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Abstract

In this paper we provide an elementary proof of James’ characterization of weak compactness in separable
Banach spaces. The proof of the theorem does not rely upon either Simons’ inequality or any integral
representation theorems. In fact the proof only requires the Krein–Milman theorem, Milman’s theorem
and the Bishop–Phelps theorem.
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Ever since James first proved in [6] that, in any Banach space X , a closed bounded
convex subset C of X is weakly compact if, and only if, every continuous linear
functional attains its supremum over C , there has been continued interest in trying
to simplify his proof. Some success was achieved in [5] when Godefroy used Simons’
inequality [14] to deduce James’ theorem in the case of a separable Banach space.
However, although the proof of Simons’ inequality is elementary, it is certainly not
easy and so the search for a simple proof continued. Later in [4] Fonf et al. used
the notion of (I )-generation to provide an alternative proof of James’ theorem (in the
separable Banach space case) without recourse to Simons’ inequality (this was later
slightly refined in [3]). Their proof was short and reasonably elementary. However,
it still relied upon integral representation theorems, as well as the Bishop–Phelps
theorem [2]. In this short note we show how to modify the proof in [4] in order to
further simplify matters by replacing the integral representations in [4] by the use of
the Krein–Milman theorem [8] in conjunction with Milman’s theorem [9].

Let K be a weak∗ compact convex subset of the dual of a Banach space X . A subset
B of K is called a boundary of K if, for every x ∈ X , there exists an x∗ ∈ B such
that x∗(x)= sup{y∗(x) : y∗ ∈ K }. We shall say that B (I )-generates K if, for every
countable cover {Cn : n ∈ N} of B by weak∗ compact convex subsets of K , the convex
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hull of
⋃

n∈N Cn is norm dense in K . Finally, we shall denote by BX∗ the closed unit
ball in X∗ and by Ext(K ) the set of all extreme points of K .

The main theorem relies upon the following prerequisite result.

LEMMA 1. Suppose that K , S and {Kn : n ∈ N} are weak∗ compact subsets of the dual

of a Banach space X. Suppose also that S ∩ K =∅ and S ⊆
⋃

n∈N Kn
w∗

. If, for each
weak∗ open neighbourhood W of 0, there exists an N ∈ N such that Kn ⊆ K +W for
all n > N, then S ⊆

⋃
1≤n≤M Kn for some M ∈ N.

PROOF. Since K ∩ S =∅ there exists a weak∗ open neighbourhood W of 0 such that

K +W ⊆ X∗ \ S. By making W smaller, we may assume that K +W
w∗

⊆ X∗ \ S.
From the hypotheses there exists an M ∈ N such that

⋃
n>M Kn ⊆ K +W and so

⋃
n>M

Kn
w∗

⊆ K +W
w∗

⊆ X∗ \ S since K +W
w∗

is weak∗ closed.

On the other hand,

S ⊆
⋃
n∈N

Kn
w∗

=

⋃
n>M

Kn
w∗

∪

⋃
1≤n≤M

Kn.

Therefore, S ⊆
⋃

1≤n≤M Kn . 2

We may now state and prove the main theorem.

THEOREM 2. Let K be a weak∗ compact convex subset of the dual of a Banach space
X and let B be a boundary of K . Then B (I )-generates K .

PROOF. After possibly translating K we may assume that 0 ∈ B. Suppose that
B ⊆

⋃
n∈N Cn where {Cn : n ∈ N} are weak∗ compact convex subsets of K . Fix ε > 0.

We will show that

K ⊆ co
[⋃

n∈N
Cn

]
+ 2εBX∗ .

