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Abstract. We obtain the following embedding theorem for symbolic dynamical systems.
Let G be a countable amenable group with the comparison property. Let X be a strongly
aperiodic subshift over G. Let Y be a strongly irreducible shift of finite type over G that has
no global period, meaning that the shift action is faithful on Y. If the topological entropy
of X is strictly less than that of Y and Y contains at least one factor of X, then X embeds
into Y. This result partially extends the classical result of Krieger when G = Z and the
results of Lightwood when G = Z

d for d ≥ 2. The proof relies on recent developments in
the theory of tilings and quasi-tilings of amenable groups.
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1. Introduction
Our central question is as follows. Given subshifts X and Y over a countable amenable
group G, under what conditions does X embed into Y? That is, under what conditions is
X isomorphic to a subsystem of Y? One necessary condition is that h(X) ≤ h(Y ), where
h(X) is the topological entropy of the subshift X (Definition 2.11), because topological
entropy is preserved under isomorphism and non-increasing under taking subsystems.
When G = Z, the classical embedding theorem of Krieger [13, Theorem 3] provides a
complete answer in the case that Y is a mixing shift of finite type (SFT) and h(X) < h(Y ).
Namely, a certain necessary condition about periodic points turns out to be sufficient
for an embedding ψ : X → Y to exist. In particular, the condition is automatically
satisfied if X is strongly aperiodic (Definition 2.8), meaning that no point of X exhibits
a non-identity element of G as a period (in other words, the shift action is free on X).
Krieger’s embedding theorem has become a cornerstone of the structure theory of SFTs
over Z.
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2 R. Bland

Much less is known about the embedding problem for groups other than G = Z. In the
case where G = Z

d for d ≥ 2, one result is given by Lightwood: suppose X is a strongly
aperiodic subshift and suppose Y is an SFT that satisfies a mixing condition (‘square
mixing’, known elsewhere as the ‘uniform filling’ property) and contains a point with
a finite orbit. If h(X) < h(Y ) and Y contains at least one factor of X (an image of X
under a continuous and shift-commuting map), then X embeds into Y [14, Theorem 2.5].
Lightwood also proved that in the case whereG = Z

2, a square mixing SFT automatically
contains a point with a finite orbit [14, Lemma 9.2]. Later, Lightwood proved that if Y is
an SFT over Z

2 satisfying a slightly stronger mixing condition (‘square-filling mixing’,
which implies square mixing), then Y automatically contains at least one factor of X [15,
Theorem 2.8]. These results together provide a partial extension of Krieger’s embedding
theorem to G = Z

2.
In this paper, we obtain an embedding theorem for subshifts over countable amenable

groups with the comparison property. We do not define the comparison property here, but
we appeal to it in the form of Theorem 2.10, a consequence of the comparison property
due to Downarowicz and Zhang [8, 9]. We also note that the class of amenable groups with
the comparison property includes every countable group containing no finitely generated
subgroup of exponential growth (proof given in both [9, Theorem 5.11] and [8, Theorem
6.33]). In particular, this includes every countable abelian group. It is unknown whether
there exists a countable amenable group without the comparison property.

Our main result is as follows.

THEOREM 3.5. Let G be a countable amenable group with the comparison property. Let
X be a non-empty strongly aperiodic subshift over G. Let Y be a strongly irreducible SFT
over G with no global period. If h(X) < h(Y ) and Y contains at least one factor of X, then
X embeds into Y.

If one selects G = Z
d for d ≥ 2 in the above statement, then one does not immediately

recover the theorem of Lightwood. We assume here a slightly stronger mixing condition
on Y (strong irreducibility in place of square mixing). However, we do not assume that
Y contains a point with a finite orbit; instead, we assume that Y has no global period, a
condition that is automatically true for strongly irreducible subshifts over Zd .

In the following paragraphs, we briefly discuss the hypotheses of the above theorem and
how they are invoked in the proof.

The condition that Y has no global period means that the shift action is faithful on Y.
This condition is examined in detail in §3.1. This condition is necessary for the theorem;
in particular, if a non-empty strongly aperiodic subshift X embeds into Y, then Y exhibits
an aperiodic point and therefore has no global period.

The condition that X is strongly aperiodic allows us to derive systems of useful
quasi-tilings (Definition 2.14) of the group G as factors of X, by appealing to a theorem of
Downarowicz and Huczek [6, Lemma 3.4]. The strong aperiodicity is necessary for this;
indeed, if X factors onto systems of quasi-tilings with arbitrarily large, disjoint tiles, then
no point of X can exhibit a non-trivial period. The comparison property allows us to go
one step further and derive from X systems of useful exact tilings of the group G. We
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An embedding theorem for subshifts over groups with comparison 3

accomplish this by adapting a construction of Downarowicz and Zhang (presented in both
[9, Theorem 6.3] and [8, Theorem 7.5]).

The condition that h(X) < h(Y ) allows us to deduce that if a finite subset (namely, the
shape of a tile in a given quasi-tiling) is large enough, then there are more patterns of that
shape appearing in points of Y than in X. This implies that there is an injective map from
tile patterns in X to tile patterns in Y. The condition that Y is a strongly irreducible SFT
allows us to mix those tile patterns together into a single point of Y.

The condition that Y contains a factor of X means that there exists a continuous
and shift-commuting map (a homomorphism) φ : X → Y , though not necessarily one
that is injective. This is of course necessary for the theorem, since an embedding is a
homomorphism, but the existence of a possibly non-injective homomorphism is a useful
condition and one that is much easier to attain. It is automatically satisfied if, for instance,
Y contains a fixed point. We use the homomorphism φ in our construction to code the
boundary regions of the tiles in a given tiling, as well as the region of G not covered by
any tile.

The condition that Y has no global period allows marker patterns to be constructed in Y
(Theorem 3.4), which are used to encode the locations of the centers of the tiles of a given
quasi-tiling within a controllably sparse subset of the symbols of a point of Y. This extends
the approach of Lightwood [14] who constructed marker patterns forG = Z

d ; the concept
originates in the work of Krieger and Boyle for G = Z [3, 13]. The marker patterns allow
one to uniquely decode, from a given image point y = ψ(x), which quasi-tiling t = T (x)
was used to construct y to begin with. Then, the tile pattern injections from earlier allow
one to uniquely reconstruct the preimage x.

We note that the class of strongly aperiodic subshifts is well populated. It is known,
for instance, that every countable group exhibits a strongly aperiodic subshift on the
alphabet {0, 1} [1, Theorem 2.4]. Moreover, if X1 is a strongly aperiodic subshift and
X2 is an arbitrary subshift, then the direct product (Definition 2.13) X1 ×X2 is also
strongly aperiodic; hence, there are at least as many strongly aperiodic subshifts as there
are subshifts, in the sense of cardinality.

We also mention here the similarity of hypotheses between the present work and
contemporary work by Huczek and Kopacz [11] that considers the ‘factor problem’ (under
what hypotheses on X and Y does there exist a surjective homomorphism from X to Y?)
for subshifts over discrete amenable groups, which is complementary to the embedding
problem. In particular, [11, Theorem 2.12] uses the comparison property of G in a form
similar to Theorem 2.11. Additionally, [11, Theorem 5.1] assumes that the domain X
is strongly irreducible and that X exhibits, for each finite subset F ⊂ G, a pattern that
exhibits no element of F as a period. This latter condition is (under assumption of strong
irreducibility) equivalent to our ‘separating elements’ condition (Definition 3.1), which is
the form in which we appeal to the faithfulness of the shift action of G on Y.

The paper is organized as follows. In §2, we review some preliminary material
about countable amenable groups, symbolic dynamics, and quasi-tilings over countable
amenable groups with and without the comparison property. In §3, we present our main
results. We first construct a subsystem Y0 ⊂ Y that we pass to in the construction of our
embedding (Theorem 3.2). We then construct marker patterns for Y (Theorem 3.4). Finally,
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4 R. Bland

we present the construction of our embedding of X into Y (Theorem 3.5). In §4, we discuss
various ways in which Theorem 3.5 could potentially be strengthened and associated
obstacles.

2. Preliminaries
2.1. Amenable groups. In this section, we briefly review the theory of countable
amenable groups and state a few lemmas that shall be needed later. For a more thorough
introduction to the theory of dynamics on amenable groups, see [12].

Definition 2.1. (Invariance, amenability, and Følner sequences) Let G be a countable
group, let K ⊂ G be a finite subset, and let ε > 0. A finite subset F ⊂ G is said to be
(K , ε)-invariant if

|KF�F | < ε|F |.
The group G is amenable if, for any finite subset K ⊂ G and ε > 0, there exists a
finite subset F ⊂ G that is (K , ε)-invariant. Equivalently, G is amenable if there exists
a sequence (Fn)n of finite subsets of G such that for each fixed finite subset K ⊂ G, it
holds that

lim
n→∞

|KFn�Fn|
|Fn| = 0.

In this case, we say that (Fn)n is a (right) Følner sequence.

Throughout this paper, G denotes a fixed countable amenable group with identity
element e. It is classically known [17, Theorem 5.2] that G exhibits a Følner sequence
(Fn)n that is ascending (Fn ⊂ Fn+1 for each n), that satisfies

⋃
n Fn = G, and such that

each Fn is symmetric (F−1
n = Fn). Throughout this paper, (Fn)n denotes a fixed Følner

sequence with all of the above properties. The symmetry property implies that (Fn)n is
both left Følner and right Følner, because for each finite subset K ⊂ G, we have that

|KFn�Fn| = |(KFn�Fn)−1| = |F−1
n K−1�F−1

n | = |FnK−1�Fn|.
In this setting, when a finite subset F ⊂ G is described as ‘large’, it is implied that F is

(K , ε)-invariant for some finite subsetK ⊂ G and ε > 0, which may be clear from context
or chosen arbitrarily beforehand. This sort of terminology is common but vague; a precise
formulation is as follows. Let φ(F ) be a property of finite subsets F ⊂ G. We shall say
φ(F ) holds for all sufficiently large F if there is a (K , ε) such that if F is (K , ε)-invariant,
then φ(F ) is true. We shall say φ(F ) holds for arbitrarily large subsets F if for every
(K , ε), there is a set F for which F is (K , ε)-invariant and φ(F ) is true.

We shall need the following elementary lemma; we omit the proof for brevity.

LEMMA 2.1. Let K ⊂ G be a finite subset with e ∈ K . For any two finite subsets F0,
F1 ⊂ G, it holds that

|KF1 \ F1| ≤ |KF0 \ F0| + |K||F0�F1|.
Next, we review concepts relating to the geometry of finite subsets of G.
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Definition 2.2. (Boundary and interior) Let F ⊂ G and K ⊂ G be finite subsets. The
K-boundary of F is the subset

∂KF = {f ∈ F : Kf 	⊂ F }
and the K-interior of F is the subset

intK F = {f ∈ F : Kf ⊂ F }.
Observe F = ∂KF 
 intK F .

We shall need the following elementary lemmas; see [2, Lemmas 2.1, 2.2].

LEMMA 2.2. Let F, K ⊂ G be finite subsets and let g ∈ G be arbitrary. If Kg intersects
intKK−1 F , then Kg ⊂ F .

LEMMA 2.3. Let F, K ⊂ G be finite subsets. It holds that

|∂KF | ≤ |K||KF�F |.
Next we review the notion of density for infinite subsets of G. Roughly speaking, an

infinite subset C ⊂ G has density ρ ∈ [0, 1] if, whenever a finite subset F is sufficiently
large, it holds for all g ∈ G that

|F ∩ Cg| ∼ ρ|F |.
We use the Følner sequence to make this notion precise.

Definition 2.3. (Banach density) Given a subset C ⊂ G, the upper Banach density of C is

D(C) = lim inf
n→∞ sup

g∈G
|Fn ∩ Cg|

|Fn|
and the lower Banach density of C is

D(C) = lim sup
n→∞

inf
g∈G

|Fn ∩ Cg|
|Fn| .

