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COMPOUND POISSON LIMITS
FOR HOUSEHOLD EPIDEMICS

PETER NEAL,∗ University of Manchester

Abstract

We consider epidemics in populations that are partitioned into small groups known as
households. Whilst infectious, a typical infective makes global and local contact with
individuals chosen independently and uniformly from the whole population or their own
household, as appropriate. Previously, the classical Poisson approximation for the number
of survivors of a severe epidemic has been extended to the household model. However,
in the current work we exploit a Sellke-type construction of the epidemic process, which
enables the derivation of sufficient conditions for the existence of a compound Poisson
limit theorem for the survivors of the epidemic. The results are specialised to the
Reed–Frost and general stochastic epidemic models.
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1. Introduction

Poisson limit theorems for closed population SIR epidemics have a long history dating back
to the seminal work [9]. In such epidemic models, individuals are in one of three possible states:
susceptible (S), infective (I ), or removed (R). The only transitions in state that are assumed to
occur are S → I and I → R, that is a susceptible becoming infected and an infective being
removed, respectively. Since [9], an extensive range of asymptotic Poisson limit theorems for
homogeneously mixing epidemics have been derived (see [4], [10]–[13]).

However, over the last ten years or so, there has been considerable interest in studying
heterogeneously mixing populations (see, for example, [1], [5], [7]). In particular, considerable
attention has been focused on two-level mixing models, in which, whilst infectious, individuals
make global infectious contact with individuals chosen independently and uniformly from the
whole population and local infectious contact with individuals according to some predefined
local contact distribution. The most widely studied two-level mixing model is the so-called
household model, where individuals belong to disjoint groups known as households, and
infectious individuals make local infectious contact with individuals chosen independently
and uniformly from their own household.

All three of the ‘classic’ asymptotic approximations, as the population size N → ∞ and for
homogeneously mixing SIR epidemics, have been extended to the households model; that is, the
branching process approximation for the early stages of the epidemic (see [3]), a central limit
theorem for the final size of the epidemic when the epidemic takes off (see [5]), and a Poisson
limit theorem for the total number of individuals who avoid infection during the course of an
epidemic that is well above threshold (see [6]). In particular, in [6] it was shown in establishing
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Compound Poisson limits 335

the asymptotic Poisson limit theorem that, in the limit as the population size N → ∞, all
the survivors of the epidemic are in distinct households, where a survivor is defined to be an
individual who remains susceptible throughout the course of the epidemic. This is because,
under the conditions of [6, Theorems 3.1 and 4.6], the global infection process plays a key role
in spreading the disease. However, it is reasonable to suggest that, under suitable conditions, the
survivors of a severe epidemic will be clustered together in a few households, thus suggesting the
possibility of an asymptotic compound Poisson limit theorem. Furthermore, in [6, Section 5],
it is stated without proof that, under certain conditions, an asymptotic compound Poisson limit
theorem can be derived for the Reed–Frost household model. The aim of this paper is to prove
that result. In fact, we prove a far more general asymptotic compound Poisson limit theorem
for SIR household epidemics (see Theorem 3.1, below). In order to do this we take a radically
different approach to [6], which built upon [10]. Our method is more akin to [13], which gave
the first rigorous Poisson limit for the general stochastic epidemic (GSE). In particular, we
utilise a Sellke-type construction of the household epidemic (see, for example, [5]). Unlike in
[6], we shall assume for ease of exposition that there is only one initial infective. However,
the theorems and proofs of Section 3, below, can be easily adapted to the case where there
are c initial infectives, for some 1 ≤ c < ∞.

In Section 2, a full description of the epidemic model is given. Moreover, two equivalent
descriptions of the epidemic model are given, both of which will prove useful in the sequel. In
Section 3, the main result, Theorem 3.1, is stated and then proved via a series of lemmas.
Finally, in Section 4, we consider two important special cases, the Reed–Frost and GSE
models. We compare and contrast the asymptotic compound Poisson limits obtained in these
cases.

