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Hermitian Harmonic Maps into Convex
Balls

ZhenYang Li and Xi Zhang

Abstract. In this paper, we consider Hermitian harmonic maps from Hermitian manifolds into convex

balls. We prove that there exist no non-trivial Hermitian harmonic maps from closed Hermitian man-

ifolds into convex balls, and we use the heat flow method to solve the Dirichlet problem for Hermitian

harmonic maps when the domain is a compact Hermitian manifold with non-empty boundary.

1 Introduction

Let (M, h) be a Hermitian manifold with Hermitian metric (hαβ̄), and let (N, g) be

a Riemannian manifold with metric (gi j) and Christoffel symbols Γ
i
jk. A Hermitian

harmonic map u : M → N satisfies the following elliptic system

(1.1) hαβ̄
∂2ui

∂zα∂zβ̄
+ hαβ̄Γi

jk

∂u j

∂zα
∂uk

∂zβ̄
= 0.

This system is more appropriate to Hermitian geometry than the harmonic map sys-

tem since it is compatible with the holomorphic structure of the domain manifold, in

the sense that holomorphic maps are Hermitian harmonic maps when target man-

ifolds are Kähler. Since (1.1) does not have a divergence structure nor a variational

structure, it is analytically more difficult than a harmonic system. It was first studied

by Jost and Yau [5], and was applied to study the rigidity of compact Hermitian man-

ifolds. Jost and Yau [5] consider the existence problems of Hermitian harmonic maps

under the assumption that the target manifold N is nonpositively curved. Chen [1]

also studied the situation that the target manifold has non-empty boundary. In this

paper, we consider the case where the target manifolds are convex balls.

Let N be a complete Riemannian manifold with sectional curvature bounded

above by a positive constant k, and BR(O) be a geodesic ball of radius R with cen-

ter at fixed point O ∈ N . If R < π
2
√

k
, and BR(O) lies in the cut locus of O, then the

geodesic ball BR(O) will be called by a convex ball.

Now let us fix some notation. Assume that N is a Riemannian manifold. On N we

always choose the Levi–Civita connection which is compatible with the Riemannian

structure. On M we now choose the connection ∇̃ such that it is compatible with

the holomorphic structure on M and torsion free. We denote the standard Beltrami–

Laplacian by △ and the Laplacian of the holomorphic torsion free connection by △̃,
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respectively. Then one can define ∇du(X,Y ) by ∇du(X,Y ) = ∇Y du(X)− du(∇̃XY )

for any smooth map u from M to N . The torsion free assumption makes the above

defined ∇du( · , · ) symmetric. And it is natural to define the tension fields of the

map u as

(1.2)

σ(u) = σ(u)i ∂

∂ui
= hαβ̄∇du

( ∂

∂zα
,
∂

∂zβ̄

)
= hαβ̄

( ∂2ui

∂zα∂zβ̄
+ Γ

i
jk

∂u j

∂zα
∂uk

∂zβ̄

) ∂

∂ui

If u is a function on M, then

△̃u = hαβ̄
∂2u

∂zα∂zβ̄
,(1.3)

△̃u − 1

2
△u = 〈V,∇u〉,(1.4)

where V is a well-defined vector field on M and ∇ is the Levi–Civita connection

on M.

After giving some preliminaries in Section 2, we will discuss the case where do-

main manifolds are compact. First we prove that there exist no non-trivial Hermi-

tian harmonic maps from closed Hermitian manifolds into convex balls. In fact, we

obtain the following theorem:

Theorem 1.1 Let M be a closed (compact, without boundary) Hermitian manifold,

and N a complete Riemannian manifold with sectional curvature bounded above by a

positive constant k. Let u : M → N be a Hermitian harmonic map with image u(M) ⊂
BR(O). If R < π

2
√

k
, and BR(O) lies in the cut locus of O, then u must be a constant map.

Secondly, we consider the case that the domain manifold has a non-empty smooth

boundary. We use the heat flow method to prove the solubility of Dirichlet problem

for Hermitian harmonic maps. We obtain:

Theorem 1.2 Let M be a compact Hermitian manifold with non-empty smooth

boundary ∂M, and N be a complete Riemannian manifold with sectional curvature

bounded above by a positive constant k. Let φ : M → N be a smooth map, and the

image φ(M) ⊂ BR(O). If

R <
arccos 2

√
5

5√
k

and BR(O) lies in the cut locus of O, then there must exist one unique Hermitian har-

monic map u such that u|∂M = φ|∂M .