These definitions have also appeared in the recent work on quasi-tilings of amenable
groups due to Downarowicz, Huczek, and Zhang [6–9]. The value of the upper (respec-
tively lower) density does not depend on the choice of Følner sequence [7, Lemma 2.9].
Note that D(C) = 1 −D(G \ C) holds for any subset C ⊂ G.

Next we review a notion regarding how an infinite subset C ⊂ G may be distributed
throughout the group G.

Definition 2.4. (Separation) Given a finite subset L ⊂ G, we say an infinite subset C ⊂ G

is L-separated if Lc1 ∩ Lc2 = ∅ for every distinct pair c1 	= c2 ∈ C.

Note that if C is L-separated, then so is Cg for each fixed g ∈ G. Using this fact, one
may easily check that if C is L-separated, thenD(C) ≤ 1/|L|. The following lemma states
something slightly stronger.
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6 R. Bland

LEMMA 2.4. Let M, L ⊂ G be finite subsets with e ∈ M ⊂ L. For any non-empty finite
subset F ⊂ G and any L-separated subset C ⊂ G, we have that

|F ∩MC|
|F | ≤ |M|

|L| + |M| |∂LF |
|F | + |M| |M

−1F \ F |
|F | .

Proof. Note that C is also M-separated by inclusion. Let C× = {c ∈ C : F ∩Mc 	= ∅}.
Observe that C× is finite, as C× ⊂ M−1F . By the fact that C is M-separated, we have

|F ∩MC| ≤
∑
c∈C×

|M| = |M||C×|.

Now let C◦ = {c ∈ C : Lc ⊂ F }. Observe that C◦ ⊂ C×. We emphasize that C× is given
in terms of M, while C◦ is given in terms of L. By definition, we have LC◦ ⊂ F , in which
case

|F | ≥ |LC◦| = |L||C◦|,
where the equality is a consequence of the fact that C is L-separated. Hence
|C◦| ≤ |F |/|L|.

Let c ∈ C× \ C◦ be fixed, in which case F ∩Mc 	= ∅ and Lc 	⊂ F . Therefore, if
c ∈ F , then c ∈ ∂LF , while if c /∈ F , then c ∈ M−1F \ F . This demonstrates that

C× \ C◦ ⊂ (∂LF ) ∪ (M−1F \ F).
From this, we see that

|F ∩MC| ≤ |M||C×|
= |M||C◦| + |M||C× \ C◦|
≤ |M| |F |

|L| + |M||∂LF | + |M||M−1F \ F |.

After dividing by |F |, we obtain the conclusion.

With M and L fixed as in the above lemma, if one chooses F = Fn and lets n approach
infinity, then one may easily see thatD(MC) ≤ |M|/|L| whenever C ⊂ G is L-separated.
However, what is especially significant for our purposes here is that the density ofMC can
be estimated by sets F that are sufficiently large with respect to M and L alone, and there is
no dependence on C other than the fact that C is L-separated. If C were an arbitrary subset
satisfying D(C) < ε, then that density is not in general approximated by finite subsets
except for very large ones, depending on C.

2.2. Shifts and subshifts. In this section, we briefly review symbolic dynamics for
amenable groups and state a few useful lemmas. For a more thorough introduction to
symbolic dynamics and dynamics on amenable groups, see [12, 16].

Definition 2.5. (Labelings and patterns) Let A be a finite alphabet of symbols, endowed
with the discrete topology. A function x : G → A is an A-labeling of G. The set of all
such labelings is denoted AG, which is endowed with the product topology. Given a finite

https://doi.org/10.1017/etds.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.21


An embedding theorem for subshifts over groups with comparison 7

subset F ⊂ G, a function p : F → A is called a pattern, said to be of shape F. The set of
all patterns of shape F is denoted AF , and the set of all patterns of any shape is denoted A∗.

Given a point x ∈ AG and a finite subset F ⊂ G, in this paper, we shall take x(F ) to
mean the restriction of x to F, which is itself a pattern of shape F. This is normally denoted
x|F ∈ AF , but we raise the F from the subscript for readability. We shall also extend this
notation to patterns where suitable; given a subset F ′ ⊂ F and a pattern p ∈ AF , we shall
take p(F ′) to mean the restriction of p to F ′.

Definition 2.6. (Shifts and subshifts) The group G acts on AG by way of (right)
translations; for each fixed g ∈ G, we have a homeomorphism σg : AG → AG given by
σg(x)(g1) = x(g1g) for every g1 ∈ G and x ∈ X. The action σ = (σ g)g is called the shift
action of G on AG and, together, (AG, σ) is a dynamical system called the full shift over
A. A subshift is a subset X ⊂ AG that is σ -invariant and closed in the topology of AG.

A fixed point is a point x ∈ AG such that x(g1) = x(g2) for every g1, g2 ∈ G, in which
case X = {x} is a trivial subshift. We shall say a subshift X ⊂ AG is non-trivial if it
contains at least two points. We shall also assume for each subshift X ⊂ AG that the
alphabet A is taken to be minimal, in the sense that every symbol a ∈ A appears in at least
one point x ∈ X. Note that for a non-trivial subshift X, it necessarily holds that |A| ≥ 2.

Definition 2.7. (Patterns in subshifts) A pattern p ∈ AF is said to appear in a point
x ∈ AG at an element g ∈ G if σg(x)(F ) = p. The set of all patterns of shape F appearing
in any point of X is denoted P(F , X) ⊂ AF . The set of all patterns of any shape appearing
in any point of X is denoted P(X) ⊂ A∗.

Given a subshift X ⊂ AG and a (finite or infinite) collection of patterns F ⊂ A∗, one
may construct a subshiftX0 ⊂ X by expressly forbidding the patterns in F from appearing
in the points of X. That is,

X0 = {x ∈ X : no pattern from F appears in x}.
We denote the subshiftX0 by 〈X | F〉. Every subshift may be realized in this form; indeed,
X = 〈AG | A∗ \ P(X)〉 holds for every subshift X ⊂ AG.

Next we review some special classes of subshifts.

Definition 2.8. (Strongly aperiodic subshifts) A point x is aperiodic if σg(x) = x only
when g = e. A subshift X is strongly aperiodic if every x ∈ X is aperiodic. In other words,
the action σ is free on X.

Definition 2.9. (Shifts of finite type) A subshift Y ⊂ AG is a shift of finite type (SFT) if
there exists a finite collection of patterns F ⊂ A∗ such that Y = 〈AG | F〉. For such a
subshift, it is always possible to take F in the form AK \ P(K , Y ) for some finite subset
K ⊂ G. In this case, we say that K witnesses Y as an SFT.

We will need the following elementary lemma; see [2, Lemma 2.8].
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8 R. Bland

LEMMA 2.5. Let Y be an SFT witnessed by K ⊂ G, let y1, y2 ∈ Y be arbitrary points,
and let F ⊂ G be a finite subset. If y1(∂KK−1F) = y2(∂KK−1F), then the point y given by
y(g) = y1(g) if g ∈ F and y(g) = y2(g) if g ∈ G \ F is a point belonging to Y.

Definition 2.10. (Strong irreducibility) A subshift Y ⊂ AG is strongly irreducible if there
exists a finite subset K ⊂ G with e ∈ K such that for any finite subsets F1, F2 ⊂ G and
allowed patterns p1 ∈ P(F1, Y ) and p2 ∈ P(F2, Y ), ifKF1 is disjoint from F2, then there
is a point y ∈ Y such that y(F1) = p1 and y(F2) = p2. In this case, we say that K witnesses
Y as strongly irreducible or that Y is a strongly irreducible subshift of parameter K.

Note that strong irreducibility is preserved under taking factors (Definition 2.12) and
products (Definition 2.13) of subshifts. Strong irreducibility is equivalent to a seemingly
stronger mixing condition, as the following lemma demonstrates. The proof relies on a
standard compactness argument; we omit it for brevity.

LEMMA 2.6. Suppose Y is a strongly irreducible subshift of parameter K ⊂ G. For any
finite subset F ⊂ G and points y1, y2 ∈ Y , there is a point y ∈ Y such that

y(F ) = y1(F ) and y(G \KF) = y2(G \KF).
Next we review topological entropy of subshifts.

Definition 2.11. (Entropy) The (topological) entropy of a subshift X is given by

h(X) = lim
n→∞ h(Fn, X),

where h(F , X) = (1/|F |) log|P(F , X)| for each non-empty finite subset F ⊂ G and
(Fn)n is a Følner sequence for G.

It is classically known [12, Theorem 4.38] that the limit above exists and does not
depend on the choice of Følner sequence. Indeed, more recently, it has been shown that

h(X) = inf
F
h(F , X),

where the infimum is taken over all finite subsets F ⊂ G [5, Corollary 6.3].
Next we review homomorphisms between subshifts.

Definition 2.12. (Homomorphisms) Let AX and AY be finite alphabets, and let X ⊂ AG
X

and Y ⊂ AG
Y be subshifts. A homomorphism between X and Y is a map φ : X → Y that

is both continuous and shift-commuting. By the Curtis–Lyndon–Hedlund theorem [4,
Theorem 1.8.1], a map φ : X → Y is a homomorphism if and only if there exists a finite
subset F ⊂ G and a function� : P(F , X) → AY such that for every g ∈ G and x ∈ X, it
holds that

φ(x)(g) = �(σg(x)(F )).

If φ is surjective, then φ is said to be a factor map, X is said to factor onto Y, and Y is said
to be a factor of X. If φ is injective, then φ is said to be an embedding and X is said to
embed into Y.
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If X embeds into Y, then h(X) ≤ h(Y ). If X factors onto Y, then h(X) ≥ h(Y ).
Next we review the primary way by which we join two subshifts together.

Definition 2.13. (Product systems) Let A and 	 be finite alphabets and let X ⊂ AG

and T ⊂ 	G be subshifts. The product system X × T equipped with the action ς given
by ςg(x, t) = (σ g(x), σg(t)) is isomorphic to a subshift over the alphabet A ×	, with
(x, t) corresponding to the point x̃ such that x̃(g) = (x(g), t (g)) for each g ∈ G. Abusing
notation, we regard X × T as a subshift of (A ×	)G.

The following lemma is a consequence of the fact that for a finite subset F ⊂ G and
subshifts X and T, |P(F , X × T )| = |P(F , X)| · |P(F , T )|.

LEMMA 2.7. Let X and T be subshifts. Then h(X × T ) = h(X)+ h(T ).

2.3. Quasi-tilings. In this section, we review quasi-tilings of amenable groups, which
were originally introduced and studied by Ornstein and Weiss [18]. We also state a theorem
of Downarowicz and Huczek that is essential for our main result.

Definition 2.14. (Quasi-tilings) Let S = {S1, . . . , Sr} be a collection of finite, non-empty
subsets of G which is ‘shift-irreducible’ in the sense that there is no pair of distinct subsets
S1, S2 ∈ S and element g ∈ G for which S1g = S2. We refer to these subsets as shapes.
A quasi-tiling of G over S is an assignment of each shape S ∈ S to a (generally infinite)
subset CS ⊂ G (called the set of centers for S) such that the sets {CS : S ∈ S} are pairwise
disjoint and the map (S, c) �→ Sc is injective over {(S, c) : S ∈ S and c ∈ CS}.

A quasi-tiling of G over S may be encoded as a point of the symbolic space 	(S)G,
where	(S) = S ∪ {∅} is thought of as an alphabet of r + 1 symbols. A point t ∈ 	(S)G
encodes the quasi-tiling when t (c) = S if and only if c ∈ CS for each S ∈ S and c ∈ G,
and t (g) = ∅ otherwise. Here we shall identify t with the quasi-tiling it formally encodes.
We shall write C(t) = {g ∈ G : t (g) 	= ∅}, which is precisely the set

⋃
S∈S CS . A tile of

a quasi-tiling t is a subset of G of the form t (c)c where c ∈ C(t). A system of quasi-tilings
is a subshift T ⊂ 	(S)G such that every t ∈ T encodes a quasi-tiling of G over S.

