A Generalised Kummer-Type Transformation for the ${ }_{p} F_{p}(x)$ Hypergeometric Function

A. R. Miller and R. B. Paris

Abstract

In a recent paper, Miller derived a Kummer-type transformation for the generalised hypergeometric function ${ }_{p} F_{p}(x)$ when pairs of parameters differ by unity, by means of a reduction formula for a certain Kampé de Fériet function. An alternative and simpler derivation of this transformation is obtained here by application of the well-known Kummer transformation for the confluent hypergeometric function corresponding to $p=1$.

1 Introduction

The generalised hypergeometric function ${ }_{p} F_{p}(x)$ is defined for complex values of x by the series

$$
{ }_{p} F_{p}\left(\left.\begin{array}{l}
a_{1}, a_{2}, \ldots, a_{p} \tag{1.1}\\
b_{1}, b_{2}, \ldots, b_{p}
\end{array} \right\rvert\, x\right)=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k}\left(a_{2}\right)_{k} \cdots\left(a_{p}\right)_{k}}{\left(b_{1}\right)_{k}\left(b_{2}\right)_{k} \cdots\left(b_{p}\right)_{k}} \frac{x^{k}}{k!} \quad(|x|<\infty)
$$

where for nonnegative integer k the Pochhammer symbol or ascending factorial $(a)_{k}$ is defined by $(a)_{0}=1$ and for $k \geq 1$ by $(a)_{k}=a(a+1) \cdots(a+k-1)$. However, for all integers k we write simply

$$
(a)_{k}=\frac{\Gamma(a+k)}{\Gamma(a)} .
$$

We shall adopt the usual convention of writing the sequence $\left(a_{1}, \ldots, a_{p}\right)$ simply as $\left(a_{p}\right)$ and the product of p Pochhammer symbols as

$$
\left(\left(a_{p}\right)\right)_{k} \equiv\left(a_{1}\right)_{k} \cdots\left(a_{p}\right)_{k},
$$

with an empty product ($p=0$) reducing to unity. The function ${ }_{p} F_{p}(x)$, with an equal number of numeratorial and denominatorial parameters, is the higher order extension of the familiar confluent hypergeometric function ${ }_{1} F_{1}(x)$. This latter function satisfies the well-known Kummer transformation given by

$$
{ }_{1} F_{1}\left(\begin{array}{l|l}
a & x \tag{1.2}\\
b & x
\end{array}\right)=e^{x}{ }_{1} F_{1}\left(\begin{array}{c|c}
b-a & -x \\
b &
\end{array}\right) .
$$

Received by the editors September 10, 2009.
Published electronically May 17, 2011.
AMS subject classification: 33C15, 33C20.
Keywords: generalised hypergeometric series, Kummer transformation.

In [7], a Kummer-type transformation for the ${ }_{2} F_{2}(x)$ function with three independent parameters was given by

$$
{ }_{2} F_{2}\left(\left.\begin{array}{cc|}
a, & c+1 \tag{1.3}\\
b, & c
\end{array} \right\rvert\, x\right)=e^{x}{ }_{2} F_{2}\left(\begin{array}{cc|c}
b-a-1, & \xi+1 & -x \\
b, & \xi & -x
\end{array}\right),
$$

where the parameter ξ depends on a nonlinear combination of the parameters a, b, and c in the form

$$
\begin{equation*}
\xi=\frac{c(1+a-b)}{a-c} \quad(a \neq c, b-a-1 \neq 0) \tag{1.4}
\end{equation*}
$$

If we let $c \rightarrow \infty$, or put $b=c+1$, then (1.3) reduces to Kummer's transformation (1.2). A more restrictive form of (1.3) when $c=\frac{1}{2} a$, corresponding to only two independent parameters with $\xi=1+a-b$, had been obtained earlier in [24] . Alternative proofs of (1.3) have been given in [5] using a reduction formula for the Kampé de Fériet double hypergeometric function and in [1, 9] using different methods. In the case of four independent parameters a, b, c, and d, the corresponding transformation no longer involves a single ${ }_{2} F_{2}$ function but an infinite sum [7] given by

$$
{ }_{2} F_{2}\left(\left.\begin{array}{ll|}
a, & c \\
b, & d
\end{array} \right\rvert\, x\right)=e^{x} \sum_{n=0}^{\infty} \frac{(d-c)_{n}}{(d)_{n} n!}(-x)^{n}{ }_{2} F_{2}\left(\left.\begin{array}{cc}
b-a, & c \\
b, & d+n
\end{array} \right\rvert\,-x\right)
$$

valid for complex x provided $b, d \neq 0,-1,-2, \ldots$
Recently, Miller [6] obtained an extension of the transformation (1.3) to the higher-order confluent hypergeometric function ${ }_{p+1} F_{p+1}(x)$ with $p \geq 1$ in the form

$$
{ }_{p+1} F_{p+1}\left(\left.\begin{array}{cc}
a, & \left(c_{p}+1\right) \tag{1.5}\\
b, & \left(c_{p}\right)
\end{array} \right\rvert\, x\right)=e_{p+1}^{x} F_{p+1}\left(\begin{array}{cc}
b-a-p, & \left(\xi_{p}+1\right) \mid \\
b, & \left(\xi_{p}\right)
\end{array}\right)
$$

where the ξ_{1}, \ldots, ξ_{p} are nonvanishing zeros of a certain associated parametric polynomial of degree p defined in Section 2. The transformation (1.5) was obtained from a summation formula for a ${ }_{p+2} F_{p+1}$ hypergeometric function of unit argument combined with a reduction identity for a certain Kampé de Fériet double hypergeometric function. The purpose of this note is to provide a more direct proof of (1.5) and to show how it follows as a consequence of Kummer's transformation (1.2).