Remark We hope that the condition R <
arccos 2

√
5

5√
k

can be weakened to R < π
2
√

k
,

but for technical reasons, in this paper we can only solve the Dirichlet problem for

Hermitian harmonic maps under this stronger condition.
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Similarly to harmonic maps, we can consider Hermitian harmonic maps from

complete Hermitian manifolds into convex balls. The existence of Hermitian har-

monic maps from complete Hermitian manifolds into Riemannian manifolds with

non-positive curvature had been investigated by Lei Ni [6]. Grunau and Kühnel [2]

introduced an invertibility condition on the holomorphic Laplace operator between

suitable chosen function spaces. Their proof shows that the solubility of the Poisson

equation with respect to the holomorphic Laplace operator ensures the existence of

Hermitian harmonic maps. So, it is natural to prove the existence of Hermitian har-

monic maps from complete Hermitian manifolds satisfying the same conditions as in

[2, 6] into convex balls by using Theorem 1.2 and the compact exhaustion method.

The proof is similar to the one given in [2, 6]; hence we omit it here.

2 Preliminary Results

We will solve (1.1) by the method of heat flow. Let u : M × R → N . We consider the

following parabolic system:

(2.1) hαβ̄
∂2ui

∂zα∂zβ̄
+ hαβ̄Γi

jk

∂u j

∂zα
∂uk

∂zβ̄
=
∂ui

∂t

u(z, 0) = φ(z) for z ∈ M

u(z, t) = φ(z) for z ∈ ∂M, 0 ≤ t ≤ ∞

where φ is a smooth map from M to N such that φ(M) is contained in the convex

ball BR(O). By linearizing and using results about linear parabolic systems and the

implicit function theorem, it follows in a standard manner that (2.1) has short time

existence.

In the following computation we need a Hessian comparison theorem [3]. On the

product N × N we introduce the Riemannian metric

〈X1 ⊕ X2,Y1 ⊕ Y2〉 := 〈X1,Y1〉 + 〈X2,Y2〉

for Xi ,Yi ∈ Tyi
N, yi ∈ N, i = 1, 2.

The distance function on N , ρ : N × N → R is of class C2 on BR(O) × BR(O)

outside the diagonal. So we have:

Lemma 2.1 ([3, 4]) For y = (y1, y2) ∈ BR(O) × BR(O),V ∈ Ty(N × N), assume

Q = (1 − cos(
√

kρ(y1, y2)))/k : BR(O) × BR(O) → R.

Then the Hessian of Q admits the following estimates:

∇2Q(V,V ) ≥
{
|V |2 if y1 = y2,
〈∇Q(y),V〉2

2Q(y)
− kQ(y)|V |2 if y1 6= y2,

and

∇2Q(V,V ) ≥ (1 − kQ(y))|U |2

if V has the special form U ⊕ 0 or 0 ⊕U .
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Multiplying the metric tensor by a suitable constant we may assume the upper

bound of the sectional curvature of N to be 1 throughout the rest of this paper. We

set f (x, t) = Q(u(x, t),O) and

e(u) = hαβ̄gi j
∂ui

∂zα
∂u j

∂zβ̄
.

First, we will prove that the image of (2.1) contained in the convex ball BR(O) (R <
π
2

) under the flow such that we can use Lemma 2.1 for any time t . We have:

Lemma 2.2 Assume u(z, t) is a solution of (2.1), then ρ(u(z, t),O) < R for any

(z, t) ∈ M × R.

Proof Suppose not, so we can assume that at some point (z0, t0) ∈ M × R,

ρ(u(z0, t0),O) is equal to R for the first time, so we have:

∂

∂t
f |(z0,t0) ≥ 0, ∇ f |(z0,t0) = 0, △ f |(z0,t0) ≤ 0.

On the other hand, from (2.1) and Lemma 2.1, we compute at (z0, t0)

(2.2)
(
△̃ − ∂

∂t

)
f = hαβ̄∇2Q

( ∂u

∂zα
⊕ 0,

∂u

∂zβ̄
⊕ 0

)
≥ e(u) cos R > 0.

So we have a contradiction.

