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Abstract  Let R be a prime ring with extended centroid C, p a non-zero right ideal of R and let
f(X1,...,X¢) be a polynomial, having no constant term, over C. Suppose that f(Xi,...,X¢) is not
central-valued on RC. We denote by f(p) the additive subgroup of RC generated by all elements
f(z1,...,x¢) for ; € p. The main goals of this note are to prove two results concerning the exten-
sion properties of finiteness conditions as follows.

(I) If f(p) spans a non-zero finite-dimensional C-subspace of RC, then dimc RC' is finite.
(II) If f(p) # 0 and is a finite set, then R itself is a finite ring.
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1. Introduction and results

Throughout this note, R always denotes a prime ring with extended centroid C' and p
a non-zero right ideal of R. The goal of this note is to study the extension properties
of certain finiteness conditions from one-sided ideals of a prime ring to the whole prime
ring. We were motivated by two elementary observations: (I) if dime pC' is finite, then so
is dim¢ RC; and (II) if p is a finite subset of R, then so is R. For (I) see [3, Lemma 1].
For (II), since, by the primeness of R, R can be embedded in End(p,+,0) via right
multiplications and End(p, +,0) is a finite set, R itself is a finite ring. In a recent paper
Bell proved the following theorem.

Theorem. Suppose that p is of finite index in R and |[p, p| is finite. Then R is either
finite or commutative (see [1, Theorem 2.2]).

Since, in Bell’s Theorem, [p, p] contains all elements zy —yx for all z,y € p, we want to
extend these results above to more generalized forms. In particular, we shall see that, in
Bell’s Theorem, the assumption that p is of finite index in R is superfluous. Our point of
view in this note is different from that of [1]. To state our results we require some notation.
For a polynomial f(Xy,...,X:) over C, where the X, are non-commuting indeterminates,
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we denote by f(p) the additive subgroup of RC' generated by all elements f(x1,...,z:) for
i € p. For T,y € Ra set [xay]o =, [33724]1 = [Jj,y] =Ty —yxr and [xay]k = Hxvy]k—hy]
for k > 1. Also, [p, p|x denotes the additive subgroup of R generated by all elements
[, y]k for z,y € p. We are now ready to state our results.

Theorem 1.1. Let R be a prime ring with extended centroid C, p a non-zero right
ideal of R and f(X1,...,X}:) a polynomial, having no constant term, over C. Suppose
that f(Xy,...,X;) is not central-valued on RC.

(I) Suppose that f(p) spans a non-zero finite-dimensional C-subspace of RC'. Then
dime RC' is finite.

(IT) Suppose that f(p) # 0 and is a finite set. Then R itself is a finite ring.

Corollary 1.2. Let R be a prime ring with extended centroid C, p a non-zero right
ideal of R, and k a non-negative integer.

(I) Suppose that [p, p|i spans a finite-dimensional C-subspace of RC'. Then dim¢ RC
is finite.

(IT) Suppose that [p, p|i is a finite set. Then R is either commutative or finite.

Proof. In view of Theorem 1.1, it suffices to prove that [p,p]y € C unless R is
commutative. Indeed, suppose that [p, p]x € C. Then [z,y]p+1 = 0 for all z,y € p. In
view of [5, Lemma 1], R is commutative. This proves the corollary. O

We remark that Corollary 1.2 (IT) gives a generalization of Bell’s Theorem [1, Theo-
rem 2.2].

2. Proof of Theorem 1.1

To prove Theorem 1.1 we need the following two theorems [2, Theorem 1 (II) (i) and
Theorem 2]. Recall that a prime ring R is called centrally closed if R = RC and that a
right ideal of a ring is called a polynomial identity (PI) right ideal if the right ideal is
itself a PI-ring. We write M2(GF(2)) to stand for the 2 by 2 matrix ring over GF(2), the
Galois field of two elements.

Theorem 2.1. Let R be a centrally closed prime C-algebra and f(Xy,...,X:) a non-
zero polynomial over C. Suppose that p is a PI right ideal of R such that f(p) # 0. Then
there exists an idempotent e in the socle of R such that p = eR and eR(1 —e) C f(p).

Theorem 2.2. Let R be a prime ring with extended centroid C' and I a non-zero ideal
of R. Suppose that f(X1,...,X;) is a polynomial over C' which is not central-valued on
RC. Then [M, R] C f(I) for some non-zero ideal M of R, except when R = Ms(GF(2))
and f(R) = {0,e12 + ea1,1 + €12, 1+ ea1} or {0,1,e11 + €12 + €21, €22 + €12 + €21}
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From now on, R is always a prime ring with extended centroid C, p a non-zero right
ideal and f(Xi,...,X) a non-zero polynomial, having no constant term, over C. We
denote by d,,(X1,...,Xn;Y1,...,Y,_1) the Capelli polynomial of degree 2n — 1, that is

dn(le cee 7Xn; Yla B Ynfl) = Z (_1)UXU(1)Y1XO'(2) T Ynlea(n);
ocES,

where X; and Y; are non-commuting indeterminates. To apply Theorem 2.1 to our case,
we require the following lemma.

Lemma 2.3. Suppose that f(p) # 0. Then

(I) if the additive subgroup f(p) spans a finite-dimensional C-space, then f(p)C =
1(pC)C and

(IT) if f(p) is finite, then so are both C and f(pC').

