI forsomen € N}.
For each element a € A*, define the quotient of I by a to be the ideal
l:a={beAlabel}.

Clearly I € I :a.

For the definition of universal algebras, see [3, Definition 5.7.8]. For example,
the integral domain L'(R*, w) is universal for each radical weight w bounded near
the origin [3, Theorem 5.7.25]. Indeed, the class of universal, commutative, radical
Banach algebras has been characterized in [10] (see also [3, Theorem 5.7.28]).

For a discussion of the theory of the algebras of continuous functions, see any
of [3, 5, 11]. Here we just give some facts that are needed in our discussion.
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Let 2 be a locally compact space; the convention is that locally compact spaces and
compact spaces are Hausdorff and nonempty. The one-point compactification of <2 is
denoted by Q". Denote by Co(2) the algebra of (complex-valued) continuous functions
that vanish at infinity on 2. Denote by C.(€2) the subalgebra of Cy(£2) consisting of
functions with compact support. For all p € €2, define

Jp={f€Co(R) | f is zero on a neighbourhood of p},
My ={feCy(Q) | f(p)=0}

When p is the point (at infinity) adjoined to € to obtain Q°, we also set
Jp=Cc(2) and M, =Cy(2).

For each prime ideal P in Co(S2), there exists a unique point p € 2 such that
Jp, © P C M, and we say that P is supported at the point p. It can be seen that
P is modular if and only if its support point belongs to 2.

We shall frequently use the important fact that, for each prime ideal P in Cy(£2), the
set of prime ideals containing P is a chain with respect to the inclusion relation.

For each function f continuous on €2, the zero set of f is denoted by Z( f). The set
of zero sets of continuous functions on €2 is denoted by Z[2].

A z-filter F on 2 is a nonempty proper subset of Z[€2] such that:

(i) Z; N Z; belongs to F whenever both Z| and Z; belong to F;
(1) ifZyeF,ZyeZ[2] and Z1 C Z5, then Z; also belongs to F.

Each z-filter F corresponds to an ideal

{f eCOIZL(f) e F},

denoted by Z~'[F].

Let « be an infinite cardinal and let I/ be a free ultrafilter on x. Define My, to be the
maximal ideal of C* consisting of all elements f € C* such that {o € k | f(0) =0} €
U. The field C* /My, is called an ultrapower, and is denoted by C*/U{. An element
f + My € C¥ /U is an infinitesimal if

{ocex]||f(o)<eleUd Ve>O0.

The subalgebra of infinitesimals of C* /U{ is denoted by (C* /U/)°.
For a well-ordered set A, denote by 0(A) the ordinal order isomorphic to A.

3. Relatively compact families of prime ideals
In this section, let A be a commutative algebra.

DEFINITION 3.1 [15, Definition 3.1]. An indexed family (P;);cs of prime ideals in A
is pseudofinite if a € P; for all but finitely many i € S whenevera € | ;g P;.
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For a pseudofinite family (P; : i € §) of prime ideals where S is infinite, it is obvious
that | J;.; Pi = U;cg P is either a prime ideal in A or the whole of A for each infinite
subset T of S.

DEFINITION 3.2. A family € of prime ideals in A is relatively compact if every
sequence of prime ideals in € contains a pseudofinite subsequence. The family €
is compact if it is relatively compact and contains the union of all of its pseudofinite
sequences.

Obviously, the union of finitely many pseudofinite families is relatively compact.
In the rest of this section, we shall indeed relate our notion of compactness to the usual
meaning of this terminology.

Denote by IT the set of prime ideals in A. For all ay, a, . . ., a;,, and b in A, define

.....

Then the collection of all such sets Z/lab1
primeness, we have

. is a base for a topology 7. Indeed, by the

----- ay,

It is also easy to see that 7 is Hausdorff. We claim that {; is T-compact for all u € A.
Indeed, we see that {Uy, Ug | a € A} is a subbasis for the relative T-topology on U,
so by Alexander’s lemma, we need only show that each cover of I by sets in this
subbasis has a finite subcover. Let E, F be subsets of A such that

ug=JurulJug.

acE beF

Set S={u"a;---a,|m,neN, ay,...,a, €E}, and let I be the ideal generated
by F. Assume towards a contradiction that S N I = @. Then since S is closed under
multiplication, there exists a prime ideal P such that P 21 and P NS =; this
implies that P € U2 but P ¢ | J,cp U* U Upep UL, a contradiction. Thus S N 1 # @,
so there existk, m,n e N,ay,...,a, € E,b1,...,b, € F,andcq, ..., c, € Asuch
that

uka] “oeam =bicy + - -+ bycy.

We can then deduce that
m n
b .
uy = Jus vl Ju,'
i=1 j=1

Thus t is locally compact.
The one-point compactification of (IT, ) can be considered as the set [T U {A}; a
basis of neighbourhood for A is given by the collection of all

an =1AYU{P €I1| alla; € P} whereay, az, ..., an €A.

.....
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PROPOSITION 3.3. Let A be a commutative algebra. Denote by Il the set of prime
ideals in A. Define a topology t as above. Then (I1, t) is a totally disconnected
locally compact space, and every [relatively] compact family of prime ideals in A is a
[relatively] sequentially T-compact subset of T1 U {A}.

PROOF. It remains to prove the last assertion. We claim that a pseudofinite sequence
(P,) of prime ideals in A is T-convergent in [T U {A}. In fact, set P = Uff’zl P,. Then
either P € I1 or P = A, and in both cases (P,) T-converges to P. O

REMARK 3.4. If A is either unital or Co(£2) for some locally compact space €2, then
the union U;’lozl P, is in fact a prime ideal in A, for each pseudofinite sequence (P,)
of prime ideals in A. Thus in the above proposition, we can replace I1U {A} by II.