2. Household epidemic

We consider a sequence of epidemics {En}, indexed by the number of households n. For
fixed n ≥ 1, we shall label the households 1 through to n and, for 1 ≤ i ≤ n, let Hn

i denote the
size of household i. We assume that, for all l ≥ 1 and n ≥ l, Hn

l = Hl , say. For 1 ≤ i ≤ n, the
individuals in household i are labelled (i, 1) through to (i, Hi). We assume that there exists an
m and an M , 2 ≤ m ≤ M , such that, for all l ≥ 1, m ≤ Hl ≤ M . That is, there is a minimum,
m, and maximum, M , household size. Whilst the assumption that the minimum household
size is at least 2 is slightly restrictive, it is necessary to prevent the compound Poisson limit
from being degenerate, in that if m = 1 then the only compound Poisson limit that exists is
the standard Poisson limit (cf. [6, Section 4.3]). For n ≥ 1 and m ≤ r ≤ M , let θn

r denote the
proportion of households of size r and assume that θn

r → θr as n → ∞, for some 0 ≤ θr ≤ 1.
Finally, for n ≥ 1, let Nn = ∑n

i=1 Hn
i denote the total number of individuals in the population.

The epidemic process can be constructed as follows. Consider a fixed n ≥ 1. Assign to
each individual in the population an independent and identically distributed (i.i.d.) life history
according to Hn = (Q, ηn, ζ n), where Q is the infectious period, whose distribution is assumed
to be independent ofn, andηn and ζ n are homogeneous Poisson point processes of times, relative
to an individual’s infection, at which the individual makes global and within-household (local)
infectious contact, respectively. Let ηn and ζ n have rates λG

n = Nnβ
G
n and λH

n = (m − 1)βH
n ,

respectively, where each ‘β’ denotes the useful fraction of the corresponding rate ‘λ’. The
elements Q, ηn, and ζ n of Hn are assumed to be independent. Each global infectious contact
is, with an individual, chosen independently and uniformly from the Nn individuals in the
population. Each local infectious contact made by an infective (i, j), say, is, with an individual,
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chosen independently and uniformly from the other Hi − 1 individuals in household i. Thus,
we assume that individuals make both global and local contact with the other members of their
household and that an individual makes global but not local infectious contact with itself. At
the end of its infectious period, an individual becomes immune to further infection and plays no
role in the remainder of the epidemic. If an infectious individual contacts a susceptible (i, j)

with life history Hn
i,j = (Qi,j , η

n
i,j , ζ

n
i,j ) at time t , say, then the susceptible becomes infected

and is infectious until time t + Qi,j , at which time the individual becomes removed. Whilst
infectious, individual (i, j) makes global and local infectious contacts at the points t + ηn

i,j

and t + ζ n
i,j , respectively. We assume that there is one initial infective in an otherwise initially

susceptible population. For convenience, we assume that the initial infective is individual (1, 1)

and that it becomes infected at time t = 0. These assumptions on the initial infective can easily
be relaxed.

In order to prove Theorem 3.1, below, it is useful to give an alternative description of the
epidemic. To this end, we give a Sellke-type construction of the epidemic (see [5] and [13]),
which can easily be shown to be equivalent to the above description of the epidemic (see, for
example, [5]). Consider fixed n ≥ 1. Assign to each individual in the population an i.i.d.
life history according to H̃ = (Q, �n, ζ n), where Q and ζ n are as above and �n is the total
exposure to global infection required to infect an individual globally. That is, any individual
(i, j), say, is globally infected when exposed to t units of global infectious pressure if and
only if �n

i,j ≤ t , where �n
i,j is distributed according to �n. We take �n to follow a negative

exponential distribution with mean (βG
n )−1, to be consistent with the previous description

of the epidemic. We again assume that the initial infective is individual (1, 1), so �n
1,1 is

redundant. For notational convenience, we shall take �n
1,1 = 0. The local infectious process

is exactly as described above. Furthermore, we assume that local infections, where they occur,
are instantaneous. Whilst this alters the time course of the epidemic, the final outcome of the
epidemic is unaffected. This approach has previously been taken in [5].

