AN ALMOST KRULL DOMAIN WITH DIVISORIAL HEIGHT ONE PRIMES

BY
J. T. ARNOLD AND RYUKI MATSUDA

Abstract

E. Pirtle has conjectured that if D is an almost Krull domain in which the height one prime ideals are divisorial then D is a Krull domain. An example is given to show that this is not the case. Further, let $U=$ $\left\{f \in D[x] \mid c(f)^{-1}=D\right\}$ and let $\mathscr{P}(D)$ denote the set of prime ideals of D which are minimal over some ideal $(a):(b)$, where $a, b \in D$. If $D p$ is a valuation ring for each $P \in \mathscr{P}(D)$ then Huckaba and Papick have asked whether $D[x]_{U}$ must be a Prufer domain. The given example shows that it need not be.

1. Introduction. Let D be an integral domain with quotient field $L . D$ is an almost Krull domain provided D_{P} is a Krull domain for each prime ideal P of D. Clearly, if D is an almost Krull domain and $\left\{P_{\alpha}\right\}_{\alpha \in A}$ is the set of all height one prime ideals of D then
(i) each $D_{P_{\alpha}}$ is a rank one valuation ring and
(ii) $D=\bigcap_{\alpha \in A} D_{P_{\alpha}}$.

If in an integral domain D there exists a set $\left\{P_{\alpha}\right\}_{\alpha \in A}$ of height one prime ideals satisfying (i), (ii), and
(iii) each P_{α} is divisorial, then D is called a K-domain ([14], p. 486). A K-domain need not be an almost Krull domain ([14], p. 491) and an almost Krull domain need not be a K-domain. Indeed, a one-dimensional almost Krull domain is an almost Dedekind domain and an almost Dedekind domain is Dedekind if and only if each maximal ideal is divisorial (cf. [15]). Pirtle has conjectured the following:
(1) Conjecture ([13], p. 433). If D is an almost Krull domain and each height one prime ideal of D is divisorial (hence, D is a K-domain) then D is a Krull domain.

As we have noted, the conjecture is true when D is one-dimensional. If for each polynomial $f \in D[x]$ we denote by $c(f)$ the content of f then

$$
U=\left\{f \in D[x] \mid c(f)^{-1}=D\right\}=\left\{f \in D[x] \mid c(f)_{v}=D\right\}
$$

is a multiplicative system of $D[x]$. Let $\mathscr{P}(D)$ denote the set of prime ideals of D which are minimal over some ideal $(a):(b)$, where $a, b \in D$. In ([8], p. 113) Huckaba and

Papick have shown that if $D[x]_{\nu}$ is a Prüfer domain then D_{P} is a valuation ring for each $P \in \mathscr{P}(D)$. They ask the following:
(2) Question ([8], p. 113). If D_{P} is a valuation ring for each $P \in \mathscr{P}(D)$ is $R[x]_{U}$ a Prüfer domain?

Two further related questions/conjectures that have appeared in the literature are:
(3) Conjecture ([6], p. 717). There exists an essential ring which is not a Prüfer v-multiplication ring.
(4) Question ([9], note 14, p. 19). Is every almost Krull domain a Prüfer vmultiplication ring?

The main point of [7] is to provide an example illustrating that conjecture (3) is true. In a review of [9] Heinzer notes that the example given in [7] is an almost Krull domain and, thus, resolves question (4). In [11] Matsudu proposes an example to show that the answer to (2) is negative, but his proof relies on ([9], Example 2(d)) which is false. We provide here an example that resolves all four questions/conjectures. Indeed, one can show that the example presented in [7] suffices, but we shall present a somewhat altered version.
2. The example. Before giving the example we require three results.

Lemma 1. If $D[x]_{U}$ is a Prüfer domain then D is a Prüfer v-multiplication ring and $D[x]_{U}=D^{\vee}$, where D^{\vee} is the Kronecker function ring with respect to the v-operation on D.

Proof. Assume that $D[x]_{U}$ is a Prüfer domain. In [10] Matsuda has shown that there is a family $\left\{V_{\lambda}\right\}_{\lambda \in \Lambda}$ of essential valuations overrings of D such that the set $\left\{V_{\lambda}^{*}\right\}_{\lambda \in \Lambda}$ of trivial extensions to $L(x)$ is the set of valuation overrings of $D[X]_{U}$. By Proposition 44.13 of [5] the v-operation on D is equivalent to the w-operation induced by the family $\left\{V_{\lambda}\right\}_{\lambda \in \Lambda}$ and hence, by Theorem 32.11 of $[5], D^{\vee}=\bigcap_{\lambda} V_{\lambda}^{*}=D[x]_{U}$. It now follows from Theorem 3 of [1] that D is a Prüfer v-multiplication ring.