REMARK 3.5. Let us instead consider a topology o on ITU {A} generated by
ug ={PellU{A}| P C Qandallg; € P},

~~~~~ am

where Q is either a semiprime ideal in A or A itself, and ay, ..., a, € Q. Then
a sequence of prime ideals in A is pseudofinite if and only if it is convergent
in (ITU{A}, o), and so a family of prime ideals in A is [relatively] compact if
and only if it is [relatively] sequentially compact in (ITU {A}, o). However, in
general, o is neither Hausdorff nor locally compact. In the case where A = Cy(£2),
then (ITU {A}, o) is Hausdorff (but not locally compact).

4. Homomorphisms from general commutative Banach algebras

Let 6: A — B be a homomorphism from a commutative Banach algebra A into a
Banach algebra B. Let (a, : n € N) be a sequence in A. Then

I®O):a1a2---a,<Z@O):aiay---ay+1 VneN.

It follows easily from the stability lemma (see [3, Corollary 5.2.7] or [18, Lemma 1.6]
for the statement and proof) that there exists ng € N such that

@) :a1az---a,=72Z):aiaz---ay+1 Yn > np.

Thus Z(0) is an abstract continuity ideal in the following sense.

DEFINITION 4.1. Let A be a commutative algebra. An ideal [ is an abstract
continuity ideal if, for each sequence (a;) in A, there exists ng € N such that

l:aiay---a,=1:a1ay---ay,41 Vn=>ny.

PROPOSITION 4.2. Let BB be a relatively compact family of prime ideals in a
commutative algebra A. Then (p P P is an abstract continuity ideal in A.
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PROOF. Set I =(p esp P. Assume towards a contradiction that / is not an abstract
continuity ideal. Then there exists a sequence (a,) in A such that

l:aiay---a,Cl:aay---ay4; VYneN.

For all n, we see that

I:ay---a,= ﬂ P.

Pep
ay-angP

Thus it follows that there exists P, € 3 such thata; - - - a, ¢ P, buta; - - - a,41 € P,.

The relative compactness implies that there exist ny, no, ..., suchthatn; <npy <- - -
and (P,,) is pseudofinite. However, we see thatajas - - - a,, € Py, butajaz - - - ay, ¢
Py, for all i > 2; this contradicts the pseudofiniteness. |

The remainder of this section is devoted to a converse of the above proposition.
Let I be an abstract continuity ideal of a commutative algebra A. Denote by ‘J3 the
set of prime ideals of the form 7 : a for some a € A. The following is a generalization
of [15, Lemma 4.3].

LEMMA 4.3. For each cardinal k < |B|, there exists a subfamily G C B with the
properties that |G| > k and that |{P € G|a ¢ P}| <« foralla € UPeg P.

PROOF. For each a € A U {e4}, let B3, be the set of prime ideals of the form I : ab
for some b € A. We claim that there exists ap € A U {e4} such that |, | > « and
such that either |£]3a0a| <korl :aga=1:ay, foreacha € A. Indeed, assume that the
contrary holds. Then, since |'B,, | > «, by induction, there exists a sequence (a,) € A
such that ['B,, ..., | = « and such that

Iiay---a,Cl:ay---apy1 VneN.

This contradicts the definition of an abstract continuity ideal. Hence the claim holds.
Put G =B, ; this obviously satisfies |G| > k. Suppose that @ € A and that g =
{P € G |a¢ P} has cardinality at least x. Then, for each P € G/, we have P :a = P
because a ¢ P. Thus G' B, , , and hence [, ,| > «. Therefore, by the claim,
we must have [ :apa=1:ay. We now show that G'=G. Assume towards a
contradiction that G’ # G, and take P € G\ G', say P =1 : apa; for some a; € A.
Then ay € I :apa =1 : ap since a € P, so that apa; € I. This implies that P = A,
a contradiction. This proves that G has the desired property. O

LEMMA 4.4. The prime radical Vi of the abstract continuity ideal I is the
intersection of the prime ideals in ‘3.

PROOF. This is based on the commutative prime kernel theorem due to Sinclair
(see [3, Theorem 5.3.15] or [18, Theorem 11.4]; the proof in [15, Lemma 4.1] works
almost verbatim). O
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LEMMA 4.5. Every element in 3 contains a minimal element.

PROOF. Assume towards a contradiction that there is a sequence (P, =1 : f,) € ‘B
such that

PIDPLD---DP;,D---.

For all n, choose a, € A such that a, € P, \ P,+1. Then we see thata| - --a, f, € 1
butag - - - a, fuy1 ¢ 1. Thus

I:aiay---a,Cl:ajay---apy1 VneN;

this contradicts / being an abstract continuity ideal. O

LEMMA 4.6. Let P be in *8. Then there exists a € A\ P such that a € Q for all

Qe PwithQLP.
PROOF. Assume that the contrary holds. Pick a; ¢ P. Suppose that we have already
picked ay, ..., a, ¢ P. By the assumption, we can find Q, € '3 such thata; ...a, ¢

Q, and O, Z P. We can then choose a,+1 € Q@ \ P. The induction can be continued.
We see that (a,), (Q,) as constructed satisfy aj - - - a, ¢ Q, butay - - - a,+1 € O, for
allneN. Let 9, =1: f,. Then weseethat f,, €l :ajay---ap+1 \ I :aiaz - - - a,;
this contradicts / being an abstract continuity ideal. O

LEMMA 4.7. Let {Py | o € S} be a subfamily of B. Then (g Pu is also an abstract
continuity ideal.
PROOF. Assume that the contrary holds. Then there exists (a,) such that

(ﬂPa):alaz---anC<ﬂPa>:a1a2-~an+1 Vn € N.

aesS aesS

Choose b, € A such that ag - - - a,b, ¢ (\,es Po DUt a1 - - - apy1b, € () es Pa for
all n. Then choose «;, € S such that a; - - - a,b, ¢ P,,. We have Py, =1: f,, for
some fu, € A. We see thatay - - - ayb, fo, ¢ I butay - - - ay41b, fo, € 1. Thus

l:aiay---a,Cl:ajay---apy1 VneN;

this contradicts / being an abstract continuity ideal. O

LEMMA 4.8. Let J be a semiprime ideal in A. Let a, b € A be such that J : a and
J : b are prime ideals. Then the following are equivalent.

@ J:allJ:b.

(b) abé¢lJ.

© J:a=J:b
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PROOF. To show that (a) implies (b), we note that since J is semiprime and J : b is a
proper ideal in A, we musthave b ¢ J : b. So b ¢ J : a, and therefore ab ¢ J.

To show that (b) implies (c), we observe that condition (b) implies that a ¢ J : b.
Let f € J:a. Then faeJ C J:b,andso f € J :b by the primeness of J : b. Thus
J:aCJ:b. Similarly, J : b C J : a. O

REMARK 4.9. In the case where [ is semiprime, since ‘I3 is the set of prime ideals of
the form 7 : a, the above lemma shows that, if P = I : a € ]3, then P is minimal in 3,
a€ A\ P,and a € Q whenever Q € B\ {P}.

We can now state the main result of this section.

THEOREM 4.10. Suppose that 1 is an abstract continuity ideal of a commutative
algebra A. Denote by B the set of minimal ideals among the prime ideals of the
form I : a for some a € A. Then:

(1) ﬁ = ﬂPemo P;

(ii) By is a relatively compact family of prime ideals.

PROOEF. The first assertion follows from Lemmas 4.4 and 4.5. For the second, let
(Py) € *By. We can assume that P, where n € N are distinct. Set J = ﬂf;ozl P,. By
Lemma 4.6, there exists a, € ﬂ#n P\ P,, and so P, =J :a,. Let a € A be such
that J : a is a prime ideal. We claim that J : a € {P,}. Indeed, we see that a ¢ J, and
thus a ¢ P,, for some ng. So aay, ¢ J. By Lemma 4.8, we deduce that J : a = Py,,.
It then follows from Lemmas 4.7 and 4.3 (applied to J, with « being the first infinite

cardinal Rg) that (P,) must have a pseudofinite subsequence. O

COROLLARY 4.11. Let 6: A — B be a homomorphism from a Banach algebra A