A quasi-tiling t is disjoint if t (g1)g1 ∩ t (g2)g2 = ∅ for every g1 	= g2 ∈ G. A
quasi-tiling t is said to cover the group G if

⋃
g t (g)g = G. An exact tiling is one which

is both disjoint and covers G (in other words, the tiles of t form a partition of G). For most
applications, it is not necessary that quasi-tilings be exactly disjoint or exactly covering; it
is often sufficient to have a quasi-tiling whose tiles are ‘nearly disjoint’ and which ‘nearly
covers’ G. The following definition formalizes the ‘nearly disjoint’ condition.

Definition 2.15. (Retractions and ε-disjointness) Given a quasi-tiling t, a retraction of t
is any quasi-tiling ret(t) (which is in general given over a different collection of shapes
than t) such that ret(t)(g) ⊂ t (g) for every g ∈ G. Given ε > 0, a quasi-tiling t is said to
be ε-disjoint if it has a disjoint retraction ret(t) such that, for every c ∈ C(t), it holds that

|t (c) \ ret(t)(c)| < ε|t (c)|.
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10 R. Bland

In words, every tile of t may be ‘retracted’ to a subset of proportion at least 1 − ε such that
the retracted subsets are all pairwise disjoint.

The following definition formalizes the ‘nearly covering’ condition.

Definition 2.16. (ρ-covering) Given ρ ∈ (0, 1), a quasi-tiling t is ρ-covering if

D

( ⋃
g∈G

t(g)g

)
≥ ρ,

where D is the lower Banach density (Definition 2.3).

We shall need the following elementary lemma; see [7, Lemma 3.4].

LEMMA 2.8. Let ρ0, ρ1 ∈ (0, 1) be fixed. Suppose t0 is a ρ0-covering quasi-tiling and
suppose t1 is a disjoint retraction of t0 such that |t1(c)| ≥ ρ1|t0(c)| for each c ∈ C(t0).
Then t1 is ρ0ρ1-covering.

The existence of useful quasi-tilings over countable amenable groups (that is, with
arbitrarily large shapes and arbitrarily good near-disjointness and near-covering properties)
has been known in some form since 1987, due first to Ornstein and Weiss [18, I.§2,
Theorem 6]. This construction was sharpened in 2015 by Downarowicz, Huczek, and
Zhang who demonstrated that a countable amenable group exhibits an exact tiling with
arbitrarily large shapes; moreover, one can find a system of such tilings that has topological
entropy zero [7, Theorem 5.2].

For our purposes, we require not just that a system of nice quasi-tilings exists, but
also that one may be obtained as a topological factor of a given subshift X. We have
the following theorem of Downarowicz and Huczek [6, Lemma 3.4]. Not every property
claimed here was stated in their theorem (here we state property (5) and the fact that the
map t �→ ret(t) in property (4) is a homomorphism), but a close reading of their proof
reveals that it may be minorly modified to conclude this slightly stronger result. Here we
provide a short argument that fills in the gaps, appealing to the construction in [6] as
required.

THEOREM 2.9. Let X be a strongly aperiodic subshift, let ε ∈ (0, 1/3) be arbitrary, and
suppose that r ∈ N satisfies (1 − ε/2)r < ε. For any n0 ∈ N and finite subsetL ⊂ G, there
is a collection of shapes S = {Fn1 , . . . , Fnr } and a system of quasi-tilings T ⊂ 	(S)G
such that:
(1) n0 < n1 < · · · < nr ;
(2) there is a factor map T : X → T ;
(3) every t ∈ T is (1 − ε)-covering;
(4) every t ∈ T is ε-disjoint as witnessed by a continuous and shift-commuting retrac-

tion map t �→ ret(t); and
(5) for every t ∈ T , the set C(t) is L-separated.

Proof. In [6], n1 is chosen as n0 + 1 and ni is inductively chosen so that Fni is
(Fnj , δj )-invariant for every j < i, where δj > 0 is specified in the construction. From
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this, we infer that ni − ni−1 may be arbitrarily large for each i = 1, . . . , r . We therefore
additionally assume that for each i = 1, . . . , r , we have the following properties.
(P1) |Fni ∩ Fni �| ≥ (1 − ε)|Fni | for every � ∈ L−1L.
(P2) Fni−1L

−1L ⊂ Fni .
This is possible because the sequence (Fn)n was chosen to be both left and right Følner, to
be ascending in n, and to satisfy

⋃
n Fn = G (Definition 2.1).

Let Si = Fni for each i = 1, . . . , r and let S = {S1, . . . , Sr}. Our modifications to
the choice of S preserve the invariance conditions assumed by [6]. We now define and
construct everything else as in [6], summarized below.

Let x ∈ X be fixed. In [6], the quasi-tiling t = T (x) ∈ 	(S)G is constructed induc-
tively, with the tiles of shape Sr chosen first, then Sr−1, and so on, down to S1.
Consequently, for each c ∈ C(t), there is a well-defined subset C(t)<c ⊂ C(t) that denotes
the centers of all the tiles laid before the tile at c in the inductive process. Some tiles
of the same shape are laid simultaneously, so the implied ordering given by c1 < c2 if
c1 ∈ C(t)<c2 is not total. However, tiles laid simultaneously in the construction of [6] are
necessarily disjoint.

This in hand, the retraction map t �→ ret(t) is given by

ret(t)(c) = t (c) \
( ⋃
c0∈C(t)<c

t (c0)c0

)
c−1

for each c ∈ C(t), and ret(t)(g) = ∅ otherwise. In [6], it is shown by induction that this is
a disjoint retraction satisfying |t (c) \ ret(t)(c)| < ε|t (c)| for each c ∈ C(t). Moreover, it is
quick to check that the map t �→ ret(t) is continuous and shift-commuting, as the elements
c0 ∈ C(t)<c with t (c)c ∩ t (c0)c0 	= ∅ are determined by σc(t)(F ) for some (possibly very
large) finite subset F ⊂ G. The construction in [6] also gives that t is (1 − ε)-covering.

Let T = T (X) ⊂ 	(S)G. From the observations of the previous paragraph, we see
that properties (1) through (4) hold. For the theorem, it remains to check property (5):
that C(t) is L-separated for each t ∈ T . Let t ∈ T be fixed and suppose in contrast that
Lc1 ∩ Lc2 	= ∅ for some distinct c1 	= c2 ∈ C(t), in which case c1c

−1
2 ∈ L−1L. Let

t (c1) = Si and t (c2) = Sj and suppose without loss of generality that i ≤ j .
If i = j , then let S = Si = Sj , in which case |Sc1 ∩ Sc2| = |S ∩ Sc1c

−1
2 | ≥ (1 − ε)|S|

by the assumed property (P1). Note that R1 = ret(t)(c1) ⊂ S and R2 = ret(t)(c2) ⊂ S

are subsets such that |S \ R1| < ε|S| and |S \ R2| < ε|S| by construction. Moreover, by
construction, R1c1 ∩ R2c2 = ∅, in which case Sc1 ∩ Sc2 ⊂ (Sc1 \ R1c1) ∪ (Sc2 \ R2c2).
This implies that

|Sc1 ∩ Sc2| ≤ |Sc1 \ R1c1| + |Sc2 \ R2c2| < 2ε|S|.

We thus obtain (1 − ε)|S| ≤ |Sc1 ∩ Sc2| < 2ε|S|, which contradicts the assumption that
ε < 1/3.

In the second case, suppose i < j . Then, c1c
−1
2 ∈ L−1L implies that

Sic1c
−1
2 ⊂ SiL

−1L ⊂ Sj by the assumed property (P2). Hence, t (c1)c1 ⊂ t (c2)c2. This
does not immediately contradict the ε-disjointness of t, as it may be the case that
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12 R. Bland

t (c1)c1 ⊂ t (c2)c2 \ ret(t)(c2)c2. However, here we appeal to a property of the retraction
map that is easily checked by induction. For each c ∈ C(t), we have that

⋃
c0∈C(t)<c

t (c0)c0 =
⋃

c0∈C(t)<c
ret(t)(c0)c0. (R1)

Moreover, the assumption that i < j implies that c2 ∈ C(t)<c1 , as the tiles are placed in
order of largest to smallest. In that case, we have that

ret(t)(c1)c1 ⊂ t (c1)c1 ⊂ t (c2)c2 ⊂
⋃

c0∈C(t)<c1
t (c0)c0.

This, together with property (R1), implies that ret(t)(c1)c1 intersects ret(t)(c0)c0 for some
c0 ∈ C(t)<c1 , which contradicts the disjointness of ret(t).

This covers all cases, so we conclude that C(t) must be L-separated for every t ∈ T .
With this, we have verified all properties for the theorem not already proved in [6].

One sees as a consequence of the above theorem that X factors directly onto ret(T ), a
system of disjoint quasi-tilings with arbitrarily large shapes and near-covering of G. This is
stated by Downarowicz and Huczek [6, Corollary 3.5]. However, one has to give up control
of the number of tile shapes in exchange for perfect disjointness of the tiles.

For our purposes, we shall make use of the intermediate factor T. Each t ∈ T carries
all of the information needed to construct a disjoint quasi-tiling (by way of taking the
retraction ret(t)); we retain control of the ‘density’ of that information by controlling the
number of tile shapes and distributing the centers of the tiles arbitrarily sparsely throughout
the group.

2.4. Comparison property. In this section, we turn our attention to the case where G
has the comparison property. In short, with the comparison property, one may demonstrate
that if ε is sufficiently small and if the shapes in S are sufficiently large, then the subshift
T in Theorem 2.9 factors onto a system T1 of exact tilings.

For a thorough discussion of the comparison property for countable amenable groups
and its consequences, see [8]. Here, we only repeat that the class of groups with the
comparison property includes all countable groups with no finitely generated subgroup
of exponential growth, and it is still unknown whether there exists a countable amenable
group without the comparison property.

The following theorem is a consequence of the main results of [9, Proposition 4.3,
Theorem 4.7], also appearing in [8, Proposition 6.10, Theorem 6.12]. We state the result
in this form for convenience; this is the form in which we shall appeal to the comparison
property later in our construction.

Given a subshift T, suppose we assign to each t ∈ T a subset Gt ⊂ G. We can encode
each subsetGt by its indicator function χGt ∈ {0, 1}G. We say that the assignment t �→ Gt

is continuous and shift-commuting if the map t �→ χGt is continuous and shift-commuting
in the usual sense (Definition 2.12). Equivalently, there is a finite subset F ⊂ G and a
collection of patterns G ⊂ P(F , T ) such that for every g ∈ G and t ∈ T , we have g ∈ Gt
if and only if σg(t)(F ) ∈ G.
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THEOREM 2.10. Suppose G has the comparison property. Let T be a subshift over G and
suppose for every t ∈ T , we have corresponding disjoint subsets At , Bt ⊂ G such that:
(1) the assignments t �→ At , Bt are continuous and shift commuting; and
(2) there exists an ε > 0 such that D(Bt)−D(At) > ε for every t ∈ T .

Then there is a family of injections φt : At → Bt induced by a block code, in the sense
that there is a finite subset F ⊂ G and a function � : P(F , T ) → F such that for every
t ∈ T and every g ∈ At , it holds that

φt (g) = �(σg(t)(F ))g.

The following theorem is implicitly proved in both [9, Theorem 6.3] and [8, Theorem
7.5]. The proof, a construction that we adapt in part of our Theorem 3.5, relies on the
characterization of the comparison property given in the previous theorem. We appeal to
each of these theorems later, using Theorem 2.10 in Theorem 3.5 and using Theorem 2.11
in Theorem 3.2.

