
COMMON TRANSVERSALS

by R. A. RANKIN
(Received 5th July 1966)

1. A well-known theorem in group theory [(8), p. 11, Satz 3] asserts that, when
H is a subgroup of finite index in a group G, there exists a system of common
representatives of the right cosets and the left cosets of H in G. Various proofs
and generalisations, mainly involving combinatorial rather than group-
theoretical ideas, are known, and an excellent account of the subject is to be
found in Chapter 5 of Ryser's book (6), where references to the literature are
given. The purpose of the present paper is to use group-theoretical ideas to
prove theorems of a similar nature. The motivation for this work comes from
the theory of Hecke operators, and one of the main objects is to provide a
simple proof of a result given by Petersson (4), which is needed in order to
prove the normality of these operators.

If a set S is partitioned in r ways as a union of disjoint non-void subsets, a
subset C of S is called a system of common representatives, or a common
transversal, for the r partitions when C contains exactly one element in common
with each of the subsets. Usually we shall take r = 2, but we also give some
results for r>2 in § 3.

We shall find the following notation useful. Let 5 be a set on whose elements
a binary operation (denoted by juxtaposition) is defined. Let A and B be
subsets of S and put

C = {c: c = ab, a e A, b e B).
Then we write, as usual,

C = AB.
If, however, each c e C can be expressed uniquely in the form c = ab, where
ae A and beB, we write

C = A . B.

Thus, if H is a subgroup of a group G, we can write

G = H.R= L.H (1)

to denote that R is a right transversal of H in G and L is a left transversal of
H in G. The index of H in G is denoted by [G: H] and the order of a finite
set C by | C |. Hence, when the index is finite, we have, by (1),

2. The following theorem, apart from the final remark, is essentially
Theorem 1.7.1 of Marshall Hall (1); it is, however, the final remark which is of
importance for our purpose.
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Theorem 1. Let Hx and H2 be subgroups of a group G and let g be any
element of G. Write

H12(g) = g-lHl9nH2, H^g'1) = gH.g-'nH,, (2)
50 that

H2l(g-1) = gHl2(g)g-1, (3)
and suppose that the indices

»i = \_H2: Hl2(g)l n2 = [H^. i ^ G T 1 ) ] (4)

are finite. Then the double coset H1gH2 is a union ofnt different right cosets of
Hy in G, and is also the union of n2 different left cosets of H2 in G. Further, each
of the « t right cosets of Hv has a non-void intersection with each of the n2 left
cosets of H2.

For completeness we give a proof. Write

H2 = H12(g) .R, Ht=L. H21(g-1), (5)

so that \ R\ = nt and \ L\ = n2. Then

HxgH2 = HigH12(g)R = (H^nH^H^R = H.gR.
In fact

HlSH2 = Hl9 . R. (6)

For if fiigrj = h\gr2, where hl, h\ eHt and r,, r2 e R, then r ^ 1 e g~lHtg.
Since r 2 r f 1 6 / / 2 , we have r^X1 eHl2(g) and hence, by (5), r2 = rt and
h\ = hl. We can show similarly that

HigH2 = L.gH2. (7)

Finally, if hx e Ht and h2 e H2, the two cosets High2 and hlgH2 have the
common member htgh2; note that this is the case even when «j or n2 is infinite.

Theorem 2. Suppose that the conditions of Theorem 1 hold and that nl = n2.
Then there exists a common transversal of those right cosets of Ht and left
cosets of H2 that are contained in H1gH2. In particular, this is the case when
Hv and H2 have equal finite index in G.

This is an immediate consequence of the final sentence in the enunciation of
Theorem 1; in fact a common transversal can be chosen in n t! different ways.
To prove the last part of the theorem we observe that, if

[G: / / J = [G: / /2] = m<oo,

then [G: #12(0)] = ntriu [G: H21(g~l)~] — mn2 and these are equal, by (3).
If C is a common transversal, we have

H,gH2 = HX.C = C.H2. (8)

We note that Theorem 2 holds also when n^ and n2 are infinite, provided
that the sets L and R in (5) have the same cardinal.