For n ≥ 1, 1 ≤ i ≤ n, and t ≥ 0, let (Rn
i (t), An

i (t)) be defined as follows. Let Rn
i (t)

denote the total number of individuals in household i who avoid infection given that the whole
population is exposed to t units of global infectious pressure. Let An

i (t) denote the sum of the
infectious periods of the individuals in household i who are infected when the whole population
is exposed to t units of global infectious pressure. Thus, Rn

i (t) and An
i (t) do not only take

account of those individuals who are globally infected by t units of global infectious pressure
but also the subsequent local epidemics in household i originating from those individuals who
are infected globally. Note that household 1 is different to the other households in that it
contains the initial infective.

We follow [5, Section 4.2.2] in defining a sequence of stochastic times at which to consider
the epidemic. Let I 0

n = Q1,1 and, for k ≥ 1, let

I k
n =

n∑
i=1

An
i (I

k−1
n ).

Therefore, I 0
n is just the infectious period of the initial infective and I 1

n is the sum of the infectious
periods of all those individuals infected globally by I 0

n units of infectious pressure and also
those individuals infected in the subsequent local epidemics. This process can be continued,
with I k

n being the sum of the infectious periods of all those individuals either infected globally
or by the subsequent local epidemics when the whole population is exposed to I k−1

n units
of global infectious pressure. The process continues until the additional infectious pressure
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generated by a set of local epidemics is insufficient to infect any further individuals globally.
Then k∗ = min{k : I k+1

n = I k
n } is well defined since the population is finite. Let I∞

n = I k∗
n ;

then I∞
n is given by

I∞
n = min

{
t ≥ 0 : t =

n∑
i=1

An
i (t)

}
.

For n ≥ 1, let Xn(t) = ∑n
i=1 Rn

i (t) and note that Xn(t) is decreasing in t . For n ≥ 1, let Zn

denote the total number of survivors of the epidemic En. Then Zn = Xn(I
∞
n ). For n ≥ 1 and

s, t ≥ 0, let fn(s; t) = E[sXn(t)] denote the probability generating function for Xn(t). Note
that, for any t ≥ 0, conditional upon each individual in the population being exposed to t units
of global infectious pressure, the local epidemics within each household are independent. Thus,

fn(s; t) = E[sXn(t)] =
n∏

i=1

E[sRn
i (t)]. (2.1)

Furthermore, for all n ≥ 2 and for 2 ≤ j , k ≤ n, we obtain Rn
j (t)

d= Rn
k (t) if Hj = Hk , where

‘
d=’ denotes equality in distribution.

3. Main results

For λ > 0, let Po(λ) denote a Poisson random variable with mean λ and, for k ∈ N, let
Pok(λ)

d= kPo(λ).

Theorem 3.1. Suppose that there exist β, α, and d with β > 0, α ∈ R, and 0 < d < ∞, such
that E[Q1+β ] < ∞,

m E[Q]λG
n − log n → α, as n → ∞, (3.1)

and
n1/mϕn(1) → d, as n → ∞, (3.2)

where, for t ≥ 0, ϕn(t) = E[exp(−tβH
n Q)]. Furthermore, for all r with m ≤ r ≤ M and for

all i with 1 ≤ i ≤ m, let

d̂r,m,i = lim
n→∞ n(m−i)/mφn

(
i

r − 1

)r−i

,

where, for t ≥ 0, φn(t) = E[exp(−tλH
n Q)]. Then there exist independent random variables

Z1, Z2, . . . , Zm such that

Zn
d−→ Z =

m∑
k=1

Zk, as n → ∞,

where Zk = Pok(bk), bk = ak
∑M

r=m

(
r
k

)
θr d̂r,m,k (1 ≤ k ≤ m), a = exp(−α/m), and

‘
d−→’ denotes convergence in distribution.

We postpone proving Theorem 3.1 until the end of this section. We begin by examining the
conditions of Theorem 3.1. Firstly, the total number of survivors of the epidemic will be greater
than or equal to the total number of households in which every member of the household avoids
global infection during the course of the epidemic. Thus, we require that the global infection

https://doi.org/10.1239/jap/1118777174 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1118777174


338 P. NEAL

rate is such that the probability that a household completely avoids infection tends to 0 as
n → ∞. This is the key role played by (3.1). By Jensen’s inequality, ϕn(1) ≥ exp(−βH

n E[Q]).
Therefore, (3.2) and E[Q] < ∞ imply that βH

n → ∞ and, hence, λH
n → ∞ as n → ∞. Thus,

to establish a compound Poisson limit for a household epidemic, we require that both λG
n → ∞

and λH
n → ∞ as n → ∞.