THEOREM 2.11. Let G be a countable amenable group with the comparison property. For
every finite subsetK ⊂ G and ε > 0, there is a δ > 0 such that, if T is a system of disjoint,
(1 − δ)-covering quasi-tilings with (K , δ)-invariant shapes, then T factors onto a system
T1 of exact tilings with (K , ε)-invariant shapes, by way of a factor map ex : T → T1 such
that C(t) = C(ex(t)) for every t ∈ T and t (c) ⊂ ex(t)(c) for every c ∈ C(t).

3. Theorems
3.1. Target system. To construct an embedding from a given subshift X into a given
subshift Y, it will first be necessary for our construction to pass to a subsystem Y0 ⊂ Y

in a way that preserves most of the conditions on Y. In this section, we construct that
subshift Y0.

In the following definition, we borrow a phrase from functional analysis.

Definition 3.1. (Separating elements) Let G be a discrete group. We say that a subshift Y
over G separates elements of G if for every pair of distinct elements g1, g2 ∈ G, there is a
point y ∈ Y such that y(g1) 	= y(g2). Because Y is shift-invariant, this is true if and only
if it holds that for each g 	= e, there is a point y ∈ Y such that y(e) 	= y(g).

This condition is not invariant under topological conjugacy. However, a subshift Y1 is
conjugate to a subshift Y that separates elements of G if and only if there is a finite subset
F ⊂ G such that, for every g 	= e, there is a point y1 ∈ Y1 with σg(y1)(F ) 	= y1(F ). The
forward implication follows from the Curtis–Lyndon–Hedlund theorem, and the converse
implication follows from passing to a higher block presentation of Y.

This condition is similar to the condition that Y has no global period, meaning that there
is no element g 	= e such that σg(y) = y for every y ∈ Y (equivalently, the shift action σ
is faithful on Y). If a subshift Y separates elements of G, then Y necessarily has no global
period. The converse holds when G is abelian, but not in general. When Y is strongly
irreducible, we have the following partial converse.
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LEMMA 3.1. Let G be a discrete group and let Y be a non-trivial strongly irreducible
subshift over G. If Y has no global period, then Y is conjugate to a subshift that separates
elements of G.

Proof. Let K ⊂ G be a finite subset containing e that witnesses the strong irreducibility
of Y and write K = {e, k1, k2, . . . , kn}. Because Y has no global period, for each i ≤ n,
there exists a point yi ∈ Y and an element gi ∈ G such that σki (yi)(gi) 	= yi(gi).

Let F = {e, g1, g2, . . . , gn} and let g ∈ G \ {e} be chosen arbitrarily. Because Y is
non-trivial and strongly irreducible, if g ∈ G \K , then we may construct a point y ∈ Y
such that y(e) 	= y(g), in which case y(F ) 	= σg(y)(F ). If instead g = ki for some i ≤ n,
then the fact that yi(gi) 	= σki (yi)(gi) implies that yi(F ) 	= σg(yi)(F ).

We have shown that for every g 	= e, there is a point y ∈ Y for which y(F ) 	= σg(y)(F ),
in which case Y is conjugate to a subshift that separates elements of G by the observation
in the paragraph following Definition 3.1, and the lemma is completed.

The previous lemma demonstrates that when Y is strongly irreducible, we may use
conjugacy to pass back and forth between the condition that Y has no global period and
the condition that Y separates elements of G. Indeed, in the proof of Theorem 3.5, we shall
appeal to the fact that Y has no global period to replace Y with a conjugate subshift that
separates elements of G.

It is not in general true that a strongly irreducible subshift automatically has no global
period. However, as noted in the proof of the above lemma, if a subshift Y is non-trivial
and strongly irreducible as witnessed by K ⊂ G, then for each g /∈ K , there is a point
y ∈ Y such that y 	= σg(y). This implies that any element that is a global period of Y must
belong to K (moreover, the subgroup of G consisting of all global periods of Y must be
contained in K). In this sense, to assume that a strongly irreducible subshift Y also has no
global period only imposes finitely many additional conditions on Y.

From this, we also see that when G is a torsion-free group (such as Z
d ), then a

non-trivial strongly irreducible subshift over G automatically has no global period. In fact,
it is not difficult to show that a strongly irreducible subshift over a group G with no element
of finite order must necessarily separate elements of G.

We now proceed with the main construction for this section. Given a strongly irreducible
SFT Y that separates elements of G and has positive entropy, the following theorem
produces a subsystem Y0 ⊂ Y that is also strongly irreducible, separates elements of G,
and has entropy in any arbitrary subinterval of [0, h(Y )]. The construction presented
below is a modification of the construction presented in [2, Theorem 4.1]. Here we
invoke the comparison property to construct a strongly irreducible system of exact
tilings of G.

THEOREM 3.2. Let G be a countable amenable group with the comparison property, let
Y be a strongly irreducible SFT over G that separates elements of G, and let Ỹ ⊂ Y be
a subshift satisfying h(Ỹ ) < h(Y ). For every subinterval (a, b) ⊂ [h(Ỹ ), h(Y )], there is a
strongly irreducible subshift Y0 that separates elements of G and satisfies Ỹ ⊂ Y0 ⊂ Y and
a < h(Y0) < b.
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Proof. Let A be a finite alphabet such that Y ⊂ AG. Let K ⊂ G be a finite subset
with e ∈ K chosen to witness Y as a strongly irreducible SFT. We shall abbreviate
intn F = intKn F and ∂nF = ∂KnF for each natural n ∈ N and finite subset F ⊂ G for
the remainder of this proof. We shall also abbreviate ∂np = p(∂nF ) for each pattern p of
shape F.

Choose ε > 0 such that

ε < min
(

b − a

3 + log 2 + 2 log|A| ,
b − a

5 + 4 log|A|
)

.

It is a theorem of Frisch and Tamuz [10, Theorem 2.1] that for any (K , δ), there exists a
strongly irreducible system of disjoint, (1 − δ)-covering quasi-tilings of G whose every
shape is (K , δ)-invariant and whose entropy is less than δ. This, in combination with
Theorem 2.11 and the fact that strong irreducibility is preserved under factor maps, implies
the following. There exists a finite collection of shapes S and a strongly irreducible system
T ⊂ 	(S)G of exact tilings of G such that h(T ) < ε and every shape S ∈ S satisfies the
following:
(S1) K ⊂ int2 S;
(S2) |S| > ε−1 and 2|S| < eε|S|;
(S3) |∂2S| < ε|S|; and
(S4) h(S, Ỹ ) < h(Ỹ )+ ε.

For the majority of this proof, we operate primarily in the product system Z0 = Y × T .
For each finite subset F ⊂ G and pattern p ∈ P(F , Z0), we shall write p = (pY , pT ),
where pY ∈ P(F , Y ) and pT ∈ P(F , T ). If F = S for some S ∈ S, then we shall describe
p as a ‘block’.

A block b ∈ P(S, Z0) is called aligned if bT (e) = S (note e ∈ K and K ⊂ S by
property (S1)). Note that if b is aligned, then bT (s) = ∅ for each s ∈ S \ {e}, by the fact
that every tiling t ∈ T is disjoint. For a given subshiftZ ⊂ Z0, we denote the subcollection
of all aligned blocks of shape S allowed in Z by

Pa(S, Z) ⊂ P(S, Z) ⊂ (A ×	(S))S ,

where the superscript a identifies the subcollection.
Let π : Z0 → Y be the projection map defined by π(y, t) = y for each (y, t) ∈ Z0,

which is a homomorphism. For each subshift Z ⊂ Z0 and each fixed z = (y, t) ∈ Z, we
have y = π(z) ∈ π(Z) and t ∈ T , thus Z ⊂ π(Z)× T . Consequently, for each subshift
Z ⊂ Z0, it holds that

h(Z) ≤ h(π(Z)× T ) = h(π(Z))+ h(T ) < h(π(Z))+ ε,

where above we have used Lemma 2.7 and the fact that h(T ) < ε.
Let S ∈ S be fixed. Here we choose and fix a collection of aligned blocks W(S) ⊂

Pa(S, Z0). We shall refer to these as ‘witness patterns’, because they will later allow us
to demonstrate (‘witness’) for each g ∈ G a point z ∈ Z0 such that zY (e) 	= zY (g). These
witness patterns shall be of three types.

For the first type, let s ∈ S \ {e} be arbitrary. Because Y separates elements of G,
there is a pattern bY ∈ P(S, Y ) such that bY (e) 	= bY (s). If bT ∈ P(S, T ) is given by
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bT (e) = S and bT (s) = ∅ for each s ∈ S \ {e}, then b = (bY , bT ) is an allowed block in
Z0 that satisfies bY (e) 	= bY (s). For each s ∈ S \ {e}, pick and save one such block b to
the collection W(S).

For the second type, let 0 ∈ A be a distinguished symbol of the alphabet. For every
y ∈ Y , we can find a block b ∈ P(S, Z0) such that b(e) = (0, S) and bY (∂2S) = y(∂2S).
This is because Y is strongly irreducible of parameter K and property (S1). For each pattern
y(∂2S) ∈ P(∂2S, Y ), pick and save one such block b to the collection W(S).

For the third type, let 1 ∈ A be a distinguished symbol different from 0. For each s ∈ S,
we can find a block b ∈ P(S, Y ) such that bT (e) = S and bY (s) = 1. For each s ∈ S,
pick and save one such block b to the collection W(S). This completes the description of
the collection W(S). Note that |W(S)| ≤ 2|S| + A|∂2S| < eε|S| · |A|ε|S| by properties (S2)
and (S3).

We now construct a descending chain of subshifts (Zn)n of Z0 and claim that the
subshift Y0 desired for the theorem shall be given by Y0 = π(Zn) for some n ≤ N . Suppose
for induction that Zn ⊂ Z0 has been constructed for n ≥ 0. If there exists a shape Sn ∈ S
and an aligned block βn ∈ Pa(Sn, Zn) such that:
(B1) βYn does not appear in Ỹ (βYn /∈ P(Sn, Ỹ ));
(B2) βn is not one of the reserved witness patterns (βn /∈ W(Sn)); and
(B3) there exists an aligned block b ∈ Pa(Sn, Zn) with b 	= βn and ∂2b = ∂2βn,
then let Zn+1 = 〈Zn | βn〉. If no such block exists for any shape, then the descending chain
is finite in length and Zn is the terminal subshift.

In fact, the chain must be finite in length. This is because Zn+1 ⊂ Zn implies
P(S, Zn+1) ⊂ P(S, Zn) for each S ∈ S, and P(Sn, Zn+1) 
 {βn} ⊂ P(Sn, Zn) for each
n ≥ 0. Hence, we have that

∑
S∈S

|P(S, Zn)|

is a non-negative integer sequence that strictly decreases with n, and therefore must
terminate. Let N ≥ 0 be the index of the terminal subshift, and note by construction that
for each S ∈ S and each aligned block b ∈ Pa(S, ZN), either b is uniquely determined by
∂2b, or b ∈ W(S), or bY ∈ P(S, Ỹ ).

We note the following intermediate lemma that shall be referenced multiple times in the
remainder of this proof.

LEMMA 3.3. For each n < N and (y, t) ∈ Zn, there is a point (y∗, t) ∈ Zn+1 satisfying
(y, t)(g) = (y∗, t)(g) for every g /∈ ⋃

c int t (c)c, where the union is taken over all c ∈ G
with σc(y, t) = βn.

Proof. By property (B3), there is a block b ∈ Pa(Sn, Zn) such that b(∂2Sn) = βn(∂
2Sn).

In words, we simply replace every appearance of βn in (y, t) with b to construct the point
(y∗, t).