For each n ∈ N, let Kn := Cn + (ε/n)BX∗ and let V ∗ := cow
∗⋃

n∈NKn . Clearly,
B ⊆

⋃
n∈N Kn and so K = cow

∗

(B)⊆ V ∗. It is also clear that V ∗ is a weak∗ compact
convex body in X∗ with 0 ∈ int(V ∗). Let x∗ be any element of

6V :=

{
y∗ ∈ V ∗ : x̂(y∗)= max

z∗∈V ∗
x̂(z∗) for some x ∈ X \ {0}

}
and let x ∈ X be chosen so that x̂(x∗)=maxz∗∈V ∗ x̂(z∗)= 1. It is easy to see that if
F := {y∗ ∈ V ∗ : y∗(x)= 1} then F ∩ K =∅. Indeed, if F ∩ K 6=∅ then max{y∗(x) :
y∗ ∈ K } = 1 and because B is a boundary for K it follows that, for some j ∈ N, there
is a b∗ ∈ C j ∩ B such that b∗(x)= 1. However, as b∗ ∈ b∗ + (ε/j)BX∗ ⊆ K j ⊆ V ∗,
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this is impossible. Now,

Ext(F) ⊆ Ext(V ∗) since F is an extremal subset of V ∗

⊆

⋃
n∈N

Kn
w∗

by Milman’s theorem.

Thus,

Ext(F)⊆ F ∩
⋃
n∈N

Kn
w∗

⊆

⋃
n∈N

Kn
w∗

and so by Lemma 1, applied to the weak∗ compact set S := F ∩
⋃

n∈N Kn
w∗

, there
exists an M ∈ N such that Ext(F)⊆ S ⊆

⋃
1≤n≤M Kn . Hence,

x∗ ∈ F = cow
∗

Ext(F)⊆ co
[ ⋃

1≤n≤M

Kn

]
⊆ co

[ ⋃
1≤n≤M

Cn

]
+ εBX∗

⊆ co
[⋃

n∈N
Cn

]
+ εBX∗ .

Since x∗ ∈6V was arbitrary, we have by the Bishop–Phelps theorem, which says that
6V is dense in ∂V ∗, that

∂V ∗ ⊆ co
[⋃

n∈N
Cn

]
+ 2εBX∗ .

However, since 0 ∈ B (and hence in some Cn) it follows that K ⊆ V ∗ ⊆
co[
⋃

n∈N Cn] + 2εBX∗ . Since ε > 0 was arbitrary we are done. 2

There are many applications of this theorem. In particular, we have the following.

COROLLARY 3. Let K be a weak∗ compact convex subset of the dual of a Banach
space X, let B be a boundary for K and let fn : K → [0,∞) be weak∗ lower semi-
continuous convex functions. If { fn : n ∈ N} are equicontinuous with respect to the
norm and limn→∞ fn(b∗)= 0 for each b∗ ∈ B, then limn→∞ fn(x∗)= 0 for each
x∗ ∈ K .

PROOF. Clearly, it is sufficient to show that lim supn→∞ fn(x∗)= 0 for each x∗ ∈ K .
To this end, fix ε > 0. For each n ∈ N, let

Cn := {y
∗
∈ K : fk(y

∗)≤ ε/2 for all k ≥ n}.

Then {Cn : n ∈ N} is a countable cover of B by weak∗ compact convex subsets of K .
Therefore, co[

⋃
n∈N Cn] =

⋃
n∈N Cn is norm dense in K . Since { fn : n ∈ N} are

equicontinuous (with respect to the norm) it follows that lim supn→∞ fn(x∗) < ε for
all x∗ ∈ K . 2
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The classical Rainwater’s theorem [13] follows from this by setting K := BX∗ and
B := Ext(K ) and, for any bounded set {xn : n ∈ N} in X that converges to x ∈ X
with respect to the topology of pointwise convergence on Ext(BX∗), letting fn : K →
[0,∞) be defined by fn(x∗) := |x∗(xn)− x∗(x)|.

As promised, we give a simple proof of James’ theorem valid for separable, closed
and bounded convex sets. In the proof of this theorem we shall denote the natural
embedding of a Banach space X into its second dual X∗∗ by X̂ , and similarly we shall
denote the natural embedding of an element x ∈ X by x̂ .