into a commutative Banach algebra B. Then \/Z(0) is the intersection of a relatively
compact family of prime ideals of the form L(0) : a for some a € A.

REMARK 4.12. Since ker8 C Z(f) and A/ker is commutative, all the previous
definitions and results still make sense in this case.

PROOF. It can be seen that, for alla € A,
(Z(@©)/ker ) : (a +ker0) = (Z(O):a)/kerb.

So by the stability lemma, we see that Z(0)/ker 6 is an abstract continuity ideal in
A/ker 0. The rest follows from the theorem. O

COROLLARY 4.13. Let0: A — B be an epimorphism from a Banach algebra A onto
a commutative Banach algebra B. Then \/Z(0) is the intersection of a finite number
of prime ideals of the form Z(0) : a for some a € A and there exists k € N such that

VI®) ={acAla 1))
PROOF. This is proved in the same way as [15, Corollary 4.7]. O
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LEMMA 4.14. Let I be an abstract continuity ideal of Co(S2) for a locally compact
space Q. Then I is either a semiprime ideal or the whole of Co(2).

PROOF. The proof is the same as the proof that the continuity ideal of a discontinuous
homomorphism from Cy(£2) into a Banach algebra is semiprime ([6, 17], see also
[3, Theorem 5.4.31]). O

COROLLARY 4.15. Let Q2 be a locally compact space.

(1)  Let I be an abstract continuity ideal in Co(2). Denote by 3 the set of prime
ideals of the form I : f for some f € Cy(R2). Then:
(@ I= mPe‘B P;
(b) ‘B is a relatively compact family of prime ideals.

(i) Conversely, let 3 be a relatively compact family of prime ideals in Co(S2). Then
ﬂpesp P is an abstract continuity ideal in Cy(S2).

COROLLARY 4.16. Let Q be a locally compact space. Then each homomorphism
from Cy(2) into a Banach algebra is continuous on the intersection of a relatively
compact family of prime ideals of the form Z(0) : f for some f € Co(L2).

5. (Relatively) compact families of prime ideals in Cy(£2)

In this section, let 2 be a locally compact space, and let *J3 be a nonempty relatively
compact family of prime ideals in Cp(£2). Denote by £ the collection of all the ideals
that are unions of countably many ideals in 3. We call £ the closure of 3; we shall
show that it is indeed the smallest compact family of prime ideals containing ‘3.

Note that an ideal in £ is automatically prime in Cy(£2), and that the union of each
pseudofinite sequence of prime ideals in Cy(€2) is again a prime ideal in Cp(£2); this
follows from the next lemma.

LEMMA 5.1. The union of finitely many prime ideals in Co(S2) either is one of the
given prime ideals or is not even a linear space. The union of countably many prime
ideals in Cy(S2) is not equal to Co(S2).

PROOF. We prove the second clause only; the proof of the first is similar. Let (P, :
n € N) be a sequence of prime ideals in Cy(€2). For all n € N, choose f,, € Co(2) \ Py.
We can assume that 0 < f, <27". Set f=> o2, f,. Then f € Co(2) but f ¢ P,
since f > f, foralln e N. O

LEMMA 5.2. Each chain in Q is well ordered with respect to inclusion; that is, each
nonempty chain in £ has a smallest element.

PROOF. Assume that the contrary holds. Then we can find an infinite chain in Q:
-+~ C Q,C---C Q. For all n, choose P, € ‘B such that P, € Q, but P, Z Q1.
By the relative compactness of 3, we can assume without loss of generality that
(P, :n € N) is a pseudofinite sequence. Set Q =|Jo2, P,. Then Q € Q, and for
eachn € N, either Q,, € Q or Q € O, (since both contain P,). Since P, € Q,, we
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have Q,, € Q for all n > 2. Choose a € Q; \ Q3. Thena ¢ Q,, and so a ¢ P, for all
n > 3. However,a € Q = U;'li] P,. This contradicts the pseudofiniteness of (P,). O

LEMMA 5.3. £ is compact.

PROOF. Let (Q,) be a sequence in 0. Let P, € P such that P, € Q,. Since P is
relatively compact, we can assume without loss of generality that (P,) is pseudofinite;
its union is denoted by Q. We see that either O, C Q or Q € Q,,. If there are infinitely
many (), contained in Q, then those O, form a pseudofinite sequence, following
from the pseudofiniteness of (P,). On the other hand, if there are infinitely many Q,
containing @, then those Q, form a chain, and the previous lemma enables us to find
a nondecreasing sequence of ideals. Thus £ is relatively compact. The result then
follows from the definition of . O

LEMMA 5.4. £ is the set of unions of pseudofinite sequences of ideals in 13.

PROOF. We only need to prove that each ideal Q € 9 is the union of a pseudofinite
sequence in 3. For this purpose,we can suppose without loss of generality that I3 is
countable and that Q is the union of %B. It is obvious that, in this case, any chain in Q
is countable.

Case 1: Q is the union of a chain of ideals in Q\ {Q}. By the countability
and well-ordering of the chain, there exists a chain Q1 C Q> C--- C Q such that
0= UZOZI Q. For all n, choose P, € ‘P such that P, € O, but P, £ Q,. Since
P is relatively compact, without loss of generality, we can assume that (Py,) is
pseudofinite; its union is denoted by Q’. Then Q' C Q, and for each n > 2, either
0,<Q or Q' C Q, (since both contain P,_1). Since P, £ Q,, we must have
0,C Q' foralln>2.50 0 =0

Case 2: Q is not the union of any chain of ideals in Q\ {Q}. Then any P €
0\ {Q} is contained in a maximal element of  \ {Q}. Since Q cannot be the union
of any finite number of prime ideals properly contained in Q, either 2 = {Q}, which
implies that Q € B3, or there exist infinitely many maximal elements of Q \ {Q}.
In the latter case, let Q,, where n € N, be distinct maximal elements of Q \ {Q}.
Choose P, € ‘P such that P, € Q,. By the relative compactness of 3 and without
loss of generality, we can assume that (P, : n € N) is a pseudofinite sequence. Set
Q' =y, P,. Then Q' €£, and for each n €N, either 0, C Q" or Q' C Q,.
Assume towards a contradiction that Q’ = Q. The maximality of the ideal Q, in
0\ {0} implies that Q' C Q,, for all n € N. This implies that {Q,, | n € N} form a
chain, contradicting the maximality and distinction of the ideals Q,,. Thus Q' = Q.

In both cases, Q is the union of a pseudofinite sequence in 3. O

In summary, we have the following proposition.

PROPOSITION 5.5. The closure Q of 'Y satisfies the following conditions.

(i) R is the set of unions of pseudofinite sequences of ideals in 3.
(i) Q is compact.
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(iii) Every chain in Q is well ordered with respect to the inclusion.
V) Npep P =Mgea €

From (i), we see that £ is the smallest compact family of prime ideals containing
. Property (iii) also shows that the intersection of I3 is equal to the intersection of its
minimal elements.

In the remainder of the section, we consider £ to be any compact family of prime
ideals in Cy(£2).

LEMMA 5.6. Let P be in . Then there exists a € A\ P such that a € Q for all
Qe Qwith QL P.

PROOF. Assume that the contrary holds. As in Lemma 4.6, we can construct (a,) C A
and (Q,) € Q such that a;...a, ¢ Q, but ay ...a,41 € Q, for all neN. By
compactness, (Q,) has a pseudofinite subsequence (Q,). However, a; . .. an, € Oy,