For 1 ≤ i ≤ m − 1, let di = limn→∞ n1/mϕn(i) and note that di ≤ d. Also, by Jensen’s
inequality, for m ≤ r ≤ M and 1 ≤ i ≤ m − 1,

φn

(
i

r − 1

)r−i

≤ φn

(
i

m − 1

)((m−1)/(r−1))(r−i)

≤ φn

(
i

m − 1

)m−i

= ϕn(i)
m−i (3.3)

since, for t ≥ 0, φn(t) ≤ 1 and, for r ≥ m, (m − i)(r − 1) ≤ (r − i)(m − 1). Hence, (3.2) and
(3.3) ensure that, for all m ≤ r ≤ M and 1 ≤ i ≤ m−1, d̂r,m,i ≤ dm−i

i < ∞. Also d̂m,m,m = 1
and d̂r,m,m = 0 (m < r ≤ M). Thus, it follows from (3.1) and (3.2) that E[Z] < ∞.

In order to prove Theorem 3.1, we require the following preliminary lemmas. Throughout
we shall assume that the conditions of Theorem 3.1 hold.

Lemma 3.1. For any 0 < ε < 1,

P(Zn > εNn) → 0, as n → ∞.

Proof. For n ≥ 1, let Ẽn denote the homogeneous mixing epidemic in a population of
size Nn, where a typical individual i, say, is infectious for a time Qi and makes infectious
contacts at the points ηn

i . Also, let Z̃n denote the total number of survivors of the epidemic.
Clearly, Z̃n is stochastically greater than Z̃n, since Ẽn can be constructed from En by simply
ignoring the local infectious contacts.

Then, by (3.1), λG
n → ∞ as n → ∞ and, since ϕn(1) ≥ P(Q = 0), by (3.2), P(Q = 0) = 0.

Therefore, it can be proved along similar lines to [6, Lemma 3.9] that P(Z̃n > εNn) → 0, as
n → ∞, and the lemma follows.

Let Īn = Nn E[Q]. For i ≥ 1, let Q̃i be i.i.d. according to Q and, for K ≥ 1, let
SK = ∑K

i=1 Q̃i .

Lemma 3.2. For any 0 < ε < 1,

P(I∞
n < εĪn) → 0, as n → ∞.

Proof. Fix 0 < ε < 1. Then

P(I∞
n < εĪn) ≤ P

(
I∞
n < εĪn

∣∣∣∣ Zn <
1 − ε

2
Nn

)
+ P

(
Zn >

1 − ε

2
Nn

)
. (3.4)

Lemma 3.1 ensures that the second term on the right-hand side of (3.4) converges to 0 as
n → ∞.

Note that Zn < 1
2 (1 − ε)Nn implies that the total number of infectives during the course

of the epidemic exceeds 1
2 (1 + ε)Nn. Thus, conditional upon Zn < 1

2 (1 − ε)Nn, I∞
n is

greater than or equal to the sum of the infectious periods of the first Kn infectives, where
Kn = � 1

2 (1 + ε)Nn� + 1. (For x ∈ R, �x� denotes the smallest integer less than or equal
to x.) Furthermore, conditional upon Zn < 1

2 (1 − ε)Nn, we have that, for 1 ≤ j ≤ Kn, the
first j infectives are responsible for at least j successful infectious contacts. It is then fairly
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straightforward to adapt the proof of [6, Lemma 3.2] to show that the sum of the infectious
periods of the first Kn infectives is stochastically larger than SKn . Thus,

P

(
I∞
n < εĪn

∣∣∣∣ Zn <
1 − ε

2
Nn

)
≤ P(SKn < εĪn). (3.5)

However, the strong law of large numbers ensures that the right-hand side of (3.5) converges
to 0 as n → ∞, since E[SKn ] = (� 1

2 (1 + ε)Nn� + 1) E[Q]. Hence, the lemma is proved.