Lemma 2. Let D be an almost Krull domain in which each height one prime ideal is divisorial. Then D is a Krull domain if and only if it is a Prüfer v-multiplication ring.

Proof. It is well known that a Krull domain is a Prüfer v-multiplication ring. Thus, assume that D is a Prüfer v-multiplication ring, let $\left\{P_{\alpha}\right\}_{\alpha \in A}$ be the set of height one prime ideals of D, set $V_{\alpha}=D_{P_{\alpha}}$ for each α, and let V_{α}^{*} denote the trivial extension of V_{α} to $L(x)$. Then $D^{\vee}=\bigcap_{\alpha \in A} V_{\alpha}^{*}([5]$, Theorem 32.11 and Proposition 44.13) and since D is a K-domain with defining family $\left\{V_{\alpha}\right\}_{\alpha \in A}, D^{\vee}$ is a K-domain with defining family $\left\{V_{\alpha}^{*}\right\}_{\alpha \in A}([14]$, Theorem 2.4 and Proposition 2.6). In particular, if $\beta \in A$ then $V_{\beta}^{*} \not \supset \bigcap_{\alpha \neq \beta} V_{\alpha}^{*}([14]$, Proposition 1.7).

From the proof of Theorem 2.5 of [4] we know that $D^{\vee}=D[x]_{v}$ and, since $D[x]$ is an almost Krull domain ([12], Theorem 2.11), it follows that D^{\vee} is an almost Krull domain. But D^{\vee} is a Prüfer domain so D^{\vee} is one-dimensional; that is, D^{\vee} is an almost

Dedekind domain. Thus, D^{\vee} is a Dedekind domain ([3], Theorem 3) and, hence, the family $\left\{V_{\alpha}^{*}\right\}_{\alpha \in A}$ has finite character. But then so does the family $\left\{V_{\alpha}\right\}_{\alpha \in A}$ so D is a Krull domain.

Lemma 3. If D is an almost Krull domain then $\mathscr{P}(D)=\{P \in \operatorname{Spec}(D) \mid$ height $P \leqslant 1\}$.

Proof. Certainly each height one prime ideal of D is in $\mathscr{P}(D)$. Therefore, assume that $P \in \mathscr{P}(D)$ with P minimal over $(a):(b)$ and $P \neq(0)$. Then $a \neq 0$ and $b / a \notin D_{P}$ so $P D_{P}$ is minimal over $a D_{P}: b D_{P}$. But D_{P} is a Krull domain and $a \mathrm{D}_{P}: b D_{P}$ is a v-ideal, so P has height one ([5], Corollary 44.8. Also see the proof of Theorem 3.1c in [8]).

In view of the preceding results, a counterexample to the first conjecture resolves all four questions/conjectures.

Example. (cf. [2], Example 1.6, and [9], Example 166). Let $R=$ $Z\left[\left\{x / p_{i}, y / p_{i}\right\}_{i=1}^{\infty}\right]$, where Z is the ring of integers, $\left\{p_{i}\right\}_{i=1}^{\infty}$ is the set of positive primes, and x, y are indeterminates over Z.
(a) R is an almost Krull domain but is not a Krull domain.

Proof. If p is a prime integer then $R_{Z \backslash(p)}=Z_{(p)}[x / p, y / p]$ so, in the terminology of [2], R is locally polynomial over Z. If M is a maximal ideal of R such that $M \cap Z=$ (0) then R_{M} is a localization of $Q[x, y]$. Otherwise, $M \cap Z=(p)$ for some prime integer p and R_{M} is a localization of the polynomial ring $Z_{(p)}[x / p, y / p]$. Thus, R is an almost Krull domain. But $p_{i} R$ is a height one prime ideal of R for each $i([2],(1.9)$ and (1.11)) and $x \in \bigcap_{i=1}^{\infty} \mathscr{P}_{i} R$, so R is not a Krull domain.
(b) Each height one prime ideal of R is divisorial.