butaj ...a,, ¢ Oy forall i > 2; this contradicts the pseudofiniteness. d

We say that an ideal Q is a roof of 9 if it is the union of the ideals in a maximal
chain in . A roof must be either a prime ideal in Cy(£2) or Cp(£2) itself.

LEMMA 5.7. £Q has only finitely many roofs. Also, there are only finitely many
maximal modular ideals in Cy(S2) such that each of them contains an ideal in .

PROOF. We shall prove that there are only finitely many disjoint maximal chains in
1Q; the lemma then follows. Assume to the contrary that €, where n € N, are disjoint
maximal chains in . Pick Q,, € €,. Without loss of generality, we can suppose that
(Qp) is pseudofinite; its union is denoted by Q. We see that Q € £, and since 0 2 Q,,
and ¢, is maximal, we have Q € &, for all n € N, contradicting the disjointness of the

chains ¢,,. O
For a function f € Cy(£2), we can define a new function f/./] f], also in Cp(£2), as
follows: Fo
X
——— whenx eQand f(x)#0
(%)(x) NIl
/1 0 when x € Q and f(x) = 0.

REMARK 5.8. If P is a prime ideal in Cy(€2) and f € P, then the function f//|f]
defined above is also in P.

The following lemma and proposition are inspired by a suggestion of an anonymous
referee of an initial version of [15].

LEMMA 5.9. Suppose that ) is a compact family of prime ideals in Co(2) with a
maximum element Q. Set I = (\p. P. Leta € Co(2) \ Q and let b € Q. Then there
exists s € Q such thatas — b € 1.

PROOF. It is standard that for each prime ideal P C Q, there exists s € Q such that
as —be P.
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Assume towards a contradiction that for all s € Q, as —b ¢ I. Initially, set
s1=0,b1=b —asy =b,and Q| ={P € Q| by ¢ P}. Suppose that we have already
constructed s, € Q, b, =b — as,, and Q, ={P € Q| b, ¢ P} such that

9Q,C---C9.

Since b, ¢ I by the assumption, £, # #. Choose P, € Q,. We see that b, € Q,
and so b, //|b,| € Q. Thus there exists s’ € Q such that as’ — (b,,//|b,]) € P,. Now
we set s,11 = s, + 5'/|bul,

by, ,
byy1=b—asuy1 <\/W as )\/W,
and Q41 ={P € Q| bys1 ¢ P}. We see that Q,11 C Q,; P € Qp\ Q1. Thus
the construction can be continued inductively.
In particular, when m, n € N, we have b,,, € P,, if m > n,but b, ¢ P, if m <n. The
compactness implies that there exists a pseudofinite subsequence (P,,). However, this
contradicts the fact that b,,, € Py, but b, ¢ Py, foralli > 2. a

PROPOSITION 5.10. Suppose that Q is noncompact and £ is a compact family of
nonmodular prime ideals in Co(2) with a maximum element Q. Set I = ﬂPeQ P.
Let P € Q, and let A be a subalgebra of Co(2). Suppose that Co(R2) = A + P and
A N P is the intersection of a subfamily of Q. Let B be a subalgebra of A such that B
is maximal with respect to the property that BN Q C I. Then Cop(2) = B + Q.

PROOF. Whena — b € I we also write a = b mod 1.

Note that / € A N P. By maximality of B we seethat / C B,soindeed BN Q =1.
We can also check, using the maximality of B again, that B £ I. Moreover, [ is
nonmodular in B; for otherwise, Q would be modular in B + Q (because B/l =
(B + Q)/0Q), and from the primeness of QO we could deduce that Q is modular in
Co(£2), which would be a contradiction. Thus [/ is indeed a nonmodular prime ideal in
B, and hence, a prime ideal in B¥.

We claim that for each a € A\ Q and each b € AN Q, there exists s € AN Q
such that as — b € I. Indeed, by the previous lemma, there exists s € Q such that
as—bel. Writes=c+ p wherece Aand pe P. Thenap+ (ac—b)e I C A
implies that ap € AN P. Since a ¢ Q and A N P is the intersection of a family of
prime ideals contained in Q, we musthave pe AN P. Thuss=c+pe AN Q.

We shall prove that A= B + (AN Q); the proposition then follows. Indeed,
assume towards a contradiction that B+ (AN Q) C A. Let a € A such that a ¢
B + Q. By the maximality of B, there exists a polynomial ¢ (X) in B*[X]\ I[X] such
that g(a) € Q. Let g(X) be such a polynomial of smallest degree. By multiplying with
some element in B \ I, we can further suppose that the coefficients of ¢ (X) are in B.
Then we see that ¢'(a) € A\ Q, where ¢'(X) is the formal derivative. Let s € Co(£2).
Then

ga+q'@s)=q@ +q' @+ + q/(a>"q<”>(a>f1—,
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where q(k)(X) is the formal kth derivative of g(X). By the claim, there exists
d € AN Q such that
g(@)=q'(@)*d mod I. (5.1)

So for all s € Co(£2),
q(a+q'(a)s) = 61/(01)2<d +s+--+ q/(a)"_zq(”)(a)s—') mod /.
n!

Since (A/(A N P)) = Cp(2)/ P isradical and (CO(SZ)/P)# is Henselian, there exists
s € A such that

n
dts+-+4@" q"@> cANPCQ
n!
(by [3, Theorem 2.4.30 and Proposition 1.6.3]). It follows that s € Q (so s € AN Q)
and
gla+q'(a)s) e AN P.

If we setb=a + q'(a)s,thenb € A\ (B + Q), q(b) € P, and g(X) is a polynomial
of smallest degree among all the polynomials in B¥*[X]\ I[X] such that ¢(b) € Q.

Hence, without loss of generality, we can assume from the start that g(a) € P. In
this case, d € P by (5.1),sod € AN P. Again, since Co(£2)/1 is radical and Co(2)* /1
is Henselian, there exists ¢ € Cy(£2) such that

n
d+1+--- +q/(a)”_2q(")(a)% eI CANP.
Now AN P is an ideal in Cy(2), and so t€ ANP. Set c=a+q'(a)t. Then
ce A\ (B+ Q), q(c) €1, and g(X) is a polynomial of smallest degree among all
the polynomials in B*[X]\ I[X] such that ¢(c) € Q. The maximality of B implies
that there exists a polynomial p(X) with coefficients in B¥ such that p(c) e Q \ I.
We see that there exist u € B\ I and a polynomial #(X) with coefficients in B*
such that up(X) = q(X)h(X) mod I; this is possible since / is prime in B*. Then
up(c) =qg(c)h(c)=0mod I. Since u ¢ Q (otherwise, u€ BN Q=1) and [ is
the intersection of some prime ideals contained in Q, we deduce that p(c) € I; a
contradiction. O

A special case of the previous proposition is when A = Cy(£2).

6. Homomorphisms from Cy(£2)

In this section, we shall show the connection between continuity ideals as well as
the kernels of homomorphisms from Cy(2) into Banach algebras and intersections
of (relatively) compact families of prime ideals. One direction is an immediate
consequence of the results in Section 4, so most of this section concerns the converse.

We shall need some basic complex algebraic-geometry results; we are indebted
to [14] for these. For aset S € C[Z, Z3, ..., Z,], denote by V(S) the variety (that
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is, common zero set) of S in C". For each prime ideal Q in C[Zy, ..., Z,], the
variety V(Q) is irreducible. The topology considered on complex spaces will be the
Euclidean topology. We shall need the fact that, for each irreducible variety V and
each variety W not containing V, the set V \ W is dense and (relatively) open in
V [14, Ch. IV, Theorem 2.11].

NOTATION. For clarity, we shall use X;, Y; for variables, x;, y; for complex numbers,
and a;, b; for elements of an algebra. When there is no ambiguity, we shall use
boldface characters to denote tuples of elements of the same type; for example, we set

X=X, Xo,...,.Xm) or y=O1,.--, Yn)-

In the case where X = (X1, ..., X,;), we also denote by Cy the corresponding space
cm.,

LEMMA 6.1. Let m,n €N, and let Q be a prime ideal in C[X, Y], where X =
