
A TAUBERIAN THEOREM FOR THE 
RIEMANN-LIOUVILLE INTEGRAL OF INTEGER ORDER 

C. T. RAJAGOPAL 

1. Notation. Let s(x) be a function integrable1 in every finite interval of 
x > 0. Then the Riemann-Liouville integral of s(x), of order a > 0, is defined 
for x > 0 by 

(1) *,(*) = ~-T f ( * ~ tf-'s^dt. 
I (a) Jo 

The object of this note is to prove a Tauberian theorem for sa(x) in the case 
in which a is a positive integer p, employing certain difference formulae due 
to Karamata (4, Lemma 2) and Bosanquet (1, Theorem 1) used already for a 
broadly similar purpose in an earlier paper (12) where a is any positive number. 

Adopting a familiar notation, we shall write 

(2) Ca(x) = I(SL±4)jMt a > o, 
X 

Co(x) = So(x) = s(x), 

and say that s(x) is summable by the Cesàro mean of order a, or briefly, 
summable (C, a), to sum Z, when 

lim Ca(x) = /, 
2T->oo 

/ denoting a finite number as everywhere in this note. When lim Ca(x) does 
not exist, as in the principal results of this note, it is convenient to write 

(3) lim inf Ca(x) = Ca, lim sup Ca(x) = Ca. 

2. Scope of the main result. The following theorems, stated in the 
notation explained above, are known, at least in some part or form; and all 
of them turn out to be easy consequences or modifications of the single main 
result of this note featured as Theorem I. 

THEOREM A. If s{x) is an integral, 

(4) s'(x) = Osix*-*-1) as * - > co 

for almost all x > 0, p and a being real numbers of which the former is a positive 
integer, then 

(5) ^ # - > Z ( * - > » ) 

Received October 3, 1956. 
1In this note integrability and integrals are always in the sense of Lebesgue. 
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implies 

(6) &l -* lq(q - l ) . . . ( q - p + l). 

Theorem A was first proved by Doetsch (2, p. 174, Theorem II ) with the 
restriction q > p + l2 which was subsequently removed by Obrechkoff 
(5). A special case of Theorem A with p = 1 had been proved earlier by 
Hardy and Littlewood (13, p. 194, Corollary 4.4a), while a more general 
form of the theorem, with the positive integer p replaced by any positive 
number a was obtained later by Parthasarathy and Rajagopal (6, Theorem 
B, Case (2)). 

A generalization of Theorem A is the following theorem wherein (4) is 
replaced by (4'), a condition which evidently holds whenever (4) holds. 

THEOREM A'. If s(x) is such that 

(4') lim lim sup sup ~ ^ = ^ - ~ - < 0, 
X-̂ i+o ẑ co t<t'<\t t 

then (5) implies (6). 

Theorem A' and, in fact, its extension when the limit in (5) does not exist, 
are both included in the main result of this note whose proof is by the method 
used by Parthasarathy and Rajagopal (6) to obtain the extension of Theorem 
A in which p is replaced by any a > 0. 

The case q = p of Theorem A' is the classical result stated next. 

THEOREM B. If s(x) is slowly increasing, that is, 

lim lim sup sup {s(t') — s(t)} < 0, 

and summable (C, p) to /,3 then s(x) converges to I as x —» °° . 

The following theorem is a companion to Theorem B; its case p = 1 has 
been proved in a somewhat different form by Pitt (7). 

THEOREM C. In Theorem B the condition of slow increase of s(x) can be 
replaced by the following condition, without any other change: 

Ô^T)tit W«)-*(<)}*< = o. (7) lim lim sup sup 

A classical particularization of Theorem C is that in which (7) is replaced 
by the condition of slow oscillation of s(x) which clearly implies (7).4 A 

2The case q = p + 1 of Theorem A, with s'(x) replaced by s(x), gives the well-known theorem: 
if s(x) is bounded on one side and summable (C, p + 1) to I, then it is summable (C, 1) to I. 

3In virtue of the first theorem of consistency for Cesàro summability, p in such cases may 
be replaced by any a. > 0. 