Precisely, let (ck)k enumerate the group elements c for which σc(y, t) = βn, which
is necessarily a subset of the elements c for which t (c) = Sn because βn is aligned. Let
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y∗ ∈ AG be given by y∗(g) = bY (gc−1
k ) whenever g ∈ Snck , and y∗(g) = y(g) for every

g /∈ ⋃
k Snck . This point is well defined because t is a disjoint tiling.

Because Y is an SFT of parameter K and by Lemma 2.5, we see that y∗ is an allowed
point of Y. By construction, for every S ∈ S and c ∈ Gwith t (c) = S, either σc(y, t)(S) =
σc(y∗, t)(S) or σc(y, t) = βn and σc(y∗, t) = b. Consequently, no forbidden block βi for
any i < n can appear in (y∗, t), else that would force an appearance of βi in (y, t), where
βi is already forbidden. Moreover, the block βn cannot appear in (y∗, t) by construction,
thus (y∗, t) ∈ Zn+1. Finally, we see by construction that (y, t)(g) = (y∗, t)(g) for every
g 	∈ ⋃

c int t (c)c, where the union is taken over all c ∈ G with σc(y, t) = βn as desired,
hence we are done.

Now continuing the proof of Theorem 3.2, we claim that for each n, the subshift π(Zn)
is strongly irreducible, separates elements of G, and satisfies Ỹ ⊂ π(Zn) ⊂ Y . Moreover,
we claim that h(π(Zn))− h(π(Zn+1)) < b − a for each n < N , and h(π(ZN))− h(Ỹ ) <

b − a.
For Ỹ ⊂ π(Zn) ⊂ Y , let ỹ ∈ Ỹ and t ∈ T be arbitrary, in which case (ỹ, t) ∈ Z0.

Note that for each n < N , the block βn cannot appear in (ỹ, t), else that would
imply that βYn appears in ỹ, contradicting property (B1). Thus, (ỹ, t) ∈ Zn for each
n ≤ N . This demonstrates that Ỹ × T ⊂ Zn, and in particular Ỹ ⊂ π(Zn) ⊂ Y , for each
n ≤ N .

For the strong irreducibility, note that Z0 = Y × T is strongly irreducible because both
Y and T are strongly irreducible. For induction, suppose Zn is strongly irreducible of
parameter Kn ⊂ G (with e ∈ Kn) for a fixed n < N . Let U = ⋃

S∈S S. We claim that
Zn+1 is strongly irreducible of parameter UU−1KnUU

−1.
Indeed, let (y1, t1), (y2, t2) ∈ Zn+1 be arbitrary points, and let F1, F2 ⊂ G be

arbitrary finite subsets with KnUU
−1F1 ∩ UU−1F2 = ∅. As Zn+1 ⊂ Zn and Zn is

strongly irreducible of parameter Kn, there is a point (y, t) ∈ Zn with (y, t)(UU−1F1) =
(y1, t1)(UU−1F1) and (y, t)(UU−1F2) = (y2, t2)(UU−1F2).

Now consider the forbidden block βn of shape Sn ∈ S. Suppose σg(y, t)(Sn) = βn for
some g ∈ G with Sng ∩ F1 	= ∅. It follows that g ∈ S−1

n F1, and hence Sng ⊂ SnS
−1
n ⊂

UU−1F1, and hence σg(y1, t1)(Sn) = σg(y, t)(Sn) = βn, contradicting the fact that
(y1, t1) ∈ Zn+1 and βn is forbidden in Zn+1. From this observation (and by an identical
argument for F2), we see that if βn appears anywhere in (y0, t), then it does not appear on
any tile of t that intersects either F1 or F2.

Let (y∗, t) ∈ Zn+1 be the point delivered by Lemma 3.3 as applied to (y, t). From
the previous paragraph, we have (y∗, t)(Fi) = (y, t)(Fi) = (yi , ti )(Fi) for each i = 1, 2.
We conclude that Zn+1 is strongly irreducible of parameter UU−1KnUU

−1, therefore
completing the induction. As strong irreducibility is preserved under taking factors, it
follows that π(Zn) is strongly irreducible for each n ≤ N .

To see that each π(Zn) separates elements of G, let n ≤ N and g 	= e be fixed. We
proceed by cases on g.

If g ∈ S for some S ∈ S, then there is a witness block b ∈ W(S) such that bY (e) 	=
bY (g). Choose and fix (y0, t) ∈ Z0 such that (y0, t)(S) = b and apply Lemma 3.3 at most
N times to produce the point (yn, t) ∈ Zn. Note (yn, t)(S) = (y0, t)(S) = b, as b 	= βn
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for every n < N by property (B2). Consequently, yn ∈ π(Zn) satisfies yn(e) = bY (e) 	=
bY (g) = yn(g).

If g /∈ S for any S ∈ S, then pick S0 ∈ S arbitrarily and fix t ∈ T with t (e) = S0.
Because t is an exact tiling, there is a unique c 	= e such that g ∈ t (c)c. Let S1 = t (c)

and write g = s1c for some s1 ∈ S1 ∈ S. Recall 0, 1 ∈ A are two distinguished symbols
determined in the construction of W(S). By construction, there is a witness block
b1 ∈ W(S1) with bY1 (s1) = 1. Pick any y ∈ Y with σc(y)(S1) = b1. By construction,
there is a witness block b0 ∈ W(S0) with bY0 (e) = 0 and ∂2bY0 = y(∂2S0). Because Y is
an SFT of parameter K and by property (S1) and Lemma 2.5, there is a point y∗ ∈ Y
given by y∗(S0) = bY0 and y∗(g) = y(g) otherwise. In particular, σc(y∗)(S1) = bY1 . Then,
apply Lemma 3.3 at most N times to the initial point (y∗, t) ∈ Z0, thus yielding (yn, t) ∈
Zn. Observe that (yn, t)(S0) = (y∗, t)(S0) = b0 and σc(yn, t)(S1) = σc(y∗, t)(S1) = b1,
because b0 	= βn 	= b1 for every n < N by property (B2). Consequently, yn ∈ π(Zn)
satisfies yn(e) = 0 	= 1 = yn(g). This finishes all cases and demonstrates that π(Zn)
separates elements of G for each n ≤ N .

The proofs that h(π(Zn))− h(π(Zn+1)) < b − a for every n < N and h(π(ZN))−
h(Ỹ ) < b − a are nearly identical to arguments appearing in [2, Theorem 4.1]. We proceed
quickly through the argument here. Choose a finite subset F ⊂ G such that |h(Zn)−
h(F , Zn)| < ε for every n ≤ N , |h(F , T )− h(T )| < ε (this implies in particular that
h(F , T ) < 2ε by choice of T), and |F \ U−1F | < ε|F |, where U = ⋃

S∈S S. For each
n ≤ N , let

P(n) =
∑
t (F )

∏
c

|Pa(int t (c), Zn)|,

where the sum is taken over all patterns t (F ) ∈ P(F , T ) and the product is taken over all
c ∈ C(t) ∩ U−1F ∩ F . For each n ≤ N , it holds that

P(n) ≤ |P(F , Zn)| ≤ |A|2ε|F | · P(n).
The first inequality follows from the strong irreducibility of Y in combination with Lemma
3.3. The latter inequality follows from projecting a pattern p ∈ P(F , Zn) to the interiors
of the tiles described by pT = t (F ) ∈ P(F , T ) that are contained in F. This projection
determines p up to the portion of F not covered by those tile interiors, a subset of F of size
at most 2ε|F | by the combination of the fact that the tiling is exact, the assumed invariance
condition on F, and property (S3).

Moreover, for each n < N , it holds that P(n) ≤ 2ε|F | · P(n+ 1). This follows from the
fact that |Pa(int S, Zn)| − |Pa(int S, Zn+1)| ≤ 1 (at most one aligned block is removed as
one passes from Zn to Zn+1), in combination with the assumed invariance condition on F.

The above, in combination with the assumed entropy estimating properties of F, implies
that

h(Zn) < h(Zn+1)+ 2ε + ε log 2 + 2ε log|A|.
This, together with the fact that h(Zn) < h(π(Zn))+ ε for each n ≤ N and the choice of
ε, finally gives that h(π(Zn))− h(π(Zn+1) < b − a holds for each n < N .
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Next, consider the terminal subshift ZN . Recall that for every shape S ∈ S, every
aligned block b ∈ Pa(S, ZN) either belongs to W(S), is uniquely determined by ∂2b,
or satisfies bY ∈ P(S, Ỹ ) by construction. Recall also that |W(S)| ≤ eε|S| · |A|ε|S|. This,
together with property (S4), implies that for every shape S ∈ S, it holds that

|Pa(int S, ZN)| ≤ eh(Ỹ )|S| · e2ε|S| · |A|2ε|S|.

This, together with the facts that h(F , T ) < 2ε and |P(F , ZN)| ≤ |A|2ε|F | · P(N) argued
earlier, gives us that

|P(F , ZN)| ≤ eh(Ỹ )|F | · e4ε|F | · |A|4ε|F |,

in which case it follows that h(ZN) < h(Ỹ )+ 5ε + 4ε log|A|. This and our choice of ε
finally give that h(π(ZN))− h(Ỹ ) < b − a.

Recall that h(Ỹ ) < a < b <h(Y ), and recall also that π(Z0)=Y and thus h(π(Z0))>b.
We have demonstrated that h(π(Zn))− h(π(Zn+1)) < b − a for every n < N and
h(π(ZN))− h(Ỹ ) < b − a. There must therefore exist at least one n ≤ N for which
π(Zn) satisfies a < h(π(Zn)) < b, thus completing the proof.

3.2. Marker patterns. Let Y be a subshift over G. In this section, we construct marker
patterns for Y. Marker patterns are patterns m ∈ P(Y ) for which appearances of m in
any y ∈ Y are separated by arbitrarily large displacements. Ideally, distinct appearances
of a marker pattern appear on disjoint regions of G, but in practice, there is potentially
some small overlap. The concept of marker patterns originates in the seminal work of
Krieger and Boyle that considers the G = Z case [3, 13] and the concept has been used
by many authors since. For instance, marker patterns were constructed for G = Z

d by
Lightwood [14, Lemma 6.3] in the case that Y is an SFT with the uniform filling property
that contains a point with a finite orbit. Here we generalize this construction to the case
that G is an arbitrary countable amenable group and Y is a strongly irreducible SFT that
separates elements of G and has positive entropy. In particular, we do not invoke the
comparison property in this construction. This construction, in combination with Theorem
3.2, provides the marker patterns for Y that we need in the proof of our main result.

We construct a marker pattern m here by first constructing an aperiodic point y ∈ Y ,
then taking m to be the pattern of a large-enough shape appearing in y at e. We construct
aperiodic points as follows: begin by passing to a subsystem Y1 ⊂ Y such that h(Y1) <

h(Y ), in which case one may find arbitrarily many patterns that do not appear in Y1 but
that do appear in Y. By beginning with a point in Y1 and mixing in one of these ‘forbidden’
patterns from Y (via the strong irreducibility of Y), we obtain a point that lacks all but
possibly finitely many periods. Then, we pass to a subsystem Y0 ⊂ Y1 (which is also
assumed to be strongly irreducible and to separate elements of G) from which an auxiliary
pattern can be found that lacks precisely that finite set of periods. Mixing this via Y0 into
our point from before yields the desired aperiodic point.

THEOREM 3.4. Let Y0 ⊂ Y1 ⊂ Y be subshifts and suppose that Y0 and Y are strongly
irreducible, Y0 separates elements of G, and h(Y1) < h(Y ). For any r ∈ N, there exists
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a finite subset M ⊂ G such that for any fixed y0 ∈ Y0, there are patterns m1, . . . , mr ∈
P(M , Y ) \ P(M , Y1) and points y1, . . . , yr ∈ Y satisfying:
(1) mi appears in yi only at e;
(2) mi does not appear in yj for any j 	= i; and
(3) yi(g) = y0(g) for every g /∈ M
for each i = 1, . . . , r .