Theorem 3. Suppose that 77, and H2 are subgroups of equal finite index in
a group G. Then there exists a common transversal of the right cosets of H^ and
the left cosets of H2 in G.
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For G is a disjoint union of double cosets HlgH2(g e G). When Hv = H2,
Theorem 3 is the theorem proved by Zassenhaus [(8), p. 11]; for different
subgroups H1 and H2 of the same index it is well known in the case when G is
a finite group, but I cannot find a reference to it in the case when G is infinite.

There is a corresponding result when only right (or only left) cosets are
considered.

Theorem 4. Suppose that Hv and H2 are subgroups of equal finite index in
a group G. Then there exists a common right (left) transversal of Ht and H2 in G.

I cannot give a group-theoretical proof of this result. However, it can be
deduced from the following combinatorial theorem, of which several proofs
are known [(6), Theorem 2.2, p. 51].

Theorem 5. If a set S of mn elements is partitioned in two ways as a union
of m disjoint sets each containing n elements, then there exists a common trans-
versal of both partitions.

To deduce Theorem 4, put [G: H^\ = \G: H2~\ = m and

[G: HiC\H2~\ = mn,

so that n ^ m, by Theorem 1.5.5 of (1). We take 5 in Theorem 5 to be the set
of mn right cosets (HlriH2)g of Hlr\H2

 m G. Each right coset Hta is a union
of n of these cosets (i = 1, 2), and the result follows. Theorem 5 can also be
used to provide an alternative proof of Theorem 3.

The following theorem enables one to conclude that nt = n2 in Theorem 1
in certain cases, so that Theorem 2 can be applied.

Theorem 6. Let H be a subgroup of a group G and g an element of G. Suppose
that g'1 = agb, where a and b belong to the normaliser of H in G, and that
[H: Hng~1Hg'\ is finite. Then there exists a common transversal of those right
and left cosets of H that are contained in the double coset HgH.

Proof. Let Hl2 = g~lHgnH, H2l = gHg~*nH, as in Theorem 1. Then,
since g~l = agb, H2l = a~1Hl2a. Let H = Hl2 . R so that

H = a~lHa = H2l .a~lRa
and it follows that

[//: H l 2 ] = | R | = | a~lRa | = [H: H2l],

so that Theorem 2 is applicable.

3. We consider here partitions of a group G into several families of cosets
with respect to subgroups of equal index.

Theorem 7. Suppose that Hx, H2, ..., Hk are subgroups of a group G of
finite index m and that K and N are subgroups of G such that

[K: N~\ = m,N= KnH,, (1 g i g jfe). (9)

Then it is possible to find a common transversal for the 2k partitions of G into
right and left cosets of the k subgroups H£\ ^ i ^ k).
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Proof. By Theorem 3 we can find a subset A of K such that
K = JV. A = A . N.

Then
(10)

(11)
For, if a, a' e A, then Hta = Hta' if and only if a'a~1 e Ht; but a'a~1 e K and
so a'a~x e N, which gives a' = a. Hence the m cosets Hta{a e A) are distinct
and, since [G: //,] = m, we have G = i/;. A; similarly, G = A.Hi.

We illustrate this theorem by taking G to be the inhomogeneous modular
group F(l), and write

i j ' [c d\'
where a, b, c and d are integers and ad-be = det T = 1. Two matrices Tand
— r yield the same element of F(l). For any positive integer Q we write, as
usual,

T ( 0 = {T: T= ±/(mod 0 } ,
T o ( 0 = {T: c = 0(mod 0 } ,

F2 = {T: ab+bc + cd= 0(mod 2)},
and

F3 = {T: ab + cd= 0(mod 3)}.
We also denote by F4 any one of the four conjugate " cycloidal " subgroups of
level 4 and index 4 in F(l); see Petersson (5).