4A condition which is effectively the same as that of slow oscillation is the "high-indices" 
condition, lim inf Xn+i/Xn > 1, when s(x) is the Xn — step function defined in the concluding 
remarks. 
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simple modification of the case p = 1 of Theorem C is like Pitt's theorem 
(7, Theorem 1 ) and unlike any of the classical Tauberian theorems for Cesàro 
summability in having no exact counterpart for Abel summability, that is, 
in not being always true when Cesàro summability is replaced by Abel sum­
mability (without any other change). 

The last theorem to be now given includes Theorem B in the case p = 1. 

THEOREM D. / / 

(8) lim sup sup {s(tf) — s(t)} = ^i(X), 

then, for 0 < 6 < 1 < X, 

- (X - 1) Co < - XÇi + Ci + jw!(t)dt9 

(i - e) Co < - e Çi + d + f wi(t)dt. 

Theorem D is Karamata's5 (3, Satz 1, first part), and its significance lies 
in the fact that it includes certain best-possible inequalities connecting C0 

and Co with Ci and C\ first obtained by Fekete and Winn under the condition 
(8) with Wi(\) < K log X. A generalization of Theorem D proved by me 
elsewhere (8, Lemma 3) is in the form of inequalities connecting Ca and 
Ca with Ca+i and Ca+i under condition (8) again. On the other hand, the 
generalization of Theorem D in this note, viz. Theorem I, takes the form of 
inequalities connecting lim inf s(x)/xQ~p and lim sup s(x)/xq~p with lim inf 
sp(x)/xq and lim sup sv(x)/xa under a Tauberian condition which reduces to 
(8) when q = p. When 

lim inf sv(x)/xq = lim sup sp(x)/xq, 

the inequalities of Theorem I lead, in a special case, to Corollary 1(1) which 
is Theorem A' in the notation of Theorem I. When q = p, the inequalities of 
Theorem I become the inequalities of Corollary 1(2) connecting Ço and Co 
with Cp and Cp, the case p = 1 of the latter inequalities constituting Theorem 
D. Modifications of the aforesaid inequalities connecting C0 and Co with 
Çp and Cp are obtained in Corollary I (3) when (8) is replaced by the following 
condition implicit in (7) : 

lim sup sup 
1 Ç1' 

~~TT I \s(u) — s(t)}du fl(X). 
*(X 

In brief, Corollary 1(2) and Corollary 1(3) extend Theorem B and Theorem C 
respectively on the lines of Theorem D. Corollary 1(4) following them re­
fashions the case p = 1 of Corollary 1(3) so as to produce in particular the 
(C, 1) summability theorem mentioned earlier as having no counterpart 
for Abel summability. 

5Karamata's theorem has been restated here to match Theorem I, with — s(x) in place of 
his s(x). 
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3. The main result. The statement of this result, appearing as Theorem I, 
is necessarily elaborate by reason of the comprehensive character of the theo­
rem. But the proof of the theorem is in essentials as simple as that of Theorem 
D, requiring nothing more than the Karamata-Bosanquet difference for­
mulae referred to at the outset and embodied in the following lemmas easily 
verifiable by induction. 

LEMMA 1. If h > 0, p = 1,2,3, . . . , then 

Msv(x) s £ ( - iy(P)sp(x + J^~vh) 

J
*x+h nti+h ptp-i+h 

dh dt2 . . . s(t)dt. 
x J ti J tp-i 

LEMMA 2. If k > 0, p = 1,2,3, . . . , then 

AP-ksp(x) - Z ( - mP)sp(x - vh) 

dh dt2. . . s(t)dL 
x—k J t\—h J tp-i—k 

THEOREM I. Let s(x), integrable in every finite interval of x > 0, be such that, 
for X > 1, one of the following two conditions holds and consequently the other 
also: 

(9) limsup sup S(t''~s{t) = W1(\), 
t-X30 t<t'<\t t 

(9*) limsup sup S-^-^^=W1*(X). 