Proof. Because h(Y1) < h(Y ), there exists a finite subset F ⊂ G with e ∈ F such that
|P(F , Y ) \ P(F , Y1)| > r . Choose and fix r distinct patterns a1, . . . , ar ∈ P(F , Y ) \
P(F , Y1).

Choose a finite subset K ⊂ G with e ∈ K to witness the strong irreducibility of Y
and Y0. Let {e, g1, . . . , gN } be an enumeration of F−1KF . Let M0 = KF and suppose
for induction that Mn−1 ⊂ G has been constructed for a fixed n ∈ [1, N]. Because
G is infinite, by the pigeonhole principle, there exists an element hn ∈ G such that
Khn ∪Khngn is disjoint from Mn−1. Let Mn = Mn−1 
 (Khn ∪Khngn). We claim that
M = MN is the subset desired for the theorem. Note that

M = KF 

( N⊔
n=1

Khn ∪Khngn
)

by induction.
Let y0 ∈ Y0 be arbitrary. Let y(0)0 = y0 and suppose for induction that y(n−1)

0 ∈ Y0 has
been constructed for a fixed n ∈ [1, N]. Because Y0 separates elements of G, there exists a
point y∗ ∈ Y0 with y∗(hn) 	= y∗(hngn). Because Y0 is strongly irreducible of parameter K,
we may find a point y(n)0 ∈ Y0 such that y(n)0 ({hn, hngn}) = y∗({hn, hngn}) and y(n)0 (g) =
y
(n−1)
0 (g) for every g /∈ Khn ∪Khngn.

By induction, the point y
(N)
0 ∈ Y0 satisfies y

(N)
0 (hn) 	= y

(N)
0 (hngn) for each

n = 1, . . . , N and y(N)0 (g) = y0(g) for every g /∈ ⋃N
n=1 Khn ∪Khngn.

For each i = 1, . . . , r , because Y is strongly irreducible of parameter K, we may
find a point yi ∈ Y such that yi(F ) = ai and yi(g) = y(N)(g) for each g /∈ KF . Hence,
by construction, yi(hn) 	= yi(hngn) for each n = 1, . . . , N , and yi(g) = y0(g) for each
g /∈ M . Finally, let mi = yi(M). We claim that these are the patterns and points desired
for the theorem. See Figure 1 for an illustration of the construction.

For property (1), let i ≤ r be fixed. Observe that there is no g ∈ F−1KF \ {e} such
that σg(yi)(M) = yi(M), as otherwise would contradict the fact that every g ∈ F−1KF

has a corresponding h ∈ M ∩Mg−1 such that yi(h) 	= yi(hg). Moreover, if g /∈ F−1KF ,
then Fg is disjoint fromKF , in which case σg(yi)(F ) = σg(y

(N)
0 )(F ). We must therefore

have σg(yi)(F ) 	= ai , as otherwise would contradict the fact that ai is forbidden in Y1 and
hence also forbidden in Y0. Consequently, σg(yi)(M) = yi(M) only when g = e.

For property (2), let i 	= j be fixed. Observe that aj 	= ai implies that yj (M) 	= yi(M).
Moreover, σg(yj )(M) 	= yi(M) for any g 	= e by an identical argument as in the previous
paragraph. This is because yj (g) = y

(N)
0 (g) = yi(g) for every g /∈ KF , and both ai and

aj are forbidden in Y1, and hence also forbidden in Y0.
Property (3) is true by construction.
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FIGURE 1. An illustration of the construction of the marker pattern mi . The pattern ai is selected from Y to be
forbidden in Y1. Thus, yi has no element of G \ F−1KF as a period. Then, small pairs of differing symbols are
inductively mixed in (via Y0) to prevent yi from having any period g ∈ F−1KF \ {e}. The shaded exterior is the

base point y0 ∈ Y0.

One may wonder why we mention the subshift Y1 at all, instead of merely assuming
h(Y0) < h(Y ) directly and stating that the marker patterns are forbidden in Y0. In fact,
later on, we shall have some additional structure on Y1 that shall prove useful for our
construction. Namely, in the chain of inclusions Y0 ⊂ Y1 ⊂ Y , we shall have that Y0 is
strongly irreducible, Y1 is an SFT, and Y is a strongly irreducible SFT. Then, having the
marker patterns forbidden in not only Y0 but also in Y1 shall be significant.

3.3. Main result. We are now ready to present our main result. First we briefly outline
the proof to come.

Beginning with a strongly aperiodic subshift X, we derive a chain of factors of X in the
form

X
T−→ T0

ret−→ T1
ex−→ T2,

where each Ti for i = 0, 1, 2 is a system of quasi-tilings of G. The foremost system T0 is
one in which the number of shapes is controlled, delivered by Theorem 2.9. The system T1

(consisting of retractions of points of T0) is one in which each quasi-tiling exhibits large,
disjoint tiles that nearly cover G. The lattermost system T2 is a system of exact tilings, and
we invoke the comparison property to construct it. Our construction of T2 adapts part of
the proof of [9, Theorem 6.3] (proof also appears in [8, Theorem 7.5]). We include the full
construction here for the sake of completeness and because we leverage our control over
the foremost system T0, which is not explicitly referenced in the constructions found in
[8, 9].

In principle, we wish to embed all the information of an arbitrary point x ∈ X into a
point y ∈ Y injectively and continuously (that is, in such a way that it can be uniquely and
‘locally’ decoded). From x, we derive quasi-tilings t0, t1, and t2 as above. On the side of X,
the fact that t2 is exact (and therefore covers G) allows us to partition all of the information
in x into local ‘blocks’ of a bounded size. The fact that t2 covers G is especially significant
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for our construction; it would be fine if t2 was not perfectly disjoint, so long as we had full
covering and only a small (controllable) amount of ‘redundancy’. Then, by choosing our
quasi-tilings with shapes sufficiently large, we may exhibit an injective map from patterns
of shapes from T2 in X to patterns of shapes from T1 in Y (we describe this as a ‘block
injection’). Here we invoke the hypothesis h(X) < h(Y ), as well as the fact that each shape
from T2 is only slightly (controllably) larger in cardinality than a shape from T1, as careful
estimation shows. We thereby construct a point of Y by taking blocks from x, passing them
through block injections to obtain blocks of Y, and gluing them together within Y via a
mixing condition. On this side, we see that the fact that t1 is disjoint is essential, so that
there are no conflicts in laying these blocks together within Y. It is permissible for t1 to not
completely cover G, which is indeed the situation we grapple with in the coming proof.

That leaves open the issue of how to decode the point x if only given y. If one knew
which tilings t1 and t2 were used to construct y from x, then it would be easy: simply look
at the patterns appearing in y on each of the tiles of t1, pass these backwards through the
block injections described above, then lay these new blocks upon the tiles of t2 and thereby
reconstruct x. Here we use the quasi-tiling t0, which has a controlled number of shapes and
tile centers spread arbitrarily sparsely throughout the group. This forces the ‘information
density’ of t0 to be arbitrarily low, and hence we are able to encode t0 within y (with the
use of marker patterns) by giving up only a subset of symbols of controllably small density.

Given y, one is therefore able to decode the point t0 by looking at the marker patterns,
thereby deriving both t1 and t2, thereby decoding x by the algorithm outlined above.

THEOREM 3.5. Let G be a countable amenable group with the comparison property. Let
X be a non-empty strongly aperiodic subshift over G. Let Y be a strongly irreducible SFT
over G with no global period. If h(X) < h(Y ) and Y contains at least one factor of X, then
X embeds into Y.

Proof. Let AX and AY be finite alphabets such that X ⊂ AG
X and Y ⊂ AG

Y . Suppose
φ : X → Y is a homomorphism, not necessarily injective, in which case Ỹ = φ(X) ⊂ Y is
a factor of X. Note that h(Ỹ ) ≤ h(X) < h(Y ). Without loss of generality (by Lemma 3.1),
we may assume that Y separates elements of G (Definition 3.1). In that case, by Theorem
3.2, there exists a strongly irreducible subshift Y0 that separates elements of G and satisfies
Ỹ ⊂ Y0 ⊂ Y and h(X) < h(Y0) < h(Y ). By [2, Theorem 4.2], there exists an SFT Y1 such
that Y0 ⊂ Y1 ⊂ Y and h(Y1) < h(Y ). It is significant for our proof that these inequalities
are strict.

Choose a finite subset K ⊂ G with e ∈ K such that K−1 = K , K witnesses Y and Y1

as SFTs, and K witnesses Y and Y0 as strongly irreducible. As in the proof of Theorem
3.2, we shall abbreviate intn F = intKn F and ∂nF = ∂KnF = F \ intn F for each natural
n ∈ N and finite subset F ⊂ G for the remainder of this proof. We shall also abbreviate
∂np = p(∂nF ) for each pattern p of shape F.

Choose ε > 0 such that ε < 1/3 and

ε <
h(Y0)− h(X)

1 + 5 log|AX| + (5 + 4|K|6) log|AY | .
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Choose r = 1 + �(2/ε) log(1/ε)�, in which case, (1 − ε/2)r < ε. Let M ⊂ G be the
subset delivered by Theorem 3.4 for Y0, Y1, Y, and r as chosen here. By passing to a
superset of M if necessary, we may assume that K ⊂ M and that M−1 = M . Choose a
finite subset L ⊂ G such that M6 ⊂ L and |M6|/|L| < ε.

Let T0 ⊂ 	(S0)
G be the quasi-tiling system delivered by Theorem 2.9 for X, ε, r, and L

as chosen here, with n0 chosen so that every S0 ∈ S0 satisfies the following hypotheses.
(H1) 1/|S0| < ε(1 − ε).
(H2) (|K3||M6||L|)|LS0 \ S0| < ε|S0|.
(H3) h(S0, X) < h(X)+ ε.

Note that Theorem 2.9 gives that |S0| ≤ r , so choose and fix an enumeration (S(i)0 )i of
S0 where i = 1, . . . , r . Theorem 2.9 also gives that every quasi-tiling t0 ∈ T0 is ε-disjoint,
as witnessed by a continuous and shift-commuting retraction map t0 �→ ret(t0). Let S1 be
the set of all shapes realized as tiles of ret(t0) for each t0 ∈ T0. Each shape S0 ∈ S0 gives
rise to a subcollection of shapes S1 ∈ S1, all of which satisfy S1 ⊂ S0 and |S0 \ S1| <
ε|S0|. Let T1 = ret(T0) ⊂ 	(S1)

G be the system of all quasi-tilings obtained by taking
retractions of the quasi-tilings in T0, in which case the map ret is a factor map from T0

to T1. Note that every t1 ∈ T1 is disjoint by Theorem 2.9. Moreover, every t1 ∈ T1 is
(1 − ε)-covering, since the retraction map ret has the property that

⋃
g t0(g)g =⋃

g ret(t0)(g)g for each t0 ∈ T0, and every t0 ∈ T0 is (1 − ε)-covering by Theorem 2.9.
We aim to go one step further and construct a factor T2 of T1, which shall be a system

of exact tilings. It is in this step that we appeal to the comparison property of G. To begin,
note that for each pair of shapes S0 ∈ S0 and S1 ∈ S1 with S1 ⊂ S0 and |S0 \ S1| < ε|S0|,
it holds that

|S1| = |S0| − |S0 \ S1| > (1 − ε)|S0| > 1/ε,

where above we invoke hypothesis (H1). This implies that there exists an integer in
the interval [2ε|S1|, 3ε|S1|). Therefore, for each shape S1 ∈ S1, we may find and fix an
arbitrary subset B(S1) ⊂ S1 such that 2ε|S1| ≤ |B(S1)| < 3ε|S1|.