For n ≥ 1, let πn = exp(−βG
n Īn) = exp(−λG

n E[Q]). For n ≥ 1, m ≤ r ≤ M , 0 ≤ j ≤ r ,
and 0 ≤ k ≤ r−j , let P n,r

j,k denote the probability that, in a household of size r with j individuals
infected globally, there is a local epidemic in which k of the individuals who avoided global
infection are infected. Note that, by definition, for all n ≥ 1 and m ≤ r ≤ M , P

n,r
0,0 = 1.

Explicit expressions for the probabilities {P n,r
j,k } can be obtained using [2, Equation (2.5)].

Lemma 3.3. Let {un} be any sequence of positive real numbers such that un → 1 as n → ∞.
Then, for all m ≤ r ≤ M and for all 1 ≤ j ≤ m, we obtain

n(πnun)
jP

n,r
r−j,0 → aj d̂r,m,j , as n → ∞, (3.6)

and, for 1 ≤ k ≤ j − 1,
n(πnun)

jP
n,r
r−j,k → 0, as n → ∞. (3.7)

Finally, for all m < r ≤ M , m < j ≤ r , and 0 ≤ k ≤ j − 1,

n(πnun)
jP

n,r
r−j,k → 0, as n → ∞. (3.8)

Proof. By (3.1), for n ≥ 1, there exists a µn such that

λG
n = 1

m E[Q] (log n + α) + µn,

where µn → 0 as n → ∞. Therefore, it follows that πn = an−1/m exp(−µn E[Q]), so

n1/mπnun → a, as n → ∞. (3.9)

By [2, Equation (2.5)] and (3.3),

n(m−j)/mP
n,r
r−j,0 = n(m−j)/mφn

(
j

r − 1

)r−j

→ d̂r,m,j , as n → ∞. (3.10)

Thus, (3.6) follows from (3.9) and (3.10).
Furthermore, by [2, Equation (2.5)], for 1 ≤ j ≤ m and 1 ≤ k ≤ j − 1,

P
n,r
r−j,k ≤

(
j

k

)
φn

(
j − k

r − 1

)r−(j−k)

.

Thus, by (3.3),

P
n,r
r−j,k ≤

(
j

k

)
ϕn(j − k)m−(j−k) ≤

(
j

k

)
ϕn(1)m−(j−k),

so, by (3.2),
n(m−j)/mP

n,r
r−j,k → 0, as n → ∞. (3.11)

Thus, (3.7) follows from (3.9) and (3.11).
Finally, (3.8) is trivial since, for j > m, nπ

j
n → 0 as n → ∞.
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Lemma 3.4. For any δ > 0,

P(Xn(I
∞
n ) > nδ) → 0, as n → ∞.

Proof. Fix an ε such that 1 − δ < ε < 1. Then

P(Xn(I
∞
n ) > nδ) ≤ P(Xn(I

∞
n ) > nδ | I∞

n ≥ εĪn) + P(I∞
n < εĪn)

≤ P(Xn(εĪn) > nδ) + P(I∞
n < εĪn), (3.12)

since Xn(I
∞
n ) ≤ Xn(εĪn) if I∞

n ≥ εĪn. The second term on the right-hand side of (3.12)
converges to 0 as n → ∞, by Lemma 3.2.

By Markov’s inequality,

P(Xn(εĪn) > nδ) ≤ n−δ E[Xn(εĪn)] = n−δ
n∑

k=1

E[Rn
k (εĪn)]. (3.13)

Consider a household l ≥ 2, say, and suppose that Hl = r . Note that

E[Rn
l (εĪn)] ≤ r P(Rn

l (εĪn) 	= 0). (3.14)

For 1 ≤ i ≤ n and t ≥ 0, let Gn
i (t) denote the total number of individuals in household i who

avoid global infection when each individual in the population is exposed to t units of global
infectious pressure. Then,

P(Rn
l (εĪn) 	= 0) =

r∑
j=0

P(Rn
l (εĪn) 	= 0 | Gn

l (εĪn) = j) P(Gn
l (εĪn) = j).