Next we will give estimates for |ut |2 := | ∂u
∂t
|2 = gi j

∂ui

∂t
∂u j

∂t
and e(u). By the assump-

tion of the curvature, using [5, (4) and (7)], we have

(
△̃ − ∂

∂t

)
|ut |2 ≥ |∇ut |2 − 2|ut |2e(u),(2.3)

(
△̃ − ∂

∂t

)
e(u) ≥ 1

2
|∇2u|2 − 2e(u)(e(u) + c),(2.4)

where c is a positive constant depending on the upper bound of both first and second

derivatives of domain metric.

Let b = 1 − cos R0, 0 < R < R0 < π
2

. Hence (b − f ) is a positive bounded

function. By (2.3) we can obtain

(
△̃ − ∂

∂t

) |ut |2
(b − f )2

=
1

(b − f )4
[(b − f )2

(
△̃ − ∂

∂t

)
|ut |2

+ 2|ut |2(b − f ) ·
(
△̃ − ∂

∂t

)
f

+ 2(b − f )〈∇|ut |2,∇ f 〉 + 3|ut |2|∇ f |2]

≥ 1

(b − f )4

[(
|∇ut |2 − 2|ut |2e(u)

)
(b − f )2

+ 2(1 − f )e(u)|ut |2(b − f )

+ 2(b − f )〈∇|ut |2,∇ f 〉 + 3|ut |2|∇ f |2
]
.
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So we get

(2.5)
(
△̃ − ∂

∂t

) |ut |2
(b − f )2

≥ 1

(b − f )4

[
|∇ut |2(b − f )2 + 2(1 − b)(b − f )e(u)|ut |2

+ 2(b − f ) < ∇|ut |2,∇ f > +3|ut |2|∇ f |2
]

and

(2.6) ∇|ut |2 = (b − f )2∇ |ut |2
(b − f )2

− 2
1

b − f
|ut |2∇ f .

By the Schwarz inequality and (2.6) we have

(2.7)
(
△̃ − ∂

∂t

) |ut |2
(b − f )2

≥ 1

b − f

〈
∇ |ut |2

(b − f )2
,∇ f

〉

from the maximum principle, |ut | is uniformly bounded.

Similarly we also have

(2.8)
(
△̃ − ∂

∂t

) e(u) + c

(b − f )2
≥ 1

b − f

〈
∇ e(u) + c

(b − f )2
,∇ f

〉

where c is the same constant in (2.4).

To get a global C1 estimate from the formula (2.8), we know that it is sufficient to

prove the boundary C1 estimate. First, we need the following:

Lemma 2.3 ([5]) There exist δ0 > 0 and R0 > 0 with the following property: If u is

a solution of (2.1) for 0 ≤ t ≤ T and if for some t0, 0 < t0 ≤ T, u(B(x0,R), t0) ⊂
Bδ(p), x0 ∈ M,B(x0,R) ⊂ M, 0 < δ ≤ δ0, for some R, 0 < R ≤ R0, p ∈ N,
(B(q, r) := {q ′ ∈ M : d(q, q ′)) < r}), then

|∇u(x0, t0)| ≤ cδ

R
(∇ denotes the spatial gradient)

where δ0,R0 and c depend on the geometry of M and N and on supB(x0,R) |ut (x, t0)|.

Lemma 2.4 Let u be a solution of (2.1) for 0 ≤ t < T, and the radius of convex ball

R < π
4

. Then there exits 0 < t0 < T such that

|∇u|(z, t) ≤ c (∇ denotes the spatial gradient)

for z ∈ ∂M, 0 < t0 ≤ t < T, where c is independent of t.
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Proof Lemma 2.3 has given interior gradient bound, and it consequently suffices to

show if d(z1, z0) = r, z1 ∈ ∂M, d(z2, z0) ≤ r, we have

(2.9) ρ(u(z1, t), u(z2, t)) ≤ c1r

for some constant c1 independent of t .

By Lemma 2.1 we know that for any z1, z2 ∈ M, u(z1, t), u(z2, t) can be joined by

a unique geodesic arc. We continue the geodesic arc from u(z2, t) to u(z1, t) beyond

u(z1, t) until we reach a distance τ from u(z1, t) such that the corresponding point

denoted by q is contained in B π
4
(O). We consider L(z, t) = 1− cos ρ(u(z, t), q). Then

by the choice of q, we have

(2.10)
(
△̃ − ∂

∂t

)
L(z, t) ≥ 0

We then solve the following linear parabolic problem:

(2.11)

(
△̃ − ∂

∂t

)
H(z, t) = 0

H : M × R → R

H(z, 0) = L(z, 0) for z ∈ M

H(z, t) = L(z, t) for z ∈ ∂M, 0 ≤ t ≤ ∞
since L has smooth boundary values, so does H.