Let sp(x) be defined for a positive integer p as in (1), and let 

(10) lim inf v
 g = aPtQ, lim sup v

 g = âPtQ. 
£->co X £->oo % 

Then 

(11) - (^—Y lim inf - § < 3Ï, (X, p) qv,a + 2% (X, p) S,,t 
\ P ' X->CO X 

\ p / J i + ( i _ r l ) ( X - l ) 

where 

(12) §1, (X, p) + S3, (X, p) = - ± ( - 1)" ( * ) {l+(p- v) ^ j , 

2I<Z(A,/>) is the part of the above sum consisting of the negative terms only and 
$5q(\,p) is the part of the same sum consisting of the positive terms only. 
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Further, for 0 < 6 < I, we have 

T (13) (^—r) lim sup 4 â < 6 , (0- />) &.« + &* (». /») *v 

/ i A » - 1 /»i-(i-^-1)(i-0) 

(14) S, (0, />) + 3), (0, *>) = g ( - 1)' ( * ) | l - „ ^ } S , 

fë<z (0,£) w /Ae £ar/ of the above sum containing the negative terms alone and 
®<z (PiP) is the part of the same sum containing the positive terms alone. 

(A condition such as (9) is to be read: "The left-hand member exists as a 
finite number and equals Wi(\)." 

(9*) follows from (9) since 

s(t') - s(t) _ (t\q-ps(f) - s(t) 
t,a~v \j.,) f-v 

Similarly (9) follows from (9*).) 

Proof. From Lemma 1 we have at once 

.,4 = ̂ +r\r;.. .r 
X X J x *J ti J tp-i Denoting by / and / the first and the second terms respectively on the right, 

we can write the above relation as 

(15) - @ ^ g = / + 7 . 

In / , t is such that x < t\ < t < h + (p — l)h, and so 

Jx x<t<ti+(p-l)h \ X J 

If h = (X — l)x/p and xt' = t\ + {p — l)h, this gives us 

J< I sup i J=Ï ([-) dtf, 
l+(l-p-l)(X-l) x<t<xt' 

sup Y 

or, on account of (9), 

(16) J < ( y * f W1(t')dt' + ( y X- 0(1) ( * - > » ) . 
\ X / J i + ( i _ „ - i ) ( \ _ i ) \ X / 

Next 

(i7) i = - ± (- D' M ¥*M^. (i + F^-V 
T^o \*v (* + p — vhy \ xl 
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where the factor multiplying sp(x + p — vh)/(x + p — vh)Q, v = 0,1,2, . . . p, 

-<->• (0 {'+o-> ^ 
which is independent of x. Consequently we get, letting x —> oo in (17) and 
recalling (10), 

(18) lim sup I <% (X, P) qPtq + 93, (X, p) ap>g 
z->oo 

by the definitions of 31, and S3Ç which follow (12). Taking upper limits of 
both sides of (15) a s x - x » and using (16) and (18), we establish the first 
conclusion (11). 

To prove the second conclusion (13), we get from Lemma 2 the relation 

" Q Q 

X X Jx—k J ti—Jc J tp-i—k % 

and rewrite it, denoting the first and the second terms on its right side by /* 
and J* respectively: 

(19) ^ ^ = /* + J 

In J*, t lies in the interval t\ — (p — l)k < t < h < x, so that 

J* < f sup I'J&ziMr-^. 

If k = (1 — 0)x/£ and x/' = ti — (p — l)k, we can write the above in­
equality successively in the forms 

J e **'<*<* V X8 P ) \X/ 

J. ^ (?)*' + © -°(1) ( ^ œ ) ' 
using (9*). Next 

where the factor multiplying ^ (x — vk)/(x — vk)q, v = 0,1,2, . . . £, is 

( - i r M j i - A 
which is free from x. Therefore we obtain, letting x —» °° in (21), 

(22) lim sup 7* < <£, (0, p) aPrQ + £>, (6, p) vPtQ 
X-}oo 

on account of (10) and our definitions of Sff, S , following (14). By taking 
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upper limits of both sides of (19) as x ^ œ, and using (20) and (22), we 
immediately get (13). 

4. Deductions. The deductions from Theorem I which have been outlined 
in an earlier section are effected by means of the two simple observations noted 
below as lemmas. 

LEMMA 3. If Wi(\) defined by (9) is such that 

nm Wi(\) < 0, 

then Wi* (X) defined by (9*) is also such that 

lim Wi*(\) < 0, 
x^i+o 

and conversely; further, the integrals in (11) and (13) satisfy the conditions: 

lim sup —^— f Wi(t)dt < 0, 
X^l+0 A — 1 t/i-|_(i_ ;P-i)(X_i) 

lim sup —£— Wi*(t)dt<Q. 
B_)i-o I — 6 J e 

The proof is obvious. 