X1, ..., Xp)and Y =Yy, ..., Y,). Consider Qx = Q NC[X] as a prime ideal
in C[X]. Let V be the variety of Q, and let Vx be the variety of Qx. Let w be
the natural projection Cx y — Cx. Then w: V — Vx and there exists a dense open
subset U of V such that w: U — Vx is an open map.

PROOF. Obviously, w maps V to Vx. Without loss of generality, take a transcendental
basis (X1, ..., Xx) for C[X] modulo Qx. We consider CK = Cx,,...x,. Denote by
1 the natural projection Cy y — Ck, and by m; the natural projection Cxy — C*k,

By [15, Lemma 6.3], there exist dense open subsets U of V and Uy of Vy, such
that r1: U — CK and m,: Uy — C* are open maps. Inspecting the proof of [15,
Lemma 6.3], we see that Uy can be chosen as Vx \ Vp, where Vj is a proper subvariety
of Vx, and that m; is a local homeomorphism from Uy onto an open subset of C*k,
Since Vj has dimension at most kK — 1 [14, Ch. IV], by shrinking Uy if necessary, we
can further require that

m(Ux) Nma(Vx \ Ux) =10. (6.1)

Let W =1 (U) N m(Uyx). Then W is an open set in CX. It can be seen that W is
dense in 1 (U). Set

U'=Unz ' (W).

Then U’ is a dense open subset of U, by the openness of 1 : U — C*, and hence a
dense open subset of V.

We claim that 7: U’ — Vy is an open map. Indeed, let (x, y) € U’ be arbitrary.
Then (x1, ..., xx) € W, and so x € Uy by (6.1). Choose Ay to be a neighbourhood
of x in Uy such that 775 is a homeomorphism from Ay onto an open subset of Ck. Let
A be any neighbourhood of (x, y) in U’ contained in 7 ~!'(Ax) N U’. Then we see
that 7(A) € Ax and mp(w(A)) = m1(A), which is open in Ck by the openness of
on U’. It follows that 77 (A) is open in Ax and thus in V. O
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PROPOSITION 6.2. Let A =Cy(R2) for a locally compact space 2, and let Q be a
nonempty compact family of nonmodular prime ideals in A. Suppose that every chain
in  is countable. Then there exist a cardinal k, a free ultrafilter U on k, and a
homomorphism 0p : A — (C¥ JU)° for each P € £, such that:

(@) kerfp =P forall P € Q; and
(b) the set {0p(a) | P € QY is finite for all a € A.

Note that £ must be noncompact and A must be nonunital. Since each P € Q is a
nonmodular prime ideal in A, it is a prime ideal in A*. For all 0 €9, set

andset g =(\pcn 0 P. We begin the proof of Proposition 6.2 with some lemmas.

LEMMA 6.3. Suppose that Q, Q* € Q and A, and A* are subalgebras of A, such
that Q« € Q* and Ay D A*. Suppose further that A* N Q* C Ig+, Ay N Qy =1,
and Ay + Q« = A. Let € be a chain in Q g+ where each ideal in € contains Q. Then
we can find subalgebras Ag € A where Q € € satisfying the following conditions.

(i) AgNQ=Ilgand A=Ap+ Qforall Q €C.

(i) Whenever Q1, Q2 € Cand Q1 € Q, then Ay, 2 Ag, 2 Ag, 2 A*.

PROOF. Assume towards a contradiction that the lemma fails for some instance of
Qx, 0%, Ay, A*, and €; we can further require that o(€) is smallest among such
instances (note that € is well ordered by Proposition 5.5(iii)).

Now A, N Q. =(p e, P is the intersection of a subfamily of ), and

A*NQCA"N Q" C Iy Clp,

for all Q € €. Thus we are in a situation where Proposition 5.10 applies.
Proposition 5.10 implies that € is infinite; otherwise, we can use finite induction to
construct (Ag : Q € €). If € is order isomorphic to w, the first infinite ordinal, say

C={0iCc@rC-},

then Proposition 5.10 also enables us to construct (A g, ) inductively.

In general, there exists a sequence (Q,) in € converging to Qe = UQee: 0
in the order topology (this is where our proof needs the countability condition in
Proposition 6.2). If O« € €, we can construct Ag_, by Proposition 5.10. As in the
previous paragraph, we can then find Ag, for all n € N satisfying both conditions
(1) and (ii). The ideals Q, divide €\ {Q} into chains that are order isomorphic
to ordinals strictly smaller than o(€). The minimality of o(€) (and the assumption)
then imply that we can extend the present collection {Agp} to all Q € € that satisfy
conditions (i) and (ii).

Thus we have a contradiction in either case. O
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LEMMA 6.4. We can find subalgebras Ag C A for all Q € Q satisfying the following
conditions.

i) AgNQ=Igand A=Ag+ Qforall Q €Q.
(i) Ag, 2 Ag, whenever Q1, Q2 € Qand Q1 C Q».

PRrROOF. This follows from the previous lemma, Zorn’s lemma, and the fact that all
prime ideals containing a given prime ideal in A = Cy(£2) form a chain. O

Let x be the set of all tuples of the form (8; &; ay, ..., ay), where § > 0, & is
a nonempty finite subset of £, and (ay, ..., ay) is a nonempty finite sequence of
distinct elements in A. Define a partial order < on « by setting

(6; B a1, as,...,am) <84}, a5, ..., d,)

ifé6>68,BC® {aj,...,an)isasubsetof {aj, d}, ..., ar’n,}. Then (k, <) is a net.
Fix an ultrafilter / on x majorizing this net.

LEMMA 6.5. Let (Ag : Q € Q) beasin Lemma 4.6. Let w = (§; &; ay, . . ., an) € k.
Then, for each P € ®, we can find a tuple

tp(w)=xP =P, D) incm

satisfying all the following conditions.

G  pe xSy =0forall peClXy, ..., Xpl with play, . .., ap) € P.

(ii) x(P) ;éOforall | <k <mwithay ¢ P.

(i) [x")| <8 forall1 <k <m.

@iv) x,EP) = x,EQ)for alll1 <k <mandall P, Q € & suchthat P C Q and ay € Ag.

PROOF. Set X = (X1, ..., X;). Further, set a” =(ay,...,an)NAp and X¥ =

(X :a; € Ap) for all P € &. Without loss of generality, we can assume that none of

these is empty. Note that, if P, Q € ® and P C Q, then a? Ca® and X9 C X7
Denote by mp the projection from Cy onto Cyp, and by mp¢ the projection from

Cxr onto Cyo whenever P, Q € & and P € Q . We also conveniently consider Cyr

as a subspace of Cy.
For each O € &, define

§= {p eCIX]| p(a) € O},
0 ={peC[X?]|p@?) e Q).

We see that if P, Q€ ® and P C Q, then P - Q are prime ideals in C[X], and
Q Q NC[X92]isa prime ideal in C[X“9]. Since Ap N Q= AgpN P in this case,

0={peClX?]|p@?eP}=PNC[XY];

and thus Q =C[X¥9]Nn P.
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It follows from Lemma 6.1 that there exist, for all Q € &, dense open subsets Ug
of V(Q) and Wy of V(Q) such that:
(1) mg: Ug — Wy is an open map;
(2) mpgo: Wp — Wy is an open map whenever P, Q € & and P C Q.

(There are only finitely many varieties here.)
For each Q € &, set

Vo= |J tr=G1 o) |2 =0}
1<r<m

ar¢Q

Then Vy is a variety that does not contain V(Q) and so V(Q) \ Vp is also a dense
open subset of V(Q) because V(Q) isirreducible. Therefore, Ug \ Vo is again a dense
open subset of V(Q)
Set
={x=(1,...,xn) x| <dwhenl <r <m}.

Flnally, set UQ =(Up\Vg)NA and WQ = Wp N A. Note that the origin 0 is
in V(Q) and V(Q) for all Q € &. So U, 0 and WQ are nonempty open subsets of
V(Q) and V(Q) respectively.

Conditions (1), (ii), and (iii) will be satisfied as long as we choose x@DeUu /Q for all
0 € &. We now turn our attention to condition (iv).

Fix P, Q € ® suchthat P C Q. Now Up \ Vp is dense in V(P) and U, € V(Q) €
V(P), so ToUp) N nQ(U’ ) is dense (and open) in JTQ(U’ ) (which is open in Wy).
Note that nQ(UP) = an[np(U ). In fact, we see that wp g (D) N nQ(U ) is dense