THEOREM 4. Let C be a closed and bounded convex subset of a Banach space X.
If C is separable and every continuous linear functional on X attains its supremum
over C then C is weakly compact.

PROOF. Let K := Ĉ
w∗

. To show that C is weakly compact it is sufficient to show that,
for every ε > 0, K ⊆ Ĉ + 2εBX∗∗ . To this end, fix ε > 0 and let {xn : n ∈ N} be any
dense subset of C . For each n ∈ N, let Cn := K ∩ [x̂n + εBX∗∗]. Then {Cn : n ∈ N}
is a cover of Ĉ by weak∗ closed convex subsets of K . Since Ĉ is a boundary of K ,
K ⊆ co

⋃
n∈N Cn ⊆ Ĉ + 2εBX∗∗ . 2

The notion of (I )-generation has been used by some other authors (see [7]) to
provide a proof of the full version of James’ theorem without recourse to Simons’
inequality.

If we are willing to invest a little more effort we can extend Theorem 4 to the setting
where BX∗ is weak∗ sequentially compact. To see this we need the following lemma.

LEMMA 5. Let C be a closed and bounded convex subset of a Banach space X. If
(BX∗, weak∗) is sequentially compact and every continuous linear functional on X
attains its supremum over C then, for each F ∈ BX∗∗∗ , there exists an x∗ ∈ BX∗ such
that

F|
Ĉ
w∗ = x̂∗|

Ĉ
w∗ .

PROOF. Let K := Ĉ
w∗

and note that Ĉ is a boundary of K . Let Bp(K ) (C p(K ))
denote the bounded real-valued (weak∗ continuous real-valued) functions defined
on K , endowed with the topology of pointwise convergence on K . For an arbitrary
subset Y of K , let τp(Y ) denote the topology on B(K ) of pointwise convergence on Y .
Consider S : (BX∗, weak∗)→ (C(K ), τp(Ĉ)) defined by S(x∗) := x̂∗|K . Since S is
continuous, S(BX∗) is sequentially τp(Ĉ)-compact. Hence, from Corollary 3, S(BX∗)

is sequentially τp(K )-compact. It then follows from Grothendieck’s theorem [1, Ch. 4]
that S(BX∗) is a compact subset of C p(K ) and so a compact subset of Bp(K ). In
particular, S(BX∗) is a closed subset of Bp(K ). Next, consider T : (BX∗∗∗, weak∗)→
Bp(K ) defined by T (F) := F|K . Then T is continuous and so T (BX̂∗) is dense in
T (BX∗∗∗), since BX̂∗ is weak∗ dense in BX∗∗∗ by Goldstine’s theorem. However,
T (BX̂∗)= S(BX∗), which is closed in Bp(K ). Therefore, T (BX∗∗∗)= S(BX∗)=

T (BX̂∗). This completes the proof. 2
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THEOREM 6. Let C be a closed and bounded convex subset of a Banach space X.
If (BX∗, weak∗) is sequentially compact and every continuous linear functional on X
attains its supremum over C then C is weakly compact.

PROOF. Let K := Ĉ
w∗

. In order to obtain a contradiction, suppose that Ĉ ( K .
Let F ∈ K \ Ĉ . Then there exists a F ∈ BX∗∗∗ such that F(F) > sup ĉ∈Ĉ F( ĉ ).
However, by Lemma 5 there exists an x∗ ∈ BX∗ such that x̂∗|K = F|K . Therefore,

x̂∗(F)= F(F) > sup
ĉ∈Ĉ

F( ĉ )= sup
ĉ∈Ĉ

x̂∗( ĉ )= max
G∈K

x̂∗(G),

which contradicts the fact that F ∈ K . Therefore, K = Ĉ and so C is weakly
compact. 2

For some related articles, see [10–12].
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