LEMMA 4. The function of X defined in (12) and that of 6 defined in (14) 
satisfy the conditions: 

(23) »,(X,£) + S,(X,/>) ~ - (~y)Vq{a-l) . . . ( g - £ + l ) as X -> 1 + 0, 

(*?)'< (24) <£,(*,/,) + T)t(6,p) ~ ^ — ^ | ff(g - 1) . . . (q-p+1) as e-> 1-0. 

Proof. The proof of (23) is given below; that of (24) is similar. 

By (12), 

a.(x.» + ».(x̂ ) = - E (- D' (?) {i + O - 4 ' (! = ^ ) 

= — aTs A" \~r~p) (x < Ç < x + ph = \x) 

= - or* (*) ' Î ( Î - 1 ) . . . (ff - * + D r p 

~ - ( ^ ^ ) % ( < Z - l ) . . . ( g - £ + l) (X->l+0) 

It is clear that, in the particular case q = p, (23) and (24) reduce to 

(23') 8 , (X, />) + » , (X, />) = - (ç~f Px- > 

(24') 6P (0, p) + £)„ (0, #) = ( ^ " j /»! • 
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To explain the derivation of Theorem A' from Theorem I, we have only 
to rewrite the former as follows in the notation of the latter. 

COROLLARY 1(1). If, in Theorem I, 

lim Wx{\) < 0 and hence lim Wi*(\) < 0, 
X-^1+0 X->l+0 

and also 

&P.Q &P,Q M 

then 

Imi^l = q(q - l) ... (q - p + 1)1. 

For, dividing (11) and (13) throughout by (X - l)p/pp and (1 - 6)v/pv 
respectively, and then letting X —> 1 + 1 — 0, 6 —> 0, we get as a result of 
Lemmas 3 and 4, 

- lim inf - ^ < - q(q - 1) . . . {a - p + 1>, 
Z-Xo # 

5 (x) 
lim sup ~ë=p < q(q — 1) . . . (q — p + 1)1, 

which together imply the conclusion of Corollary 1(1). 
If q = p in Theorem I, we find from (9), (9*) and (8) that 

WiÇk) = Wi*(\) = Wi(X)f 

and from (3) and (10) that 

?P,P = Çv/P^' » àp,P = Cv/p\ 

Hence, when q = p in Theorem I, the result is the following extension of 
Theorem D obtained by me some time ago (9, Theorem A). 

COROLLARY 1(2). / / six) is integrable in every finite interval of x > 0 and 
such that, for X > 1, 

(8) lim sup sup \s(t') — s(t)} = Wi(\), 

then, for 0 < 8 < 1 < X, 

(11 ) - \-J-) Ço < -y 

Wi(t)dt, 

„ „ A-»Y/9 / &P(e,p)çp + ®p(d,p)Cp 

(13 ) \—-J Co < 

\ p / «/i+(i_p-i)(x-i) 

p\ / i _ « V - 1 /•i-<i-p-1)(i-«) 

where Sip, 33p, Sp, 33p are obtained with q = p in %Q, $8Q, Sff, 33c respectively as 
defined immediately after (12) and (14). 
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In the particular case in which the hypothesis is 

lim Wi{\) < 0 , Cp = Cp = I , 
X->l+0 

inequalities (11/) and (13') together reduce to the conclusion: 

Ço = Co = I, i.e. lim s(x) = I, 

on account of (23'), (24/) and Lemma 3 with q = p. 
Theorem B is thus a particular case of Corollary I (2). Theorem C is a similar 

particular case of the next corollary got by making a small change in the 
proof of (110 of Corollary 1(2). 

COROLLARY 1(3). 7/X > 1 and 

c1' I 
= o(x), (25) lim sup sup 

then 

(26) 
(\ - l\* ^ %{XP)Çy + ®v(XP)Cy , /X - A* , 

- \—r-) Ço < ~, + \-J-J P®W> P / - p\ \ p 
and there is a similar inequality with Co, — CPf — Cv taking the places of — Ço, 
ÇP1 Cp respectively. 

In the particular case in which the hypothesis is that of Theorem C, that is, 

lim Q(X) = 0 , Cp = Cp = I, 

inequality (26) and its companion specified after it together yield the conclusion 
of Theorem C, viz. 