To each t1 ∈ T1, we assign two disjoint subsets At1 , Bt1 of G in the following way.
Let At1 = G \ ⋃

g t1(g)g and let Bt1 = ⋃
g B(t1(g))g. Observe that the assignments

t1 �→ At1 , Bt1 are continuous and shift-commuting. Observe also thatD(At1) ≤ ε because
t1 is (1 − ε)-covering, and that D(Bt1) ≥ 2ε(1 − ε) by Lemma 2.8 (with ρ0 = 1 − ε and
ρ1 = 2ε). Consequently,

D(Bt1)−D(At1) ≥ 2ε(1 − ε)− ε > 0,

where above we have used the fact that ε ∈ (0, 1/2).
Therefore, by Theorem 2.10, there exists a family of injections φt1 : At1 → Bt1 that is

induced by a block code, in the sense that there is a finite subset F ⊂ G and a function
� : P(F , T1) → F such that for every t1 ∈ T1 and g ∈ At1 , it holds that

φt1(g) = �(σg(t1)(F ))g.
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With this, we are ready to construct T2. For each t1 ∈ T1, let t2 = ex(t1) be the
quasi-tiling obtained according to the rule

t2(c) = t1(c) 
 φ−1
t1
(B(t1(c))c)c

−1

for every c ∈ C(t1), and t2(g) = ∅ otherwise. In words, we expand each tile t1(c)c by
including all group elements that map into B(t1(c))c ⊂ Bt1 under the injective map φt1 .
Consequently, |t2(c) \ t1(c)| ≤ |B(t1(c))| < 3ε|t1(c)| for every c ∈ C(t2) = C(t1).

Let S2 be the set of all shapes realized as tiles of ex(t1) for each t1 ∈ T1. There are
at most finitely many because ex(t1)(g) ⊂ F−1t1(g) for every g ∈ G. Each shape S1 ∈ S1

gives rise to a subcollection of shapes S2 ∈ S2, all of which satisfy S1 ⊂ S2 and |S2 \ S1| <
3ε|S1|.

Let T2 = ex(T1) ⊂ 	(S2)
G. We claim that the map ex is a homomorphism and

that every t2 ∈ T2 is an exact tiling of G. To see that the map ex is continuous and
shift-commuting, let t1 ∈ T1 be arbitrary and let t2 = ex(t1). We note that for each g ∈ G
and c ∈ C(t2) = C(t1), the definition given above implies that g ∈ t2(c) if and only if

g ∈ t1(c) or �(σgc(t1)(F ))g ∈ B(t1(c)).
Moreover, for each f ∈ F , we have σgc(t1)(f ) = t1(fgc) = σc(t1)(fg). Because t2(c) ⊂
F−1t1(c), we see that t2(c) depends only on σc(t1)(FF−1U1), where U1 = ⋃

S1∈S1
S1.

This demonstrates that the map ex is induced by a block code, which is sufficient to
demonstrate that ex is continuous and shift-commuting.

For the claimed exactness, let t2 ∈ T2 and g ∈ G be arbitrary. Choose t1 ∈ T1 such
that t2 = ex(t1). If there exists a c ∈ C(t1) such that g ∈ t1(c)c, then the c is necessarily
unique by the disjointness of t1 and also it follows that g ∈ t2(c)c. Otherwise, g ∈ At1 ,
in which case φt1(g) ∈ Bt1 = ⋃

c B(t1(c))c. Therefore, there exists a c ∈ C(t1) such that
φt1(g) ∈ B(t1(c))c ⊂ t1(c)c. The c must again be unique by the disjointness of t1. Then
g ∈ φ−1

t1
(B(t1(c)c)) ⊂ t2(c)c. We see that for each g ∈ G, there exists a unique c ∈ C(t2)

such that g ∈ t2(c)c, and hence t2 is an exact tiling of G.
There is one last quasi-tiling system we shall need. Let S∗

1 denote the collection of all
shapes obtained in the form int3(S1 \M6C) for any S1 ∈ S1 and any L-separated subset
C ⊂ G. Each shape S1 ∈ S1 gives rise to a subcollection of shapes S∗

1 ∈ S∗
1 , all of which

satisfy S∗
1 ⊂ S1. For each t1 ∈ T1, let t∗1 be the retraction of t1 such that, for each c ∈ C(t1),

it holds that

t∗1 (c) = int3(t1(c) \M6C(t1)c
−1)

and t∗1 (g) = ∅ otherwise. Observe that each such quasi-tiling belongs to 	(S∗
1 )
G. Let

T ∗
1 = {t∗1 ∈ 	(S∗

1 )
G : t1 ∈ T1}. It is quick to see that the map t1 �→ t∗1 is a factor map

from T1 to T ∗
1 , because the assignment t1 �→ C(t1) is continuous and shift-commuting.

Moreover, for any choice of t0 ∈ T0 with corresponding t1, t2, and t∗1 , it holds that C(t0) =
C(t1) = C(t2) = C(t∗1 ), thus all of these subsets are L-separated.

With our quasi-tiling systems constructed, we now aim to construct an injection that
will carry patterns on tiles in X to patterns on tiles in Y0. On the side of X, we use patterns
of those shapes belonging to S2. On the side of Y0, we shall use patterns of those shapes
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belonging to S∗
1 . We separate out the construction (and its rather involved estimations) into

the following lemma.

LEMMA 3.6. Let (S0, S1, S2, S∗
1 ) be any tuple of shapes from S0, S1, S2, and S∗

1 ,
respectively, such that S∗

1 ⊂ S1 ⊂ S0 ∩ S2, |S0 \ S1| < ε|S0|, |S2 \ S1| < 3ε|S1|, and
S∗

1 = int3(S1 \M6C) for some L-separated subset C ⊂ G. Then

|P(S2, X)| < |P(S∗
1 , Y0)|.

Proof. We begin on the side of X. By the hypotheses, a quick calculation shows that
|S0�S2| < 5ε|S0|. It therefore holds that

|P(S2, X)| ≤ |P(S0, X)| · |AX||S0�S2| < e(h(X)+ε)|S0| · |AX|5ε|S0|, (X1)

where above we invoke hypothesis (H3) in the latter inequality.
Now we shall estimate the number of patterns in Y0 of shape S∗

1 . We begin by estimating
the size of S∗

1 in terms of the size of S0. We proceed in stages, beginning with S1. We first
note that

|S1 ∩M6C| ≤ |S0 ∩M6C|

≤ |M6|
|L| |S0| + |M6||∂LS0| + |M6||(M6)−1S0 \ S0|

< ε|S0| + ε|S0| + ε|S0|
= 3ε|S0|,

where above we have used the fact that S1 ⊂ S0, Lemma 2.4, the choice of L, Lemma 2.3,
and hypothesis (H2) in conjunction with the fact that (M6)−1 = M6 ⊂ L. It follows that

|S1 \M6C| = |S1| − |S1 ∩M6C| ≥ (1 − ε)|S0| − 3ε|S0| = (1 − 4ε)|S0|.
This, together with the fact that S1 \M6C ⊂ S1 ⊂ S0, gives us

|∂3(S1 \M6C)| ≤ |K3||K3(S1 \M6C) \ (S1 \M6C)|
≤ |K3||K3S0 \ S0| + |K3|2|S0 \ (S1 \M6C)|
< ε|S0| + |K|6 · 4ε|S0|
= ε(1 + 4|K|6)|S0|,

where above we have used Lemmas 2.3, 2.1, hypothesis (H2) in conjunction with the fact
that K3 ⊂ L, and the calculation of the previous display.

The combination of the previous two displays gives us

|int3(S1 \M6C)| = |S1 \M6C| − |∂3(S1 \M6C)|
≥ (1 − 4ε)|S0| − ε(1 + 4|K|6)|S0|
= |S0| − ε(5 + 4|K|6)|S0|.

https://doi.org/10.1017/etds.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.21


26 R. Bland

Recall that S∗
1 = int3(S1 \M6C) and note that |P(S0, Y0)| ≤ |P(S∗

1 , Y0)| · |AY ||S0\S∗
1 |.

This, in combination with the previous display, gives that

|P(S∗
1 , Y0)| ≥ |P(S0, Y0)| · |AY |−|S0\S∗

1 |

> eh(Y0)|S0| · |AY |−ε(5+4|K|6)|S0|,

where above we have also used the fact that h(S0, Y0) ≥ h(Y0) (see Definition 2.11). Our
choice of ε gives us

h(X)+ ε + 5ε log|AX| < h(Y0)− ε(5 + 4|K|6) log|AY |,

in which case the previous calculation, in combination with (X1), finally gives that

|P(S2, X)| < |P(S∗
1 , Y0)|.

The previous lemma implies that for each tuple (S0, S1, S2, S∗
1 ) satisfying the hypothe-

ses of the previous lemma, there exists an injective map

�(S2, S∗
1 ) : P(S2, X) → P(S∗

1 , Y0).

Let these injections be chosen and fixed. We now continue the proof of Theorem 3.5.
Here we choose our marker patterns. Pick a point y(m) ∈ Y0 arbitrarily to serve as

the ‘substrate’ of the marker patterns. Let y1, . . . , yr ∈ Y and mi = yi(M) ∈ P(M , Y ) \
P(M , Y1) be the points and patterns delivered by Theorem 3.4 for the choice of
substrate y(m).

Now we appeal to the strong irreducibility of Y0 to construct certain ‘mixing’ patterns.
We do this twice: once for patterns of shape M6, and once for patterns of each shape
S∗

1 ∈ S∗
1 .

Note that K2 ·KM3 ⊂ M6 because K ⊂ M , thus KM3 ⊂ int2(M6) and thus KM3

is disjoint from ∂2M6. The subshift Y0 is strongly irreducible as witnessed by K;
therefore, for any pair of patterns u ∈ P(M3, Y0) and ∂2v ∈ P(∂2M6, Y0), there is a
pattern w ∈ P(M6, Y0) such that w(g) = u(g) for each g ∈ M3 and w(g) = ∂2v(g) for
each g ∈ ∂2M6. Choose and fix one such pattern w for each choice of u and ∂2v; we shall
denote it by w = u ∪ ∂2v.

Let S∗
1 ∈ S∗

1 be arbitrary and suppose S∗
1 = int3(S1 \M6C) for some shape S1 ∈ S1 and

some L-separated subset C ⊂ G. Observe that K2 ·KS∗
1 ⊂ S1 \M6C, and thus KS∗

1 is
disjoint from ∂2(S1 \M6C). Therefore, for each pair of patterns u ∈ P(S∗

1 , Y0) and ∂2v ∈
P(∂2(S1 \M6C), Y0), there is a pattern w ∈ P(S1 \M6C, Y0) such that w(g) = u(g) for
each g ∈ S∗

1 and w(g) = ∂2v(g) for each g ∈ ∂2(S1 \M6C). Choose and fix one such
pattern w for each choice of u and ∂2v; we shall again denote it by w = u ∪ ∂2v.

We are now ready to construct the mapψ : X → Y desired for the theorem. To begin, let
x ∈ X be fixed, let t0 = T (x) ∈ T0, let t1 = ret(t0) ∈ T1, let t2 = ex(t1) ∈ T2, let t∗1 ∈ T ∗

1
be delivered by t1, and let y0 = φ(x) ∈ Y0 be the point delivered by the homomorphism φ :
X → Y assumed to exist at the beginning of the proof. Let C = C(t0) = C(t1) = C(t2) =
C(t∗1 ) ⊂ G.
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FIGURE 2. An illustration of the construction of y1 for a hypothetical tiling of Z2 using different sized circles. The
largest solid circles indicate the tiles of t0 (the overlap, indicated by dashed lines, is removed in t1). The smaller
solid circles indicate the translates of M6, wherein the marker patterns will later be placed. The stippled tile
interiors are the patterns given by the block injections from Lemma 3.6. The darkened boundaries are delivered
by the strong irreducibility of Y0, to mix each tile interior pattern with its respective boundary pattern from y0.
The small hatched circles are each labeled with the pattern drawn from the marker substrate, y(m)(M3). The

shaded exterior is the base point y0.