and open in 7o (U Q) for every dense open subset D of mp (U ).

Thus we can define a dense open subset D¢ of 7o (U Q) (in Cyo) foreach Q € &
as follows. For all P minimal in &, set Dp = mp (U ;,). Then define inductively

Do = () mro(Dp) NmoUp).
Ped®
PCQ

The nonemptiness of the sets Dp then allows us to pick tuples a€ e Dy for all
Q € &, such that a? = an(oeP) when P, Q € ® and P C Q. (This can be done
inductively, starting from the maximal elements in &; note that & is finite and that
the prime ideals containing a given prime ideal form a chain.) Finally, for all Q € &,
choose x(@) e U’Q (in C" =Cyx) such that 7g (x @) =a2. It can be checked that
these are the desired tuples. O

PROOF OF PROPOSITION 6.2. We retain the notation of the previous lemmas. Define

Ep:A — CFforall P € 9 asfollows. Foreacha € Aandw = (8; &; ay, ..., an) € k,
if Pe® and if @ is in (ay, ..., ay), say a = a; (there is at most one such k),
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then set £p(a)(w) = tp(w)(k); otherwise, set £Ep(a)(w) = 0. Define 6p(a) to be the
equivalence class in C* /U containing &p (a).

It follows from Lemma 6.5 that p is an algebra homomorphism from A into
(C*/U)° with ker8p = P, for all P € Q. Moreover, whenever P, Q € , P C Q
and a € Ag, we have 0p(a) =0¢(a).

Let (P,) be any pseudofinite sequence in Q, andlet Q = [ Jo2; P,. Leta € A. Write
a=>b+x, where be Ap and x € Q. Then x € P, for all n > ng for some ng € N.
Therefore 0p, (a) =0p,(b) =06p(b) for all n > ny. Thus the sequence (Op,(a)) is
eventually constant.

Finally, assume towards a contradiction that the set {0p(a) | P € £} is infinite for
some a € A. Let (P,) be a sequence in £ such that all Op, (a) are distinct. By the
compactness of £, we can assume that (P,) is pseudofinite. However, the previous
paragraph shows that the set {fp, (a) | n € N} is finite. This contradiction concludes
the proof of Proposition 6.2. O

REMARK 6.6. The idea of mapping into an ultrapower in the above proposition
generalizes the approach in [5] of the theorem of Esterle [9] on embedding integral
domains into radical Banach algebras.

We are now ready to prove our main results.

THEOREM 6.7. Suppose that Q2 is a locally compact space.

(i) Let 8 be a homomorphism from Cy(2) into a radical Banach algebra R. Then
ker 0 is the intersection of a (relatively) compact family of nonmodular prime
ideals in Cy(2).

(i1) (CH) Let I be the intersection of a relatively compact family Y of nonmodular
prime ideals in Co(2) such that every chain in the closure of *B is countable.
Suppose that

ICo()/1 =c.

Then there exists a homomorphism 6 from Cy(R2) into a radical Banach algebra
such that ker 6 = I.

PROOF. (i) Since # maps into a radical algebra, we see that ker 6 : f is nonmodular
for each f €(Co(2). Theorem 1.1 shows that ker® =Z(#), and so it is an
abstract continuity ideal in Co(€2). The result then follows from Corollary 4.15(i).
Proposition 5.5 then allows us to pass from a relatively compact family of prime ideals
to a compact family of prime ideals with the same intersection.

(ii) Let £Q be the closure of 3. Then every chain in £ is countable, every ideal in
0 is nonmodular, and I = (" pcq P.

Let 0p: Co(R2) — (C¥/U)°, where P €1, be the homomorphisms defined in
Proposition 6.2. Let B be the subalgebra of (C*/i/)° generated by all the images
of @p for all P € 8. Then B is a nonunital integral domain. Also

|B| =

U 6r <co(sz))‘ =
Pen

U tr@iPe)=c

aeCy(R2)
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since, foreachb €a + 1,
{0p(b) | P e} ={0p(a)| P €12},

which is finite. Thus [9] there exists an embedding ¥ : B — Ry where Ry is any
universal radical Banach algebra. Then the map

0: Co(R) — ]_[ Ry, aw> (Y obp)(a): P e)
Pes

is a homomorphism with kernel () p. P = I. It follows from Proposition 6.2 that
the image of 0 is contained in the radical of £°°(, Rg). O

THEOREM 6.8. Suppose that Q2 is a locally compact space.

(i) Let 0 be a homomorphism from Cy(R2) into a Banach algebra B. Then L () is
the intersection of a (relatively) compact family of prime ideals in Co($2).

(i1) (CH) Let I be the intersection of a relatively compact family B of prime ideals
in Co(S2) such that every chain in the closure of '3 is countable. Suppose that

ICo(€2)/1] = c.

Then there exists a homomorphism 6 from Cy(2) into a Banach algebra such
that T(0) = 1.

PROOF. (i) The continuity ideal Z(0) is an abstract continuity ideal in Cy(€2). The
result then follows from Corollary 4.15(i) and Proposition 5.5.

(ii) Denote by ‘B, the set of nonmodular ideals in 3. Let Q' be the closure of
B\ Bp. By Lemma 5.7, Q’ has only finitely many roofs. Denote by Q1, ..., Q, the
roofs of ', and set B, = {P € P\ By | P € Q).

Let 1 <k <n. First, it is easy to see that Qf is a modular prime ideal. Pick
a modular identity u for Qy, and pick a ¢ Q. Then a —au € Qk, and so, by
Lemma 5.9, there exists v € Q such thata — au —av € () pesp, P It follows easily
that u + v is a modular identity for () Pep, P; denote it by u.

Theorem 6.7 shows that there exists a homomorphism 6y from Cy(€2) into a radical
Banach algebra R such that ker 6p = [ PPy P. Similarly, when 1 <k <n, there
exists a homomorphism 6 from My into Ry such that ker 6y = () Py P, where My
is the maximal modular ideal containing Q. We extend 6 to a homomorphism from
Co(S) into R*, setting O (ux) = eg, . It still remains true that ker 6 = () p Py P.

It follows from the result of Bade and Curtis that Z(6;) = ker 6y when
0<k<n. Thus the homomorphism 6: Cy(2) — ]_[ZZO R,f defined by 6(a) =
Bo(a), ..., 0,(a)) satisfies

10)=()Z60= () P=1
k=0 PepB

as required. O
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REMARK 6.9. Let I be the intersection of a relatively compact family P of prime
ideals in Cp(£2). Suppose that [ is also the intersection of a countable family of prime
ideals. Denote by ‘P, the set of minimal elements in 3. Then P, is also relatively
compact, and [ =) PR, P, by Proposition 5.5(iii). Since [ is the intersection of
a countable family of prime ideals, we see that I3, is countable (using Lemma 5.6).
Since 3, is countable, it is obvious that every chain in the closure of ‘I3, is countable.

7. Examples on metrizable locally compact spaces

For examples of pseudofinite sequences of prime ideals in Cy(£2), see [15]. In this
section, we shall construct relatively compact families of prime ideals that are not
unions of finitely many pseudofinite families.

For the entire section, fix a well-ordered set «. Set k@ =k. Forallne N, define
«™ inductively as the set of limiting elements in x"~1. We shall only consider
those « for which k™ = ¢ for some n € N. This condition forces « to be countable.
Let d be the largest integer for which k() £ §; we call it the depth of k. For simplicity,
we also suppose that « has the largest element, max k, and that «@ = {max «}.
Otherwise, we can always replace « by a bigger well-ordered set.

For all « € k define () to be the largest integer ! for which o € k). We define
a relation < on « as follows: for all «, B € k, we write o < B if B is the smallest