In the accompanying table nQ denotes the number of different conjugates
of the group F o ( 0 in F(l). The conditions of Theorem 7 are satisfied with K
and N as in the table and k = nQ. The subgroups //,(/ ^ k) are the groups
conjugate to F o ( 0 .

Q

[F(l): Fo(0]

nQ

K

N

2

3

3

r2

F(2)

3

4

4

F 3

F(3)

4

6

3

F 4

F(4)

We deduce that, in each of the cases Q = 2, 3, 4, there exists a common
transversal of the 2nQ partitions of F(l) into right and left cosets of the nQ

subgroups conjugate to F o ( 0 . In all these cases it is easy to give the common
transversal explicitly.

A similar result holds whenever Q is a prime p = 3(mod 4); we take p > 3.
There are then p + \ groups H£l ^ i^p+\) conjugate to Hl = Fo(», and
\_H!: F(/?)] = \p(p - !)• Take K to be any one of the ±p(p — 1) conjugate groups
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containing r(j>) as a subgroup of index p+1. Here K/r(p) is a dihedral group
of order p + l [(7), § 114] and is the normaliser in F(l)/F(/?) of one of the
ip(p — 1) conjugate cyclic subgroups of order %(j> +1). Since p+l and \p(p — 1)
are coprime, KnHt = N = FQ?) (1 ^ / ^ />+l), and Theorem 7 shows that
there exists a common transversal of the 2(/> + l) partitions of F(l) into right
and left cosets of the groups //,(1 ^ i ^ p+l).

Finally, we observe that, when a family of subgroups of F(l) has a common
right transversal, these subgroups possess a common fundamental region.

4. We now turn to the problem that initiated this investigation. Petersson
[(4), Hilfssatz 2] shows that there exists a common transversal for the right and
left classes of 2 x 2 integral matrices S of determinant/?, such that

, r i oi
" Lo P\

(mod g)

for each matrix S in the transversal. Here p is a prime that does not divide Q.
The proof given by Petersson is hard to follow since part of it appears to have
been omitted.

In this section we apply Theorem 2 to yield a proof of a generalisation of
this result. Throughout n, N and Q denote fixed non-zero integers satisfying

ii 1 1 , G i l , (N, Q) = 1. (12)

We denote by F the group of all n x n matrices T with integral entries and with
det T = 1. The group of all non-singular nxn matrices with rational entries
is denoted by G, so that G contains F as a subgroup of infinite index. Let also
Q be the semigroup of all non-singular matrices with integral entries. Then

Further, write
(13)QN = {T: TeCl, det T = N]

for the set of all integral matrices of " order " N, and put
F e = {T: Te F, T = /(mod Q)}, (14)

where I is the identity in F. FQ is a normal subgroup in F of finite index (3)

f " 1
Gn2-ln{n(i-/'-;)}-

p | n \.j = 2 J

We now reduce each element T of QN to Hermite's normal form [(2),
Theorem 22.1]. It follows that

QN = T.PN (15)
where T e PN if and only if J is of the form

T =

t1
0
0

0
0

6*12
h
0

0
0

Qt13
Qt23

0
0

- Qhn
... Qt2n

••• Qhn

... Qtn-

... t.

(16)
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where
tyt2t3...tn = N, 0 g / y < | tj | (1 g i<j ^ n)

and
/ ; >0 (1 ^ /<«), sgn rn = sgn N.

(In Hermite's normal form as given in (2) the zeros are above the main diagonal,
rather than below it, but the form (16) is more usual in the application to
modular forms, where n = 2.)