Therefore, since P(Rn
l (εĪn) 	= 0 | Gn

l (εĪn) = 0) = 0 and P(Rn
l (εĪn) 	= 0 | Gn

l (εĪn) = r) = 1,
we have

P(Rn
l (εĪn) 	= 0) =

r−1∑
j=1

j−1∑
k=0

P
n,r
r−j,k P(Gn

l (εĪn) = j) + P(Gn
l (εĪn) = r).

Note that

P(Gn
l (εĪn) = j) =

(
r

j

)
exp(−βG

n εĪn)
j (1 − exp(−βG

n εĪn))
r−j =

(
r

j

)
π

εj
n (1 − πε

n)r−j .

Thus,

nε P(Rn
l (εĪn) 	= 0) = nε

r−1∑
j=1

j−1∑
k=0

{
P

n,r
r−j,k

(
r

j

)
π

εj
n (1 − πε

n)r−j

}
+ nεπεr

n

≤
r−1∑
j=1

j−1∑
k=0

{(
r

j

)
(nP

n,r
r−j,kπ

j
n )ε

}
+ (nπr

n)ε.

Now it follows from Lemma 3.3 that there exists a constant Cr , 0 ≤ Cr < ∞, such that

lim
n→∞

{r−1∑
j=1

j−1∑
k=0

{(
r

j

)
(nP

n,r
r−j,kπ

j
n )ε

}
+ (nπr

n)ε
}

= Cr.
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Hence, for all sufficiently large n,

P(Rn
l (εĪn) 	= 0) ≤ (Cr + 1)n−ε. (3.15)

It is straightforward to adapt the above arguments to show that

P(Rn
1 (εĪn) 	= 0) ≤ (CH1 + 1)n−ε. (3.16)

Let C = maxm≤r≤M{Cr}. Hence, by (3.13)–(3.16), for all sufficiently large n,

P(Xn(εĪn) > nδ) ≤ n−δ E[Xn(εĪn)]

≤ n−δ
n∑

k=1

Hk(C + 1)n−ε

≤ M(C + 1)n1−(δ+ε).

The lemma follows from (3.12), since δ + ε > 1.

We are now ready to prove our main result.

Proof of Theorem 3.1. Fix a γ , 0 < γ < β/(1+β), and set δ = 1−γ . Let T L
n = Nn−�nδ�

and T U
n = Nn. If Xn(I

∞
n ) ≤ nδ then I∞

n is stochastically larger than ST L
n

(cf. the proof of
Lemma 3.2). However, clearly I∞

n is stochastically smaller than ST U
n

. Therefore, let

ÎL
n = Nn E[Q] − (nδ E[Q] + n1−γ ) = Nn E[Q] − n1−γ (E[Q] + 1)

and
ÎU
n = Nn E[Q] + (nδ E[Q] + n1−γ ) = Nn E[Q] + n1−γ (E[Q] + 1).

By the Marcinkiewicz–Zygmund generalization of the strong law of large numbers (see
[8, p. 122, Theorem 2]), it is straightforward to show that

P(ST L
n

≥ ÎL
n ) → 1 and P(ST U

n
≤ ÎU

n ) → 1, as n → ∞.

Since, by Lemma 3.4, P(Xn(I
∞
n ) > nδ) → 0 as n → ∞, it then follows that

P(I∞
n ≥ ÎL

n ) → 1 and P(I∞
n ≤ ÎU

n ) → 1, as n → ∞.

Hence,

P(Xn(I
∞
n ) ≤ Xn(Î

L
n )) → 1 and P(Xn(I

∞
n ) ≥ Xn(Î

U
n )) → 1, as n → ∞.

Therefore, since Zn = Xn(I
∞
n ), to prove the theorem it is sufficient to show that both Xn(Î

U
n )

and Xn(Î
L
n ) converge, in distribution, to Z as n → ∞.