Proof. (I) Suppose that dime f(p)C = n < co. Then

dn+1(f(1‘11,~--,ﬂflt)7--~7f($n+11,---7$n+1t);y17~-~,yn) =0 (2-1)

for all z;; € p and all y; € R. Since p and pC satisfy the same generalized polynomial
identities (GPIs) [4, Lemma 2], equation (2.1) still holds for all z;; € pC and all y; € RC.
In view of [7, Theorem 7.6.16], for x;; € pC the n + 1 elements f(z11,...,21¢),...,
f(@nt11,. -« Znt1t) are C-dependent and so dime f(pC)C < n. But since f(p)C C
f(pC)C, we conclude that f(p)C = f(pC)C as asserted.

(IT) Suppose that f(p) is a finite set. Write

m

FXa . X)) =) fil X, Xy, (2.2)
i=1

where f;(X1,...,X}) is the homogeneous part of f(Xi,...,X;) of degree i for 1 <1i < m.
Suppose on the contrary that C' is infinite. Choose m distinct elements (1, ..., 8, in C
and then a non-zero ideal I of R such that 3;1 C R. Then f;pl C p for each i. Applying
a standard determinant argument to equation (2.2) we see that f;(pl) is finite for each
i. Since f(p) # 0, we see that f;(p) # 0 for some j. Thus we may assume from the
start that f(X1,...,X;) is homogeneous of degree m > 1. Suppose that f(p) consists
of ¢ elements. Since C is an infinite field, we can choose p1,...,ue+1 in C such that
pi # pyt for @ # j. Let J be a non-zero ideal of R such that p;J C R for each i. In view
of [4, Lemma 2], there exist z; € pJ, 1 <4 < t, such that f(z1,...,z) # 0. Now, we see
that p" f(x1,...,x¢) = f(piz1, ..., mwize) € f(p) for each i. This derives a contradiction,
as the set {p" f(z1,...,2¢) | 1 < i< L+ 1} consists of £+ 1 elements. Thus C is a finite
field. By (I) we see that f(p)C = f(pC)C. But since f(p) and C are finite sets, this
implies that f(pC) is a finite set, proving (II). a
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Lemma 2.4. Let R be a centrally closed prime C-algebra with non-zero socle H.
Suppose that e is a non-trivial idempotent in H.

(I) If dime eR(1 — €) < oo, then R is finite dimensional over C'.

(IT) If eR(1 — e) is a finite set, then R is a finite ring.

Proof. (I) Suppose that dimceR(1 —e) = n < oco. Note that e and 1 — e are C-
independent. Thus we see that

Sn1(eX1(1—e)Y,... eXni1(1 —€)Y)

is a non-trivial GPI for R, where S, 11(X1,...,X,+1) is the standard polynomial of
degree n + 1. Since R is centrally closed, it follows from Martindale’s Theorem [6] that
R is a strongly primitive ring. By assumption, e € H and so dim¢eRe < oo. Thus
dime eR = dim¢ eRe + dime eR(1 — e) < co. That is, R contains a non-zero right ideal
eR, which is finite dimensional over C. In view of [3, Lemma 1], dim¢c R < oo follows.
This proves (I).

(IT) Since eR(1—e) # 0, we choose xy € R such that exo(1—e) # 0. But Cexo(l—e) C
eR(1 —e), so the finiteness of eR(1 — e) implies that C' is a finite field. By (I), R is finite
dimensional over C and so R is a finite ring, proving (II). O

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. (I) Suppose that f(p) spans a non-zero finite-dimensional
C-subspace of RC. It follows from Lemma 2.3 (I) that 0 # f(pC) is finite dimensional
over C. Clearly, pC' is a PI right ideal of RC. Note that RC' is a centrally closed prime
C-algebra. In view of Theorem 2.1, there exists an idempotent e in the socle of RC such
that pC = eRC and eRC(1 —e) C f(pC) as f(pC) # 0. If e # 1, applying Lemma 2.4
we conclude that dime RC' is finite. Suppose next that e = 1. Then pC = RC'. Since
f(Xq,...,X¢) is not central-valued on RC', by Theorem 2.2 there exists a non-zero ideal
I of RC such that [I, RC] C f(pC) unless R = RC = My(GF(2)). There is nothing to
prove for the exceptional case. Therefore, we may assume that [I, RC] C f(pC) and so
dim¢[I, RC| < oo, implying that R itself is a PI-ring. Applying Posner’s Theorem yields
that dimec RC' is finite.

(IT) Suppose that f(p) # 0 and is a finite set. By Lemma 2.3, f(pC) is a finite set.
Clearly, in this case pC' must be a PI right ideal of R. In view of Theorem 2.1, there
exists an idempotent e in the socle of RC such that pC = eRC and eRC(1—e¢) C f(pC).
If e # 1, Lemma 2.4 implies that R is a finite ring. Otherwise, e = 1 follows and so
pC = RC. As in the argument given in (I), we may assume that R % My(GF(2)). By
Theorem 2.2 there exists a non-zero ideal I of RC such that [I, RC] C f(pC) and so
[I, RC] is a finite set. But since R is not commutative, [I, RC] # 0 and so C' must be
finite. Now, RC is a Pl-ring with C' a finite field. It is now clear that R itself is a finite
ring, proving (II). a
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