The maximum principle implies

(2.12) L(z, t) ≤ H(z, t) for t ≥ 0, z ∈ M.

Now by (2.11) and (2.12)

(2.13) ρ(u(z1, t), u(z2, t)) = ρ(u(z2, t), q) − ρ(u(z1, t), q) by the choice of q

≤ 1

sin τ
(L(z2, t) − L(z1, t))

≤ 1

sin τ
(H(z2, t) − H(z1, t)),

since z1 ∈ ∂M. From the theory of linear parabolic equations, the solution of (2.11)

has a boundary Lipschitz bound. So we get (2.9).

Using (2.8) together with Lemma (2.4), we know e(u) is also uniformly bounded,

so we obtain the long time existence of the solution of the equation (2.1).

Let u1(x, t) and u2(x, t) be two sequences of maps from M into the convex ball

BR(O). Let

(2.14)

ψ(z, t) = Q(u1(z, t), u2(z, t)),

fi(z, t) = Q(ui ,O),

ϕ(z, t) =

2∑

i=1

ω( fi(z, t)).
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Using Lemma 2.1, one can check that when u1(z, t) 6= u2(z, t),
(2.15)
(
△̃ − ∂

∂t

)
ψ ≥ |∇ψ|2

4ψ
− ψ

2∑

i=1

e(ui) + dQ
((

σ(u1) − ∂u1

∂t

)
⊕

(
σ(u2) − ∂u2

∂t

))
,

when u1(z, t) = u2(z, t),

(2.16)
(
△̃ − ∂

∂t

)
ψ ≥

2∑

i=1

e(ui) + dQ
((

σ(u1) − ∂u1

∂t

)
⊕

(
σ(u2) − ∂u2

∂t

))
,

and

(2.17)
(
△̃ − ∂

∂t

)
ϕ ≥

2∑

i=1

( 1

2
ω ′ ′( fi)|∇ fi |2 + ω ′( fi)(1 − fi)e(ui)

+ ω ′( fi)dQ
((

σ(ui) −
∂ui

∂t

)
⊕ 0

))
.

Assume that u1(z, t) and u2(z, t) both satisfy (2.1), and set function ω(s) =

− ln(1 − s) in (2.14). By formulas (2.15), (2.16), (2.17), and the fact ω ′ ′
= ω ′2,

one can check that when u1(z, t) 6= u2(z, t),
(2.18)

e−ϕ
(
△̃ − ∂

∂t

)
eϕψ =

(
△̃ − ∂

∂t

)
ψ + ψ

(
△̃ − ∂

∂t

)
ϕ + 〈∇ϕ,∇ψ〉 +

1

2
ψ|∇ϕ|2

≥ |∇ψ|2
4ψ

− ψ
2∑

i=1

e(ui) +
1

2
ψ

2∑

i=1

ω ′ ′|∇ fi |2

+ ψ
2∑

i=1

ω ′(1 − fi)e(ui) + 〈∇ϕ,∇ψ〉 +
1

2
ψ|∇ϕ|2

≥ |∇ψ|2
4ψ

+
1

2
ψ

2∑

i=1

ω ′ ′|∇ψi |2 +
1

2
〈∇ϕ,∇ψ〉

+
1

2
e−ϕ〈∇ϕ,∇(eϕψ)〉

≥ 1

2
ψ

2∑

i=1

ω ′′|∇ψi |2 −
1

4
ψ|∇ϕ|2 +

1

2
e−ϕ〈∇ϕ,∇(eϕψ)〉

≥ 1

2
e−ϕ〈∇ϕ,∇(eϕψ)〉.

When u1(z, t) = u2(z, t), we have ψ = ∇ψ = 0. So

(2.19) e−ϕ
(
△̃ − ∂

∂t

)
eϕψ ≥

2∑

i=1

e(ui) ≥ 0.

https://doi.org/10.4153/CMB-2007-011-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2007-011-1


120 Z. Li and X. Zhang

From (2.18) and (2.19), the maximum principle implies the uniqueness of the solu-

tion of the equation (2.1). So we already have:

Proposition 2.5 If φ(M) ⊂ BR(O),R < π
4

and BR(O) lies in the cut locus of O, then

the evolution equation (2.1) has a unique solution which exits for 0 ≤ t <∞.