By (2.1), for all s, t ≥ 0 we have

fn(s; t) = E[sXn(t)]

=
n∏

l=1

{ Hl∑
k=0

sk P(Rn
l (t) = k)

}

=
n∏

l=1

{
1 +

Hl∑
k=1

(sk − 1) P(Rn
l (t) = k)

}
, (3.17)

since P(Rn
l (t) = 0) = 1 − ∑Hl

k=1 P(Rn
l (t) = k).
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Consider a household l ≥ 2, say, with Hl = r . Then, for all 1 ≤ k ≤ r ,

n P(Rn
l (ÎU

n ) = k) = n

r∑
j=0

P(Rn
l (ÎU

n ) = k | Gn
l (Î

U
n ) = j) P(Gn

l (Î
U
n ) = j)

= n

r∑
j=k

P
n,r
r−j,j−k P(Gn

l (Î
U
n ) = j).

For n ≥ 1, let un = exp(−βG
n n1−γ (1 + E[Q])). Then exp(−βG

n ÎU
n ) = unπn, where un → 1

as n → ∞. Thus, by Lemma 3.3, it follows that, for 1 ≤ k ≤ m,

n P(Rn
l (ÎU

n ) = k) = n

r∑
j=k

P
n,r
r−j,j−k

{(
r

j

)
(unπn)

j (1 − unπn)
r−j

}

→
(

r

k

)
akd̂r,m,k, as n → ∞, (3.18)

and, for m < k ≤ Hl ,
n P(Rn

l (ÎU
n ) = k) → 0, as n → ∞. (3.19)

For all n ≥ 1, let θ̃ n
H1

= θn
H1

− 1/n and θ̃ n
r = θn

r for r 	= H1. It is trivial to show that

P(Rn
1 (ÎU

n ) 	= 0) → 0, as n → ∞.

Hence, for all s ≥ 0,

E[sRn
1 (ÎU

n )] → 1, as n → ∞. (3.20)

Therefore, it follows from (3.17)–(3.20) that

fn(s; ÎU
n ) =

n∏
l=1

{
1 +

Hl∑
k=1

(sk − 1) P(Rn
l (ÎU

n ) = k)

}

= E[sRn
1 (ÎU

n )]

×
M∏

r=m

{
1 +

r∑
k=1

(sk − 1)

( r∑
j=k

P
n,r
r−j,j−k

{(
r

j

)
(unπn)

j (1 − unπn)
r−j

})}θ̃ n
r n

→
M∏

r=m

exp

(
θr

m∑
k=1

(sk − 1)

(
r

k

)
akd̂r,m,k

)

=
m∏

k=1

exp

(
(sk − 1)ak

M∑
r=m

θr

(
r

k

)
d̂r,m,k

)

= E[sZ].

Hence, Xn(Î
U
n )

d−→ Z as n → ∞.

Since exp(−βG
n ÎL

n ) = πnu
−1
n , we can similarly show that Xn(Î

L
n )

d−→ Z as n → ∞. Hence,
the theorem is proved.
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Suppose that all households are of equal size m, say. Then Z = ∑m
k=1 Zk = ∑m

k=1 Pok(bk)

with bk = (
m
k

)
akdm−k

k , 1 ≤ k ≤ m, and di = limn→∞ n1/mϕn(i), 1 ≤ i ≤ m.
Note that, as well as being able to derive a compound Poisson limit theorem for the total

number of survivors of the epidemic, we can use the approach taken in proving Theorem 3.1 to
prove other results concerning the final outcome of the epidemic. In particular, in Theorem 3.2,
we consider the distribution of the number of households of a given size with a given number
of survivors. Therefore, for n ≥ 1, m ≤ r ≤ M , and 1 ≤ u ≤ r , let Yn

r,u denote the number of
households of size r containing u survivors. Note that, as shown in the proof of Theorem 3.1,
in the limit as n → ∞, there are no households with more than m survivors. Thus, for r > m

and m < u ≤ r , Yn
r,u

p−→ 0 as n → ∞, where ‘
p−→’ denotes convergence in probability. Let

Y n
r = (Y n

r,1, Y
n
r,2, . . . , Y

n
r,m) and let Y n = (Y n

m, Y n
m+1, . . . ,Y

n
M).