element in « such that 8 > « and /(8) =[(«) + 1. We then define a partial order <
on k as follows: for all «, B € k, we write o < B if there exists a finite sequence
a=y1<yy<---<y,=p. Note that, for each « € «, there is exactly one chain
o =y1 < yy <---, which must be finite, and the ultimate end point of this chain is
max k. We also set

ko ={B €k |1(B) =0}

LEMMA 7.1. The relation < on the well-ordered set k has the following properties.

() IfB<Kaandacikgthen B =a.

(1) Ify <aandy < B then either a L B or f K a.

(i) Iff<Kaand <y <atheny <L a.

(v) If B<KLa and B #« then there exists y € ko such that B <y <« (and so
y L a)

PROOF. The proof is routine. O
We start our construction with the following general lemma.

LEMMA 7.2. Let A be a commutative algebra and Q be an ideal that either is prime
in A oris A itself. Suppose that we have (fy :a € k) C Q and a semiprime ideal
I C Q with the following properties.

1) fau¢landl: fo CQ forallo k.
(ii) fofp €I whenever botha &L B and B L a ink.
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(iii) If gfo € I for some o € k then gfg € I for all B K a.
(iv) If gfp, € I for some By € ko, then, whenever a > By, there exists B1 € ko with
B1 K a such that gfg € I for all B € ko with 1 < B < a.

Then there exist prime ideals Py, where a € «, such that:

@ foéPyandl: fo CPy,CQforallack;

®)  Po=Upapra Ppforallac;

(¢) ifg € Py for some a € k then there exists B1 € ko with B1 < o such that g € Pg
forall B € kg with 1 < B <a.

PROOF. We prove the lemma by induction on the depth d of «.

If d =0, then ¥ = {0}. Conditions (i) to (iv) reduce to I being semiprime, fqy ¢ I
and I : fo € Q. Itfollows that I N S =0, where S = {f¥, f¥ f |k>1, f € A\ Q} is
closed under multiplication. Therefore, we can find a prime ideal Py such that Iy C Py
and PpNS=¢, and so Py € Q and fy ¢ Pop. We see that Py is the required prime
ideal.

Now, suppose that the result holds whenever the depth is less than d. By Zorn’s
lemma, we can find a semiprime ideal J containing / such that J is maximal with
respect to conditions (i) to (iv).

Claim 1: If f ¢ Q then J : f = J. Indeed, it is clear that J : f is semiprime and
satisfies conditions (i) to (iv). So the maximality of J implies J : f = J.

Claim2: If f ¢ J then J : f € Q. For otherwise, there wouldexistg € J : f \ O,
and so f € J: g = J, by Claim 1; this is a contradiction.
Set P=J J : fo. Then P C Q. Condition (iii) implies that

P=|]7J:f

[0 2574

oEK

and condition (iv) implies that P is an ideal, by choosing ¢ = max «.

Claim3: If f ¢ P then J : f = J. Indeed, itis easy to see that J : f is semiprime
and satisfies conditions (i) to (iv) (the least obvious one is (i), however, since f ¢ P,
ffa¢J,andso fo¢J:f and (J:f): fu=J: ffa €O by Claim 2). So the
maximality of J implies J : f = J.

Claim 4: P is either prime in A or A itself. Indeed, if f, g ¢ P, then, by Claim 3,

gt Ui fu=UUN fu=P: .
aEeK oaeK
Thus fg ¢ P.

Let ;] < oy < - - - be the nonlimiting elements in «@=D; their limit is max «. Set
ki={a ek |a<o},and k, ={a €k | ay—1 <a < ay,} for all n > 2. Each «, has
depthd — 1, and « = ;2| «, U {max «}.

For all n e N, we see that (fy : ¢ € k), J, and P are such that (f, 1« €x,) C P
and J C P, and conditions (i) to (iv) hold, with «, replacing «, J replacing I, and P
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replacing Q. So, by induction, there exist prime ideals P,, where « € k,, satisfying
conditions (a) to (¢) (with obvious modifications). Set Ppax = P.

Note that if f < o < max « then both « and 8 belong to the same «,, for some
n € N. We see that the combined family (P, : « € k) obviously satisfies conditions (a)
to (c) (with J replacing I); the only one that we really need to check is condition (c)
when o = max «, but this follows from the facts that J : 8 € Pg C Prax «, that

Prax i« = U J:fﬂa

Beko
and that J satisfies condition (iv). d

Now, let Q2 be a metrizable locally compact space. We define a nonincreasing

sequence (0 Q" : n € ZT) of compact subsets of Q" as follows:

i  putdVQ’ =Q";

(i) foralln € Z*, define 3™tV Q" to be the set of all limit points of amQP.

Define Q" = Mpez+ 3" Q. By the compactness, either Q" is nonempty or
3R is empty for some [ € Z7.

To construct nontrivial pseudofinite sequences of prime ideals in Co(€2) it is
necessary that there exists p € 9 QP: this follows from [15, Proposition 8.7].
Remark that all uncountable Polish spaces possess such a point p, and there are even
countable compact subspaces of R satisfying this condition.

We need some further preparations. For each 8 € « \ {max «}, there exists a unique
o € k such that 8 < «. We define ¢ () to be the number of y € k such that y < « and
y < B; there are only finitely many such y. For each B € kg, there exists a unique
(aq, ..., aq—1) € k such that

B<ap<---<ag_1 <maxk;
set w(B) = max{r(B), t(«1), ..., t(xg—1)}. Forall k e N,
o € ko | we) <k} =K.
Adjoin oo to N to obtain its one-point compactification N’; the convention is that
oo > n for all n € N and 27°° = 0. Define E to be the subset of the product space
(NPy¥o consisting of all elements (ny : o € kp) with the property that there exists a finite

set F' C kg such that ny, = co when « € «g \ F and such that n, > max{w(f) | B € F}
when o € F. It is easy to see that E is a closed subset of (N”)<0.

LEMMA 7.3. Let Q be a metrizable locally compact space and p € 3 Q". Then the
space & can be continuously embedded into ° such that the point 0o = (00, 00, . . .)
is mapped into p.

PROOF. As shown in [15, Lemmas 9.1 and 9.2], the compact subset

k
A:{O}U{ZZ’”

i=1

k,nl,nz,...,nkeNandkfnl<-~<nk}

of R is continuously embedded in Q" such that 0 is mapped into p.
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Choose an injective map r: ko x N — N such that (e, j) > j¢ for all o € ko and
J € N; this is possible since kg is countable. For convenience, for all @ € kg, we also
set r(a, 00) = oo. Define a map t from E into [0, 1] as follows: for all (ny)wex, € &,
set

T (Ne)aexy = Z )
wEKQ

Then we see that t is well defined, injective and continuous.

Let (ng)aex, € B be arbitrary. Set F = {« € kg | nq < 00}. Then F is a finite subset
of kg, and ng > k = max{w(B) | B € F} forall @ € F. So we see that, for«x € F,

r(a, ng) > nd > k? = |{B e ko | w(B) <k} > |F|.

From this, we deduce that T maps E into A, and the lemma follows. d

LEMMA 7.4. Let Q2 be a metrizable locally compact space, and let p € 3 Q.

Then there exist a family of prime ideals (P, : o € k) in Co(2), where each ideal is

supported at p, and a family of functions (fy : o € ) in Co(2) such that:

(@) fo & Pyand fg € Py whenever both B L a and a K B;

(0)  Po=Upeq poro Ppforalla €

(¢) forall a €k, if g € Py then there exists B1 € ko with B <K o such that g € Pg
forall B € kg with 1 < B <a.

PROOF. It follows from the previous lemma that we only need to consider the case
where 2 = E and p = oco. Thus suppose that 2 = E and p = oo.
For each o € k¢ define

Zy = {(nﬂ)ﬂa(o € B | ng = o0},

Zo = ﬂ Zg.

Bexo
BLa

Then choose f, € C(E) such that Z, = Z( f,). Let F be the z-filter generated by all