Proof. Let $\left\{f_{j}\right\}_{j=1}^{\infty} \subset Q[x, y]$ be a set of irreducible polynomials such that $\left\{f_{j} Q[x, y]\right\}_{j=1}^{\infty}$ is the set of height one prime ideals of $\mathrm{Q}[x, y]$. It follows from ([2], (1.9) and (1.11)) that $\left\{p_{i} R\right\}_{i=1}^{\infty} \cup\left\{f_{j} Q[x, y] \cap R\right\}_{j=1}^{\infty}$ is the set of height one prime ideals of R. Further, $R_{p_{i} R}=Z_{\left(p_{i}\right)}\left[x / p_{i}, y / p_{i}\right]_{p_{i}\left[x / p_{i}, y / p_{i}\right]}$ and $R_{f_{j} Q[x, y] \cap R}=Q[x, y]_{f_{j} \rho[x, y]}$. For each prime integer p_{i}, let v_{i} be the p_{i}-adic valuation on Q. Then $R_{p_{i} R}$ is the valuation ring associated with the trivial extension v_{i}^{*} of v_{i} to $Q(x, y)$ determined by $v_{i}^{*}(x)=$ $v_{i}^{*}(y)=v_{i}^{*}(p)=1$. It is straightforward to see that for each $\xi \in Q(x, y)$ there exists a positive integer m such that $v_{i}^{*}(\xi) \geqslant-m$ for all i. Thus, $x^{m} \xi$ and $y^{m} \xi$ are in $\bigcap_{i=1}^{\infty} R_{p_{i} R}$.

To complete the proof it suffices to show that if $\left\{P_{\alpha}\right\}_{\alpha \in A}$ is the set of height one prime ideals of R and $\beta \in A$ then there exists $\zeta \in\left(\bigcap_{\alpha \neq \beta} R_{P_{\alpha}}\right) \backslash R_{p_{\beta}}$ ([14], Proposition 1.7). If $P_{\beta}=p R$ we may take $\zeta=1 / p_{i}$. If $P_{\beta}=x Q[x, y] \cap R$ we take $\zeta=y / x$ and, similarly, if $P_{\beta}=y Q[x, y] \cap R$ we take $\zeta=x / y$. If $P_{\beta}=f Q[x, y] \cap R$ and $x, y \notin$ $f Q[x, y]$ then choose a positive integer m such that $x^{m} / f \in \bigcap_{i=1}^{\infty} R_{p_{i} R}$ and take $\zeta=$ x^{m} / f.
(c) R is not a Prüfer v-multiplication ring.

Proof. Apply Lemma 2.

References

1. J. Arnold and J. Brewer, Kronecker function rings and flat $D[x]$-modules, Proc. Amer. Math. Soc. 27 (1971), pp. 483-485.
2. P. Eakin and J. Silver, Rings which are almost polynomial rings, Trans. Amer. Math. Soc. 174 (1972), pp. 425-449.
3. R. Gilmer, Overrings of Prüfer domains, J. Algebra, 4 (1966), pp. 331-340.
4. -_, An embedding theorem for HCF rings, Proc. Camb. Phil. Soc. 68 (1970), pp. 583-587.
5. ——, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
6. M. Griffin, Some results on v-multiplication rings, Can. J. Math. 19 (1967), pp. 710-722.
7. W. Heinzer and J. Ohm, An essential ring which is not a v-multiplication ring, Can. J. Math. 25 (1973), pp. 856-861.
8. J. Huckaba and I. Papick, A localization of $R[x]$, Can. J. Math. 33 (1981), pp. 103-115.
9. H. Hutchins, Examples of Commutative Rings, Polygonal Publishing House, New Jersey, 1981.
10. R. Matsuda, On a question posed by Huckaba-Papick, Proc. Japan Acad., Ser. A, 59 (1983), pp. 21-23.
11. -_, On a question posed by Huckaba-Papick II, Proc. Japan Acad., Ser. A, 59 (1983), pp. 379-381.
12. E. Pirtle, Integral domains which are almost Krull, J. Sci. Hiroshima Univ., Ser. A-I, 32 (1968), pp. 441-447.
13. -_, Families of valuations and semigroups of fractionary ideal classes, Trans. Amer. Math. Soc. 144 (1969), pp. 427-439.
14. -, On a generalization of Krull domains, J. Algebra, 14 (1970), pp. 485-492.
15. _, A note on almost Dedekind domains, Publ. Math. Debrecen, 17 (1970), pp. 243-247.

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061
Ibaraki University
Mito, Ibaraki 310, Japan