Co = Co = I, 

as a result of (23'). 
To prove Corollary 1(3) in all its generality, we write down (15) with 

q = p and find an upper estimate for / , using the following consequence of 
(25): 

J
'tp-i+h | ntp-i I I f*tp-i+h 

{s(t) - s(x)}dt < {s(t) - s(x)}dt\ + \ {s(t) - s(x)}dt 
tp-i \Jx I I Jx 

<2{&(X) + 0(1)} (X - l)x (*-» oo). 
From this we obtain in succession 

dh\ dt2...\ 2{Q(\) +o(l)}(\-l)xdh (*• ' ) , 

lim sup J < 2 ( ^ - M * (X - 1)0(X), 
X^oo \ P / 

finally reaching (26) by a repetition of the rest of the argument used to prove 
(11). (26) has a companion as stated, resulting from the replacement of s(x) 
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by — s(x) which is obviously permissible in our hypothesis (25) and all 
arguments therefrom. 

In the case p = 1, Corollary 1(3) can be modified to become a slight ex­
tension and simplification of Pitt 's theorem already referred to (7, Theorem 
1). This modification of Corollary 1(3), analogous to Theorem D, is stated 
below. 

COROLLARY 1(4). If, given some X > 1, we can find, corresponding to every 
sufficiently large t, R = R(t) tending to X as t —> °° and such that 

(27) lim sup 
t-^oo 

1 Ç* 
'-D'tJt 

{s(u) — s(t)}du = «(X), 
CR-1)*. 

then 

(28) - (X - 1) Co < - XÇt + Ci + (X - l)co(X), 

(29) (A - 1) Co < - Ci + XCi + (X - l)co(X). 

In particular, when (27) is simply 
Rt 

s(u) — s{i))du (27') 

awd Ci 

lim 
Z->oo (tf -ljj. = 0, 

Ci, (28) and (29) together reduce to the equality 

Ço = Co-
Corollary 1(4) is proved from the following relation which is the case 

a = p = 1 of (15) with h = (R - l)x and i? = i?(x): 

1 rB l 

- (R - l)s(x) = - Rd(Rx) + C^x) + - {s(t) - s(x)}dt. 
X %J x 

Taking upper limits of both sides as x —» °° and using (27), we get at once 
(28) and deduce (29) from it by changing s(x) to — s(x), such a change 
being permissible in (27) and arguments based thereon. 

REMARK ON CONDITION (27'). This Tauberian condition, like Pitt1 s more 
complicated form of it (7), though sufficient to make the convergence of s(x) 
follow from the (C, 1) summability of s(x), is not always sufficient to make the 
convergence of s(x) follow from the Abel summability of s(x). 

(Pitt has, instead of (27;), the more complicated condition: given e > 0, 
we can find 77(e) > 0, R = R{t, e) corresponding to every sufficiently large t, 
so that 

J
1 *RT I 

{s(u) - s(t)}du\ < (R - l)Te 
for some T = T(e, t) satisfying tRr1 < T < /.) 

Pitt's example itself (7, Theorem 2) serves to establish this fact. The 
example is of a non-convergent s(x) which is Abel summable and defined as 
follows : 
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s(x) = ( - 2 ) w for Xm < x < \m+1, \m = (2w+l) log(2m+l), m = 0, 1, 2, 

Pitt 's discussion shows that, for this s(x) there is soi R = R(t) corresponding 
to every sufficiently large t, such that R (t) —» X as / —> oo and (270 is ful­
filled in the form 

^ nRt 

(What Pitt has actually proved is that, corresponding to every sufficiently 
large t, \M < t < \M+u we can find R = R(M) tending to X = 2 as t —> œ, 
so that 

(R - 1)\M Jx ^ ^ " 5 ^ X ^ ) Î ^ = °-
However, it is easy to show that Pitt's result remains true when X = 2 is 
replaced by any X > 1, \M by t and i? = R(M) by another i? = R(t).) 

5. A supplementary result. To make this study complete, a complement 
to Theorem I under a two-sided Tauberian condition is proved below. This 
complement, in the special case q = p, reduces to a result previously obtained 
by me (9, Theorem B), and, in the further special case q = p = 1, to Kara-
mata's complement to Theorem D (3, Satz 1, second part) under the con­
dition (8) together with a similar condition on — s(x) instead of s(x). 