3 Hermitian Harmonic Maps From Compact Manifolds Into Convex
Balls

First, we consider a Hermitian harmonic map from a closed manifold (compact with-

out boundary) to convex ball BR(O).

Proof of Theorem 1.1 Let u : M → N be a Hermitian harmonic map, that is, u

satisfies (1.1), and u(M) ⊂ BR(O),R < π
2

. Putting f (z) = Q(u(z),O), we have

(3.1) △̃ f (z) ≥ e(u) cos ρ(u(z),O) ≥ 0

Since M is closed, the function f (z) must be constant, hence ρ(u(z),O) is a constant.

We conclude that u(M) ⊂ Sr(O), where Sr(O) denotes a geodesic sphere of radius

r with center at O, and there must be a point z0 ∈ M such that u(z0) ∈ Sr(O). We

join u(z0) with O by a geodesic arc. On this geodesic arc, we can choose a point

O ′ different from O such that we can find another geodesic ball Br ′(O ′) satisfying

Br(O) ⊂ Br ′(O ′) ⊂ BR(O). Setting F ′(z, t) = 1 − cos ρ(u(z),O ′), we also have

△̃F ′(z, t) ≥ 0. Using the maximum principle again, we have ρ(u(z),O ′) = r −
ρ(O,O ′) = r ′ ′, for any z ∈ M, i.e., u(M) ⊂ Sr ′ ′(O ′). But it is easy to see that there is

only one point in Sr(O) ∩ Sr ′ ′(O ′), so u(M) = u(z0).

Proof of Theorem 1.2 First of all, we will show that if φ(M) ⊂ BR(O),

(3.2)
(
△̃ − ∂

∂t

) |ut |2
(b − f )2

≥ 0

where R = arccos 2
√

5
5
< π

4
, R0 = arccos

√
5

5
, and b = 1 − cos R0. In fact, from (2.5)

we have

(3.3)(
△̃ − ∂

∂t

) |ut |2
(b − f )2

≥ 1

(b − f )4

{
[
∣∣∇ut |(b − f ) − 2|ut ||∇ f |

] 2

+ 2(1 − b)(b − f )|ut |2e(u) − |ut |2|∇ f |2
}

≥ 2
1

(b − f )4
|ut |2e(u)[cos R0(cos ρ− cos R0) − sin2 ρ]

To get (3.2), it suffices to prove that cos R0(cos ρ(u,O)−cos R0)−sin2 ρ(u,O) ≥ 0,

i.e.,

(3.4) cos ρ(u,O) ≥
√

5

4
cos2 R0 + 1 − 1

2
cos R0
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And it is easy to see that when R0 = arccos
√

5
5

, the right side of (3.4) reaches its

minimum 2
√

5
5

. Therefore we have proved (3.2), when ρ(u(z),O) ≤ R = arccos 2
√

5
5

.

Now, we solve the following Dirichlet problem on M [7, Ch. 5, Proposition 1.8]

(3.5)
△̃v(z) = − |ut |2

(b − f )2
|t=0

v(z)|∂M = 0

Setting w(z, t) =
∫ t

0

|ut |2

(b− f )2 (z, s) ds − v(z), by (3.2), we can see that

(3.6)

(
△̃ − ∂

∂t

)
w(z, t) ≥ 0

w(z, t)|∂M = 0

w(z, 0) = −v(z), z ∈ M

Again by the maximum principle we have

(3.7)

∫ t

0

|ut |2
(b − f )2

≤ sup
z∈M

|v(z)| <∞

Hence, we conclude that there exists a sequence {ti} such that

lim
ti→∞

ut := lim
ti→∞

∂u

∂t
= 0.

Then the standard elliptic regularity implies that there exists a subsequence u(z, ti)

converging to a Hermitian harmonic map as i goes to ∞.

Assume that u1(z) and u2(z) both are Hermitian harmonic maps satisfying the

same boundary condition. Similar to (2.18) and (2.19), it is easy to obtain

(3.8) e−ϕ△̃eϕψ ≥ 1

2
e−ϕ〈∇ϕ,∇(eϕψ)〉.

or, when u1(z) = u2(z),

(3.9) e−ϕ△̃eϕψ ≥ 0,

where ψ, ϕ is defined in (2.14).

Then the maximum principle implies the uniqueness of Hermitian harmonic map.
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