We construct the point y = ψ(x) ∈ Y in two stages, first by constructing a point y1 ∈ Y1

that locally looks like a point of Y0, and then modifying y1 into a point of Y by placing
down the marker patterns.

Note that for each c ∈ C, the tuple of shapes (t0(c), t1(c), t2(c), t∗1 (c)) satisfies the
hypotheses of Lemma 3.6 by construction. Let y1 be the point satisfying the following
two conditions for every c ∈ C when (S1, S2, S∗

1 ) = (t1(c), t2(c), t∗1 (c)):

σc(y1)(M
6) = y(m)(M3) ∪ σc(y0)(∂

2M6); (C1)

σc(y1)(S1 \M6Cc−1) = �(S2, S∗
1 )(σ

c(x)(S2)) ∪ σc(y0)(∂
2(S1 \M6C)). (C2)

Everywhere else, let y1(g) = y0(g). Here we use the block injection(s) �(S2, S∗
1 ) deliv-

ered by Lemma 3.6, as well as the mixing boundary patterns w = u ∪ ∂2v constructed
earlier. The construction of y1 is illustrated in Figure 2.

First we argue that y1 is well defined. Let g ∈ G be fixed; we split over three cases.
If g ∈ M6C, then there is a unique c ∈ C such that g ∈ M6c because C is L-separated
and M6 ⊂ L. In this case, y1(g) is determined by the condition in equation (C1). If
g ∈ (⋃c t1(c)c) \M6C, then again there is a unique c ∈ C such that g ∈ t1(c)c \M6C =
(t1(c) \M6Cc−1)c by the disjointness of t1. In this case, y1(g) is determined by the
condition in equation (C2). Otherwise, y1(g) = y0(g) is again uniquely determined.

Next we argue that y1 belongs to Y1. Recall that Y1 is an SFT as witnessed by K.
Let g ∈ G be arbitrary and consider the translate Kg. If Kg intersects int2(M6)c for
some c ∈ C, then Kg ⊂ M6c by Lemma 2.2 and the fact that K = K−1. Moreover,
the c must be unique. In this case, σg(y1)(K) is given by the condition in equation
(C1) and therefore σg(y1)(K) ∈ P(K , Y0). If Kg intersects int2(t1(c)c \M6C) for some
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FIGURE 3. An illustration of the construction of y near a tile center. The marker pattern mi corresponding to the
shape S(i)0 is placed directly over the marker substrate, the pattern y(m)(M3).

c ∈ C, then Kg ⊂ t1(c)c \M6C also by Lemma 2.2, in which case the c must again be
unique. In this case, σg(y1)(K) is given by the condition in equation (C2) and therefore
σg(y1)(K) ∈ P(K , Y0) again. If neither of these cases hold, then

Kg ⊂ (G \M6C) ∪ ∂2(M6)C ∪
(
G \

⋃
c

(t1(c)c \M6C)

)
∪

⋃
c

∂2(t1(c)c \M6C).

In this case, σg(y1)(K) = σg(y0)(K) and therefore σg(y1)(K) ∈ P(K , Y0) again. We see
that every pattern of shape K appearing in y1 is allowed in Y0. Since Y0 ⊂ Y1 and Y1 is an
SFT witnessed by K, we conclude that y1 ∈ Y1.

Next we argue that the map x �→ y1 is continuous and shift-commuting. For a fixed
g ∈ G, to determine the symbol y1(g), one must know first the tiles from t0, t1, t2, and t∗1
to which g belongs. This requires looking only at the symbols of the involved quasi-tilings
within a finite neighborhood of g. Then, one either applies the condition in equation (C1)
or the condition in equation (C2) or returns y0(g). As every involved quasi-tiling and y0

are derived from x in a continuous and shift-commuting manner, it is evident that y1(g)

depends only on σg(x)(F1), where F1 is some (possibly very large but) finite subset of
G. We conclude that the map x �→ y1 is continuous and shift-commuting (but possibly
non-injective).

Finally, we construct y = ψ(x) ∈ Y from y1 as follows. For every c ∈ C, let y satisfy
σc(y)(M) = mi , where i ∈ [1, r] is the index of the shape t0(c) = S

(i)
0 ∈ S0 that was fixed

at the beginning of the proof, andmi is the corresponding marker pattern. Everywhere else,
let y(g) = y1(g). The construction of y near a tile center is illustrated in Figure 3.

The point y is well defined by identical argument as (and as a consequence of) the fact
that y1 is well defined. Before proceeding, we note a property of y that is critical to later
arguments. Let c ∈ C be arbitrary and suppose that t0(c) = S

(i)
0 for some unique index

i ∈ [1, r]. Recall yi ∈ Y is the point from which the marker pattern mi is drawn. Then

σc(y)(M3) = yi(M
3). (Y1)

This is true because σc(y)(M) = mi = yi(M) by construction, together with the fact that

σc(y)(M3 \M) = σc(y1)(M
3 \M) = y(m)(M3 \M) = yi(M

3 \M),
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where above we have used the construction of y, the condition in equation (C2), and
Theorem 3.4.

Next we argue that y belongs to Y. Recall that Y is an SFT witnessed by K. Let g ∈ G
be arbitrary and consider the translate Kg. If Kg intersects Mc for some c ∈ C, then
Kg ⊂ M3c by the fact thatK = K−1 andK ⊂ M . Moreover, the c must be unique. Then,
if t0(c) = S

(i)
0 for some unique index i ∈ [1, r], property (Y1) implies that σg(y)(K) =

σgc
−1
(yi)(K). As yi ∈ Y , we therefore see that σg(y)(K) ∈ P(K , Y ). In the opposite

case, Kg ⊂ G \MC, in which case σg(y)(K) = σg(y1)(K) by construction. Because
y1 ∈ Y1 ⊂ Y , we again see that σg(y)(K) ∈ P(K , Y ). Therefore, every pattern of shape
K appearing in y is allowed in Y, and thus y ∈ Y .

Next we argue that the map ψ is continuous and shift-commuting. This follows by
identical argument as (and as a consequence of) the fact that the map x �→ y1 is continuous
and shift-commuting.

Before proving that the map ψ is injective, we note one more property in advance. Let
x ∈ X be fixed, let t0 = T (x) ∈ T0, let C = C(t0) ⊂ G, and let y = ψ(x) ∈ Y . We claim
that for each g ∈ G and each index i ∈ [1, r], we have

σg(y)(M) = mi if and only if t0(g) = S
(i)
0 ∈ S0. (Y2)

The reverse implication is obvious by construction. For the forward implication, let g ∈ G
be arbitrary and suppose σg(y)(M) = mi for some index i ∈ [1, r]. If Mg is disjoint
from MC, then σg(y)(M) = σg(y1)(M), in which case σg(y)(M) = mi contradicts
the fact that mi is forbidden in Y1. Therefore, Mg must intersect MC, in which case
Mg ⊂ M3c for some c ∈ C by the fact that M = M−1. Moreover, the c must be unique;
indeed, if Mg ⊂ M3c1 and Mg ⊂ M3c2 for distinct c1 	= c2, then g ∈ M4c1 ∩M4c2 	=
∅, contradicting the fact that C is L-separated andM4 ⊂ L. Then suppose t0(c) = S

(j)

0 for
some index j ∈ [1, r]. By property (Y1), we have that σc(y)(M3) = yj (M

3). Moreover,
the fact that σg(y)(M) = mi implies that mi = σgc

−1
(yj )(M). By Theorem 3.4, this only

happens in the case where j = i and g = c. The claim follows.
Finally, we argue that ψ is injective. Let x1, x2 ∈ X be arbitrary and suppose that

ψ(x1) = ψ(x2). Property (Y2) implies that T (x1) = T (x2) = t0 ∈ T0. Then, let t1, t∗1 ,
and t2 be derived from t0 as before and let C = C(t0) ⊂ G. The condition in equation (C2)
and the fact that� is an injective map implies that σc(x1)(t2(c)) = σc(x2)(t2(c)) for every
c ∈ C. Because t2 is an exact tiling of G, it follows that x1 = x2.

4. Discussion
In Theorem 3.5, can the assumption that Y contains a factor of X be dropped? That is,
under what conditions on X and Y does there necessarily exist a homomorphism φ : X →
Y ? This is true if for example Y contains a fixed point, because every subshift factors
onto a fixed point. A homomorphism was constructed by Lightwood [15, Theorem 2.8]
for G = Z

2 in the case that X is strongly aperiodic and Y is an SFT that satisfies the
‘square-filling mixing’ condition, therefore providing an extension of Krieger’s embedding
theorem to Z

2. However, the existence of such homomorphisms in general remains open,
even for G = Z

d where d ≥ 3.
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Can the mixing condition on Y be weakened? One might wish to replace the ‘uniform’
mixing condition of strong irreducibility with a non-uniform mixing condition, such as
topological mixing. However, such conditions are too weak for the construction given here,
as we rely on the fact that we can cut and paste patterns on tiles in Y that are ‘packed
together’ relatively tightly, with the tiling known to cover a fraction of the group which
can be chosen arbitrarily close to 1. Furthermore, it is known that topological mixing is
too weak for a general embedding theorem (that is, for a general X) even for G = Z

2;
indeed, Quas and Şahin [19, Theorem 1.1] have constructed an example of a topologically
mixing SFT Y and a non-negative constant h0 < h(Y ) such that if X is any subshift with
the uniform filling property (a mixing condition stronger than topological mixing) which
satisfies h0 ≤ h(X) ≤ h(Y ), then X cannot be embedded in Y.

Can the assumption that G has the comparison property be dropped? If there are no
amenable groups without the comparison property, then this point is moot. We invoke
the comparison property in two places in this proof, in each case to construct a desirable
system of quasi-tilings. In the first case, as part of the construction of the subshift Y0,
we construct a strongly irreducible system of exact tilings of G by way of Theorem 2.11
(due to Downarowicz and Zhang [8, 9]) in combination with a construction of Frisch
and Tamuz [10]. In the second case, we adapt the proof of Theorem 2.11 to construct a
system T2 of exact tilings as a factor of a suitable system of disjoint quasi-tilings T1. As
mentioned before, the most significant aspect of T2 is that its tilings completely cover G,
and disjointness here could in principle be traded for near-disjointness.

If one refuses the comparison property and uses instead either T0 or T1 on the side
of X to construct the map ψ : X → Y , then ψ has the property that for every x1,
x2 ∈ X, if ψ(x1) = ψ(x2), then T (x1) = T (x2) = t0 ∈ T0 and x1(g) = x2(g) for every
g ∈ ⋃

c t0(c)c. This map is therefore not necessarily injective (unless t0 covers G), but one
does have that the difference in entropy between X and ψ(X) ⊂ Y can be made arbitrarily
small (based on the covering density of t0). Therefore, in this case, if Y contains at least
one factor of X, then necessarily Y contains many ‘non-trivial’ factors of X, in particular
with entropy arbitrarily close to X.

One aspect of the quasi-tilings given by Theorem 2.9 that we have not exploited is that
they are actually maximal, in the sense that no one additional tile of any shape could
be inserted anywhere without breaking the ε-disjointness property (this is seen if one
closely inspects the proof of [6, Lemma 3.4]). This condition is similar to that of the
ρ-covering condition (Definition 2.16); while the ρ-covering is only in general witnessed
at some ‘scale’ F (depending on the quasi-tiling, and possibly much larger than the tiles
themselves), the maximality implies that the covering is somehow witnessed on the scale
of the tiles. This leverage could be useful for some applications.
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