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Abstract

Let 4 be a connected reductive linear algebraic group, and let G = ¥, be the finite subgroup
of fixed points, where o is the generalized Frobenius endomorphism of ¢. Let x be a regular
semisimple element of G and let w be a corresponding element of the Weyl group W. In this
paper we give a formula for the number of right cosets of a parabolic subgroup of G left fixed
by x, in terms of the corresponding action of w in W. In case G is untwisted, it turns out that x
fixes exactly as many cosets as does w in the corresponding permutation representation.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 20 C 15; secondary 20 G 05.

1. Introduction

Let k be the finite field of ¢ elements and let K be an algebraic closure of k. Let ¢
be a connected reductive linear algebraic group defined over k. Let o denote the
generalized Frobenius endomorphism of ¥ into ¥, and let G = ¥, be the finite
group of fixed points in %. If ¢ is semisimple and has an irreducible root system,
then, with a few exceptions, G is a central extension of a finite simple Chevalley
group, of normal or twisted type; Steinberg (1968), Sections 11 and 12. Let P be a
parabolic subgroup of G and let 1¢ be the permutation character induced by the
action of G on the right cosets of P in G. In this paper we show that for any regular
semisimple element xeG, 1¢(x) is given by a formula (Theorem 4.1, below)
involving only the Weyl group W. Thus, the value of 1¢(x) is independent of g.
The reader should note that this formula is obtainable via the Deligne-Lusztig
theory, see Deligne and Lusztig (1976), Sections 7 and 8. However, since the
methods considered herein make no reference to the ‘virtual representations’ or
378
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to the étale cohomology used to construct the virtual representations, we consider
the present treatment considerably more elementary.

I would like to thank the referee for his helpful comments regarding the results
in case G is a twisted group.

2. Regular semisimple elements of G

Let 7 be a maximal torus of ¥ and let & be a Borel subgroup of ¢ containing
J, both fixed by o. Let A" be the normalizer of J in ¥ and set W= A"|T, the
Weyl group of %. An element xe ¥ is called semisimple if there exists an element
a€ ¥ such that axa €7 . If, in addition, (axa—1)¥+# axa?, for all we W, we call
x a regular semisimple element.

In order to describe regular semisimple elements of G more intrinsically, we
consider the so-called maximal tori (Cartan subgroups) of G; Springer and
Steinberg (1970), or Srinivasan (1971). If a€ & is such that the subgroup a 17 a
is o-invariant, we set H = (@17 a),,, and call H a maximal torus of G. The following
is well known ; see Springer and Steinberg (1970), p. 186, or Srinivasan (1971), p. 3.

THEOREM 2.1. The nonconjugate tori in G are in one-to-one correspondence with the
a-conjugacy classes of W. More precisely, let a,be 9 with aa—°, bb—"e€AN". Then
a9 a and b-2F b are both o-stable and (a=* T a), and (b—2T'b), are conjugate in
G if and only if aa—° and bb—° are o-conjugate in N (modJ). Finally, every
semisimple element of G is contained in some maximal torus of G.

Now let ac G where a~17 a is g-stable. If aa—” - w under the natural projection
N W, we set H,=(a"1T a),. The o-centralizer of we W is the subgroup
Cip(w) = {w € W|wywwi® = w} of W.

PROPOSITION 2.1. Let x€G be semisimple and let H,, be a maximal torus in G
containing x. Then

@) No(Hy)/Hy Clp (W),

(ii) x is regular if and only if x*+# x for all ne Ni(H,,)— H,,,.

Statement (i) is proved in Srinivasan (1971), Lemma 4, and (ii) follows from
(i) together with the definition of regularity.

In case t€J, there is an alternative description of regularity as follows; see
Springer and Steinberg (1970), p. 217. Let @ be the set of roots associated with 7,
and let Z,, re®, be the one-parameter subgroups of %. If ®+ denotes the set of
positive roots of ®, then ¢ acts via conjugation on the unipotent subgroup
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U = {Z,|re D). Moreover,  stabilizes each %, with action
tx(c)t71 = x(x(r)c), ceKk,

with ye Hom (P, K), P = Z®. Thus we have a homomorphism 7 ->Hom (P, K)
with kernel Z(%). In addition, if we W and ¢— y then 7% y* where

X)) = x(wr)), red,

where W acts on P as a reflection group.
In view of the factorization % = I1Z, (re @), the following is immediate.