Alternatively, each element T of QN can be expressed in Smith's normal form
[(2), Theorem 26.2], from which it follows that

nN = rz^r, (17)
where H e T.N if and only if

H = tiag(hu h2, . . . , / /„), (18)

where hvh2...hn = TV, ht>0{\ ^ i<n), sgn hn = sgn iVand hi \ hi+1 (1 g /<«).
Both PN and 2N are finite sets and we put

and
N= ±PYP?-Pik, (19)

-where a j > 0 (1 ̂  / ^ k) and />!, /72> •••> Pk are different primes. Then it is
easily shown that

/,w= n nfVr-) (20)

i = i j = i \ p / - i /
and

«-(A0= I 0.-i(Nld")£fJLN). (21)

From (21), gn(N) can be found in a finite number of steps, since g^N) = 1 and

ft (22)ft
i = 1

Theorem 8. Ze? «, TV and Q be integers satisfying (12) and let J be any fixed
member of QN. Then there exists a subset CN of QN consisting offn(N) elements
such that

nN = r.cN = cN. r, (23)
and such that, for each T e CN,

T = /(mod 0 . (24)

Proof. By (17) we can find Su S2eF and He I,N such that

J = S1HS2'
1; (25)

we suppose H given by (18). Write

QJ
N = {T:TeQN, T~J(modQ)}.

For each TePN, as given by (16), choose ST e T such that

r1 ,*!^"1,- , VrT1) (mod0. (26)
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Here r"1 means any integer x such that xt = l(mod Q). Since the product of
the diagonal elements on the right of (26) is congruent to 1 modulo Q, such a
matrix ST exists. Now write

^ = {51STrS2"1: TePN}, (27)
so that

QJV = S1QJVS2-
1 = r . P ^ . (28)

Note that, if Tx e Pfw, then

7\ s StSjTS^1 s S^S^1 = J (mod Q).

It follows from this and (28) that

^ = T Q . ^ (29)
and, since £lJ

NrQ = £lJ
N,

nJ
N = rQpJ

NrQ (30)
and is the disjoint union of fn(N) right cosets of rQ in G. It is also, of course,
the disjoint union of/„(#) left cosets of FQ in G. Also, by (28) and (29),

We now show that, for each Te PJ
N, Theorem 2 applies to the double coset

TFQ. For this purpose we have to show that nt = n2, where

and
T J, = T~ lrQTnTQ, Y\ = TTQT- lnTQ.

Since T2
Q = TTQT~1, the groups TQ and FQ are isomorphic, but it does not

follow immediately that they have the same index in FQ.
However, since Te£lN, we can find S3, S 4 e F and H1B T,N such that

T = SzHtSi1, and so

where
j FQHJPIFQ, F Q =

and «i = [FQ : F e ] , «2 = [FQ : FQ]. Since H1 is its own transpose, and since
FQ contains the transpose of each of its elements, it follows that TQ consists of
the transposes of all elements in Fg and conversely. Hence nt = n2; «xand«2

are finite, of course, since the groups Fe(l ^ i ^ 4) contain TQN as a subgroup.
It follows that there is a common transversal for the right and left cosets of

FQ contained in each double coset FQTFG(T6 PJ
N). Hence a subset CN of Q^

•consisting of fn(N) elements exists such that

nJ
N = rQ.cN = cN.rQ (32)

and each member of CN is congruent to / modulo Q. By (31),

nN = rcN = cNr
and (23) follows since | CN \ = /n(A0-

E.M.S.—L
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In the case when « = 2 and

Lo N\
the proof can be abbreviated.

We conclude by considering the case n = 2, Q = 1, and use Theorem 6 to
give an alternative to prove that there exists a subset CN of QN such that (23)
holds.

By (17), QN is the union of g2(N) double cosets FTF, where Te Iw. Now
T'1 = ATB

where
_ r

.-UN
so that both A and B belong to the normaliser of F in C. Also [F: TnT~ ^ J ]
is finite, and so the required conclusion follows from Theorem 6.

Note added 6 February, 1967. Since this paper was submitted, the compre-
hensive survey article (9) by Mirsky and Perfect has appeared. In §6.4 of this
article references supplementing those mentioned in §2 of the present paper are
given. In particular, double cosets have been used in a similar way by Ore (10)
to prove results that include Theorem 3 above.
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