THEOREM II. If, in Theorem I, we are given, in addition to either (9) or (9*), 
one of the following conditions which necessarily involves the other: 

(30) liminf inf s^'\ " / ^ = - TT2(\), 

(30*) liminf inf s{t')~S^-= - W»*(\), 
t-±co t<t'<\t t 

we shall have, in addition to (11) and (13), 

<\ , / i + c - i r ' \ , . , 

+(Vv wM^+(Vv w2*(i/t)dt 
\ \ p / t/i+(i-p-i)(x-i) \ p / Je 

and a similar inequality with lim sup s ( x ) / x M in place of — lim inf s(x)/xa~p 

deduced from (31) fry taking — s(x) in place of s(x). 

(31) 
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Proof. By combining (15) and (19), we get 

Tak ing h = (X — l)x/p, k = (1 — d)x/p, and arguing as in the derivat ion 
of (16) and (20), we obtain 

(33) lim sup ( / — / * ) < lim sup / + lim sup (— J*) 

<\^ir)P * f w1(t)dt + 
/ i _ A V - 1 /»i-d-p-i)( i-0) 

( - - ) Ĵ  ^(i/o*. 
We have also, from the expression for 7 in (17) and t h a t for 7* in (21), 

^QqP,q + $$qëp,q ~ &qëp,q ~ QqÇp.q ^ £ ^ e v e n , 
(34) lim sup (7 - I*) < x . 

if £> is odd, 

where the distinction between the cases of odd p and even p arises thus . If 
p is odd and only then, the last te rm in 7 is sp(x)/xq and this cancels out the 
first term in — 7* which is in any case — sp(x)/xq; the result is t h a t the 
contr ibut ion (arising from 7) to the positive te rms which make up S3Ç is less 
than wha t the form of 7 suggests, by 1, and the contr ibut ion (arising from 
— 7*) to the negative te rms which make up — T)q is more than w h a t the 
form of - 7* suggests, by 1. (31) follows from (32), (33) and (34). 

6. C o n c l u d i n g r e m a r k s . There is a special case of interest in the results 
of this note, when s(x) is, as in P i t t ' s example, a \n — step function with steps 
a t points of any sequence {\v} such t h a t 

0 < Xo < Xi < . . . , Xn - » œ , 

t h a t is, 

)a0 + ai + . . . + an for Xn < x < Xw+i, n >*0, 
5 ( X ) I 0 for 0 < x < Xo. 

In this case, the (C, a) summabi l i ty of s(x) becomes the summabi l i ty of 
2 an by Riesz means of order a and type (Xn), usually called (R, \n, a) sum­
mabi l i ty ; and Corollary 1(2) can be used, as elsewhere (10; 11), to extend 
certain Tauber ian theorems of G. Ricci's for 2 an summable to / by the 
method of Dirichlet 's series or the (A, Xn) method, t h a t is, 2 an such t h a t 

oo 

^2 ane~ nS converges for 5 > 0 and tends to I as 5 —> + 0. 

An open question (10, §1.1) which may be recalled in this context is whether 
the following theorem for (R, \n, a) summability is one possessing no precise 
analogue for (A, Xn) summability, i.e. one belonging possibly to a class of 
Tauber ian theorems peculiar to Cesàro summabi l i ty like the part icular case 
of Corollary 1(4). 
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THEOREM X. / / 
oo 

(i) Y, an 

is (R, Xn, a) summable to I for some a > 0, 

(ii) lim lim sup max (an+i + a>n+i + • • • + am) < 0, 
X->l+0 W->CO X n < X W < X X n 

then 

lim inf (ao + #i + . . . + an) = ^ 

Theorem X (10, Theorem f) is a simple consequence of Corollary 1(2), 
and it has the imperfect analogue for (A, Xn) summability, stated below, 
whose special case a = 0 follows from a reformulation of one of Ricci's 
theorems (10, Theorem G) and every case a > 0 follows from Theorem X 
and my generalization (10, Lemma 2) of a theorem due to O. Szâsz. 

THEOREM Y. Theorem X can be restated with (i) replaced by the (A, Xn) 
summability of 2 an to I and (ii) augmented by the condition that, for some 

2 (x — X„)aa„X* = 0R(xa+1) (x—» oo ) . 
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