LeMMA 2.1. Let t€J be regular. Then t acts fixed point freely on each one-
parameter subgroup &, of 4. Therefore if % is the unipotent radical of %, then t
acts fixed point freely on U.

We remark that it is possible for an element €7 to act fixed point freely on
without being regular. In fact, from Springer and Steinberg (1970) (4.1), p. 201,
we see that this happens for any t€7 that fixes pointwise no %, re®, and has
a disconnected centralizer Cy(t).

3. More fixed point free actions

Let R be a set of fundamental reflections in W, let JS R, and let P; = W, 2%,
where W, = {J>. The parabolic subgroups of G are of the form P;= (%;), where
&P, is o-stable, and admit a Levi decomposition as follows. Let IT ; be the set of
fundamental roots corresponding to the reflections in J, and let @, be the root
system generated by Il ;. Set &, =<7, %, |re®;>, ¥; = <%, |re®*—-D,;), and
let L; = (%), Vy=(?7), Then ¥ is the unipotent radical of &, and the
mapping £y x ¥ —P; given by multiplication of coordinates is a k-isomorphism
of algebraic varieties; Borel and Tits (1965). Moreover .%; is a reductive connected
linear algebraic group; Springer and Steinberg (1970) (4.1b), p. 201. Thus we have
a semidirect product P; = L; V, called the Levi decomposition of P;. The subgroup
L, of P, is called the Levi factor of P;. For a different approach to the Levi
decomposition, see Curtis (1975).

Henceforth we consider only those subsets J< R for which &, is o-stable. The
next proposition generalizes Lemma 2.1 for regular semisimple elements of the
finite group G.

PropOsITION 3.1. Let x be a regular semisimple element of G and assume that
xeLy for some JS R. Then x acts fixed point freely on V.
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ProoF. Since x is semisimple, there is a maximal torus of L; containing x. Thus
there is an element a€.%; such that axa—'€.J . But since £, normalizes ¥; we
have a¥;a1<¥;. Let 1£veV; and let v’ = ava— €¥7. Then xv = vx implies

altta=alv'ta.

Thus t commutes with ¢, contradicting the fact that ¢ acts fixed point freely on %.

4. The main result

Let JS R and let D; be the set of distinguished right W;-coset representatives in
W. Thus we D if and only if w is the unique element of minimal length in W; w.
Moreover, I1 ;= w®+, and I(w, wy) = l(wy) +1I(w,), w; €W, wye D;, where [ is the
length function on W; see Carter (1972), Chapter 2.

Let %~ ={Z;|re® ), U~ =(X"),, and, if weW,set Uy=Uw U w.
Then from Bruhat’s lemma, Borel and Tits (1965), p. 100, the ‘strong form’ of the
Bruhat decomposition holds:

G=UBwU; (weW),

where each ge & can be expressed uniquely as g = bwu, be B, we W and uc %y,
More generally, let J< R. Then since I(w; wy) = I(w,) +1(wy), w €W, woe Dy, we
have Bw,w, B = Bw, Bw, B from the (B, N)-pair axioms satisfied by ¥; see for
example, Carter (1972), Chapter 8. This implies a strong Bruhat decomposition
relative to the pair (%5, %):

Y =UZP;wl,; (weDy),

with uniqueness of expression. Correspondingly, the finite group G admits a
similar decomposition G = J P;wU, (we(D,),), with uniqueness of expression,
where Uz = (U),-

If J, KSR, let Dg ; be the set of distinguished (Wx —W;)-double coset repre-
sentatives in W; Bourbaki (1968), p. 37. Then W = |y WxwW, (we Dg ;), and
each we Wy ; is the unique element of minimal length in W, wWkg.

PROPOSITION 4.1. Let x be a semisimple element of Ly, where J< R is minimal with
respect to xeL§. Let we W with xe P (= w™' Pgw), where J< K. Then xe LY.

Proor. It suffices to assume that we(Dx ;),. Then xeL;nP¥ is a standard
parabolic subgroup of L;:

LynPg=L;nP,
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where II; = I1,nw(Il): Curtis (1975), p. 672. But since x is a p’-element
(p = char k) acting on the p-group V;, we have that x is conjugate to an element of
L,, by the Schur-Zaussenhaus theorem. This contradicts the minimality of J, unless
II;=sw(Ilg). But then &, <.#% and so L, <L%.