Theorem 3.2. For r and u such that m ≤ r ≤ M and 1 ≤ u ≤ m, let Yr,u be indepen-
dently distributed Poisson random variables with Yr,u ∼ Po(

(
r
u

)
θra

ud̂r,m,u) and let Yr =
(Yr,1, Yr,2, . . . , Yr,m) with Y = (Ym, Ym+1, . . . ,YM). Then, under the conditions of
Theorem 3.1, we obtain

Y n d−→ Y , as n → ∞.

Proof. The proof of this theorem is similar to that of Theorem 3.1; hence, the details are
omitted.

4. Special cases

The conditions of Theorem 3.1, as with the conditions of [6, Theorem 4.6], are simple
and easy to check. However, depending upon the distribution of Q, very different compound
Poisson limits can be derived. To demonstrate this, we consider probably the two most studied
epidemic models, the Reed–Frost and GSE models.

For the Reed–Frost model, it is assumed that all infectious periods are of constant length,
that is, Q ≡ q > 0. Thus, the following corollary gives a proof of a generalization of the result
stated in [6, Section 5].

Corollary 4.1. Suppose that Q ≡ q for some q > 0. Suppose that there exist α and d, with
α ∈ R and 0 < d < ∞, such that

mqλG
n − log n → α, as n → ∞,

and
mqλH

n − (m − 1) log n → −m(m − 1) log d, as n → ∞. (4.1)

Then, as n → ∞,
Zn

d−→ Po(b1) + Pom(bm),

where b1 = adm−1 ∑M
r=m θrr and bm = θmam.

Proof. Since λH
n = (m−1)βH

n and, for t ≥ 0, ϕn(t) = exp(−tβH
n q), it is trivial to rearrange

(4.1) to show that
n1/mϕn(1) → d, as n → ∞.

Note that, for all r and k such that m ≤ r ≤ M and 1 ≤ k ≤ m − 1,

φn

(
k

r − 1

)
= ϕn(k)(m−1)/(r−1).
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Also, for k ≥ 1,
lim

n→∞ nk/mϕn(k) = lim
n→∞ nk/mϕn(1)k = dk.

Therefore, for all m ≤ r ≤ M , d̂r,m,1 = dm−1 and d̂r,m,k = 0 (2 ≤ k ≤ m − 1). The corollary
then follows from Theorem 3.1.

For the GSE model, Q ∼ Exp(γ ), for some γ > 0.

Corollary 4.2. Suppose that Q ∼ Exp(γ ) for some γ > 0. Suppose that there exist α and d,
with α ∈ R and 0 < d < ∞, such that

mλG
n − γ log n → γα, as n → ∞, (4.2)

and
dλH

n n−1/m → (m − 1)γ, as n → ∞. (4.3)

Then, as n → ∞,

Zn
d−→

m∑
k=1

Zk =
m∑

k=1

Pok(bk),

where bk = θm

(
m
k

)
ak(d/k)m−k , 1 ≤ k ≤ m.

Proof. For t ≥ 0, ϕn(t) = γ /(γ + tβH
n ). It is therefore trivial to show that (4.3) implies that

n1/mϕn(1) → d, as n → ∞.

Also, for m ≤ r ≤ M and k ≥ 1,

d̂r,m,k = lim
n→∞ n(m−k)/mφn

(
k

r − 1

)r−k

= lim
n→∞ n(m−k)/m

(
γ (r − 1)

γ (r − 1) + kλH
n

)r−k

=

⎧⎪⎨
⎪⎩

(
d

k

)m−k

if r = m,

0 otherwise.

Since E[Q] = 1/γ , (4.2) is equivalent to (3.1), and the corollary follows from Theorem 3.1.

Thus, we observe from Corollaries 4.1 and 4.2 that we get very different compound Poisson
limits, depending upon Q. In particular, for the Reed–Frost model, in the limit as n → ∞,
the survivors of the epidemic either belong to a household of size m that completely escapes
infection or are each the only survivor within their respective households. By contrast, for the
GSE model, we can find any number of survivors, from 1 through to m, within a household in
the limit as n → ∞. However, in the limit as n → ∞, all the survivors of the epidemic belong
to households of size m.
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