ZyUZg where a, B ek, a & B and B L o. Then define I = Z7'[F]. Obviously 7
is a semiprime ideal, I € M, and (fy 1 € k) € M.

It is sufficient to prove that (fy), I, and M satisfy conditions (i) to (iv) of
Lemma 7.2.

First, for all y € k, we see that f € I : f,, if and only if

and for all ¢ € k \ k¢ define

n
Z(f)UZy 2 )(Za U Z,),

k=1
where oy K Br and B K oy for each k. We see from Lemma 7.1 that, for all k, one
of the following three cases must happen:
(1) ax Ly andy K o;
(2) ¥y L Prand B Ky;
3) Ly, P Ly, ok K Pr and B K ai.
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Thus we see that f € I : f,, implies that

Z(f)UZy2() Ze N

N
(ZO'j U Z{'_,‘),
i=1 j=1

where g; € ¥ and y K g; forall i, and 0; <y, {; Ky, 0; L and {; K o; for
all j. In particular, we see that o; < y whenever 1 < j <, and so, by Lemma 7.1(iv),
there exists 8 € kg such that

B>max{o; |1 <j<s} and B<KLy.

These also imply that 8 Lo if 1 <j<s and B K g; if 1 <i <r. Thus for all

k> w(pB), we set nfgk) =k and n((xk) = 0o when « # 8, and then

r

o iwexe((2an()2)\ 2 <20,
j=1

i=1

—~

On the other hand, limk%oo(nka) ta€kg) =00 in E. It follows that oo € Z(f).
Hence, I : f, € M and f, ¢ I, so condition (i) of Lemma 7.2 holds.

It is obvious that conditions (ii) and (iii) of Lemma 7.2 are satisfied by the
definitions of I and the sets Z,.

Now, let Bp, @ € k and let g € C(E) be such that [(8p) =0, fo K «, By # « (these
imply that « ¢ ko) and gfg, € I. Then, from the previous discussion, noting that

(o) =0,

r v
Z()VUZp2( ) Zo or Z()2()Zo \ Zp:

i=1 i=1
where By « 0;, which implies that & « o; for all i. We claim that
r
Z2@)2()2an [\ 2
i=l

Y €k0

w(y)=<w(Bo)

Indeed, let (n, : y € ko) # oo be in the right-hand-side set. Then, n,, = oo whenever
y < o; for some i or w(y) < w(pPo) forall y € kg. Set F ={y € ko | n,, < 0o}. Then
F is a nonempty finite set and

ny, >max{w(B) | B € F} >w(By) VyeF.

Thus by setting ng;) =k when k > max{w(B) | B € F} and n](,k) =n, when y # By,
we obtain

.
Py exo) () Zo \ Zpy S Z(3).

i=1

On the other hand, we see that limk%oo(ng,k) 1y €ko) = (ny, 1y €ko) in E. It follows
that (n), : y € ko) € Z(g). The claim follows.
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Set
A={yeko|y <aand w(y) <w(Bo)}

and
B={oi|l<i<ro<a}
By Lemma 7.1(iv), we can choose 81 € k¢ such that 8; <« « and

B1 > max(A U B); (7.1)

note that max(A U B) < « and max(A U B) # «. Let 8 € kg be such that 8] < 8 <«.
Then 8 < «. We see that g; < f when 1 <i <r; otherwise we see that o; = 8 K o
but then B8 > B > g; by (7.1), contradicting g; = B. We also see that 8 « ¢; when
1 <i <r; otherwise either 9; < @ or @ < g;, and we have already ruled out o < g;
from the beginning of the previous paragraph, so o; < «, and again, this and (7.1)
imply that 8 > B > o;, contradicting 8 < g;. We also see that 8 &« y and y « g for
all y € kg with w(y) < w(Bp); otherwise y = f <« o. However, this and (7.1) imply
that 8 > 81 > y. Thus

-
ZQUZg2()2ZoaUZp)n () 2Z,UZpeF:
i=1 Y €ko
w(y)=w(Bo)
and so gfpg € I. Hence, condition (iv) of Lemma 7.2 is also satisfied. O

We now state the main theorem of this section.

THEOREM 7.5. Suppose that p € 3 Q" where Q is a metrizable locally compact

space, and that k is a well-ordered set as above. Then there exists a compact family of

prime ideals (Py : « € k) in Co(2), where each ideal is supported at p, satisfying the

following conditions.

(@) (Py,:n=>ng) is a pseudofinite sequence with union Py, for some ngeN
whenever (a,,) converges to o in the order topology of k.

(b) Py C Pgifandonlyifoa < B.

Let B be any relatively compact family of prime ideals with the same intersection as

(Moex Pa- Then the closure of B contains a chain of length d + 1. In particular, B3 is

not the union of any finite collection of many pseudofinite subfamilies of prime ideals

when d > 1.

PROOF. Let (Py : o € k) be the family constructed in Lemma 7.4.
(a) Without loss of generality, we assume that «;, # « for all n € N. There exists
no € N such that o, < o for all n > ny. We see that P, C P, for all n > ng and

Py={J Ps.

Bexo
<

So by Theorem 7.5(c), for each g € Py, there exists B € kg with 8; < « such that
g € Pg for all B €y with 1 < B <a. Choose ny > ng such that a,, > gy for all
n>ny. Let n>ny be arbitrary. Pick B’ € ko such that B’ < «a,. If B’ <pBi,

https://doi.org/10.1017/51446788709000329 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788709000329

[27] Homomorphisms from Cy(£2) 129

then B; < o, by Lemma 7.1(iii), and so g € Pg, € P,,. Otherwise B; < B’, then
g € Pg C Py,. Thus (Py, : n > nop) is a pseudofinite sequence whose union is Py.

(b) This is a consequence of Lemma 7.4(a) and (b).

In the order topology, « is a compact metrizable space; each sequence in « has a
convergence subsequence. The compactness of { Py | « € '} thus follows from (a).

Let 13 be a relatively compact family of prime ideals such that

(N P=1=()Pe

Pep aEK

Denote by 3, the subfamily consisting of minimal elements of 3. By Proposi-
tion 5.5(iii), we see that () Pep, P =1. Lemma 5.6 shows that, for each P € ‘3,
there exists fp ¢ P but fp € Q forall Q € P, \ {P}; in particular, P =1 : fp. This
and Lemma 4.8 then imply that I3, is exactly the set of prime ideals of the form 7 : f
for some f € Co(€2). Similarly, {Py | o € K} is also exactly the set of prime ideals of
the form [ : f for some f € Cp(€2). Thus

P, ={Po | @ €xo} anditsclosureis {Py | @ € k}.

Therefore, whenever og < o] < - - - < oy = max «, we have a chain of length d + 1 in
the closure of ‘B, namely Py, C - - - C Py,. Obviously, this shows that 3 cannot be
the union of any finite number of pseudofinite families when the depth of « is larger
than 1. O

REMARK 7.6. Since the cardinality of C(E) is ¢, we see that, for (P, :« € k) as in
the above theorem,

=_C.

@ /() P

oek

Let Q be any metrizable locally compact space with 9(°Q £ . Let 3 be a
relatively compact family of prime ideals in Cp(£2). Since we are mostly interested
in pesp P, by passing to the minimal elements of 3, we can suppose that P ¢ Q
for each distinct P, Q € 3. Let us call a family satisfying this condition reduced.

QUESTION. Is there a reduced relatively compact family of prime ideals 3 in Co(£2)
whose closure contains an uncountable chain or (merely) an infinite chain? If there
exists such a reduced family I3 whose closure contains an uncountable chain, is it still
possible to remove the countability condition from Theorems 6.7 and 6.8?

We know that every chain in the closure of a relatively compact family of prime
ideals must be well ordered (Proposition 5.5(iii)). However, we show in [16] the
existence of uncountable well-ordered chains of prime ideals in Cp(£2). We also
show in [16] that there is an uncountable, nonredundant, pseudofinite family of prime
ideals in Cy(£2), thus, in particular, showing that there exists an uncountable, reduced,
relatively compact family of prime ideals (however, every chain in the closure of a
pseudofinite family of prime ideals has length at most 2).
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