If K< R we denote by 1¢, the character of the action of G on the right cosets of
Py in G. Thus, if x€ G, 1§ (x) is the number of right cosets of Px in G fixed by x.
If we W, we set a1} (w) equal to the number of right cosets W w, w; € W, where

WK wWiw = WK Wg.
Thus, if G is untwisted, 1% _ is the ordinary permutation character 1}7,. We are

now in a position to prove the main result.

THEOREM 4.1. Let x € G be regular semisimple, and let w, € W be such that x€ H,,,
Then, for all K< R such that Py is o-stable,

18,.(x) = ol (w,).

Proor. Without loss of generality we may assume that xeL;, where JE R is
minimal with respect to xeL§. Since x = a~'ta for some te.7, ac %, and since
aa—°->w, under the projection 4"~ W we see that J is also minimal with respect to

{www|lwe WnW;#0.
Therefore, if X is properly contained in J, we see that
18,(x) = 0 = o1}, (w,).

Therefore, assume that J= K and let Dg be as usual. Assume that x fixes the
coset Pxw, where w €(Dg),. If x also fixes the coset Px wu where u€ U, then
wuxu—2 w1 Pg, and so vx'v-1€ Pg, where v = wuw™1 and x’ = wxw=1. But since
U, =%nwr%w, and since we Dg, we have

veU-nwlw™r = (L |red nwd+) <P,

where ¥'g = (%;|re®——Dg>. Therefore ve Vz = (¥ g),. But by Proposition
4.1, x' = wxw™! € P implies that x’ € L. Since Lx normalizes Vy, and hence V%,
and since x’ is regular, we conclude that x” acts fixed point freely on ¥ %. Therefore
vx’ = x"v" where v#v €Vg. But then vx'v = x"v'v"1€Pgk, and since x’€ Py,
we have

vVvlePrnVg =1,

a contradiction. Thus, each regular semisimple element fixes at most one right
coset in PwU,.
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Finally, by arguing as in the proof of Proposition 4.1, we see that x fixes P w
precisely when w,, fixes Wxw, we(Dg),. Therefore it suffices to prove that if
Wxww, = Wgw?, we Dg, then w =w?. If we Dg ; then W wW; = W w'W,,
and so w = w” by uniqueness. Otherwise write w = w, w, with w, € D 7, woeW,. -
Then W wy wyw, = Wg wiwg. As above w; = wg, and so

WoW, W3? W, 0 W,

But by a result of Kilmoyer (1969), p. 66, W, n W2 is a (o-stable) parabolic sub-
group of W, which contains W; by the minimality of J. Thus

= -1 =
Wewiwow, = wywiIWewy,wow, = Wew,w,.

Thus w, = 1 since w = wy Wy € D, and so w = w°,

5. Concluding remarks

In case G = GL,(q) (or SL,(q), PSL,(q)), the results are well known; see Green
(1955), Lemma 2.8, p. 413. Moreover, Theorem 4.1 has an important generalization
for these groups. Namely, let G be one of these finite groups and let B be a Borel
subgroup of G. The irreducible character constituents of 1§ and the irreducible
characters of the Weyl group W are in a natural one-to-one correspondence; see
Curtis and others (1971), Section 2. Let ¢ be an irreducible character of W and
let £ be the corresponding irreducible constituent of 1§. Then in Steinberg (1951),
Theorem 2.1, p. 275, one has that ¢ and £ can be expressed as linear combinations
of permutation characters 1§, and 1} , respectively, and with the same coefficients.
Therefore it follows that if x is a regular semisimple element of G, then,

€(x) = $(w,),

for each irreducible constituent £ of 1§.

For other groups of Lie type this situation does not seem to hold, as the examples
G = Spy(q) and G = Gy(q) indicate. The author has learned, however, that George
Lusztig has proved that £(x) is always independent of ¢, and has given a formula
for ¢(x) in terms of w and certain generalized characters of W; see Lusztig (1976).

Finally, we should mention that the above equality is always valid in the case when
x is a regular semisimple element already contained in the ‘split’ torus 7= (7 ),,
and we replace W with the relative Weyl group W,. This is a result of Curtis (1975),
Corollary 6.2, p. 683.
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