2 Proof of the Transformation (1.5)

The notation $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ will be employed to denote the Stirling number of the second kind. These numbers represent the number of ways to partition n objects into k nonempty sets and arise for nonnegative integers n in the generating relation [3]

$$
x^{n}=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \tag{2.1}\\
k
\end{array}\right\} x(x-1) \cdots(x-k+1), \quad\left\{\begin{array}{l}
n \\
0
\end{array}\right\}=\delta_{0 n},
$$

where $\delta_{0 n}$ is the Kronecker symbol and, when $k=0$, the product

$$
x(x-1) \cdots(x-k+1)
$$

is to be interpreted as 1 . We also introduce the coefficients A_{k} appearing in the descending factorial expansion of the product $\left(c_{1}+n\right) \cdots\left(c_{p}+n\right)$ as follows. Let

$$
\left(c_{1}+n\right) \cdots\left(c_{p}+n\right)=\sum_{j=0}^{p} s_{p-j} n^{j}
$$

where $s_{0}=1$ and the $s_{i}(1 \leq i \leq p)$ are sums of all possible products of i distinct elements from the set $\left\{c_{1}, \ldots, c_{p}\right\}$. Then from (2.1), we have

$$
\begin{align*}
\left(c_{1}+n\right) \cdots\left(c_{p}+n\right) & =\sum_{j=0}^{p} s_{p-j} \sum_{k=0}^{j}\left\{\begin{array}{l}
j \\
k
\end{array}\right\} n(n-1) \cdots(n-k+1) \tag{2.2}\\
& =\sum_{k=0}^{p} A_{k} n(n-1) \cdots(n-k+1)
\end{align*}
$$

upon reversal of the order of summation, where

$$
A_{k}=\sum_{j=k}^{p} s_{p-j}\left\{\begin{array}{l}
j \tag{2.3}\\
k
\end{array}\right\}, \quad A_{0}=\prod_{j=1}^{p} c_{j}, \quad A_{p}=1
$$

Defining

$$
F \equiv{ }_{p+1} F_{p+1}\left(\begin{array}{cc|c}
a, & \left(c_{p}+1\right) & x \\
b, & \left(c_{p}\right) & x
\end{array}\right)
$$

we now express F as a series in powers of x by (1.1). Since $(c+1)_{n} /(c)_{n}=(c+n) / c$ we can write, using (2.2) and (2.3),

$$
\begin{aligned}
F & =\sum_{n=0}^{\infty} \frac{(a)_{n} x^{n}}{(b)_{n} n!} \frac{c_{1}+n}{c_{1}} \cdots \frac{c_{p}+n}{c_{p}} \\
& =\frac{1}{A_{0}} \sum_{n=0}^{\infty} \frac{(a)_{n} x^{n}}{(b)_{n} n!} \sum_{k=0}^{p} A_{k} n(n-1) \cdots(n-k+1) \\
& =\frac{1}{A_{0}} \sum_{k=0}^{p} A_{k} \sum_{n=k}^{\infty} \frac{(a)_{n} x^{n}}{(b)_{n}(n-k)!}
\end{aligned}
$$

upon reversal of the order of summation and where we have replaced the lower limit of summation in the inner series by $n=k$. With the change of summation index
$m=n-k$ and use of the identity $(a)_{m+k}=(a+k)_{m}(a)_{k}$, we then find

$$
\begin{align*}
F & =\frac{1}{A_{0}} \sum_{k=0}^{p} x^{k} A_{k} \frac{(a)_{k}}{(b)_{k}} \sum_{m=0}^{\infty} \frac{(a+k)_{m}}{(b+k)_{m}} \frac{x^{m}}{m!} \tag{2.4}\\
& =\frac{1}{A_{0}} \sum_{k=0}^{p} x^{k} A_{k} \frac{(a)_{k}}{(b)_{k}}{ }_{1} F_{1}\left(\left.\begin{array}{l}
a+k \\
b+k
\end{array} \right\rvert\, x\right) .
\end{align*}
$$

This has expressed our ${ }_{p+1} F_{p+1}(x)$ function as a finite sum of ${ }_{1} F_{1}(x)$ functions.
Application of Kummer's theorem (1.2) to (2.4) then yields

$$
\begin{align*}
F & =\frac{e^{x}}{A_{0}} \sum_{k=0}^{p} x^{k} A_{k} \frac{(a)_{k}}{(b)_{k}}{ }_{1} F_{1}\left(\left.\begin{array}{c}
b-a \\
b+k
\end{array} \right\rvert\,-x\right) \tag{2.5}\\
& =\frac{e^{x}}{A_{0}} \sum_{k=0}^{p}(-1)^{k} A_{k} \frac{(a)_{k}}{(b)_{k}} \sum_{n=0}^{\infty} \frac{(b-a)_{n}}{(b+k)_{n}} \frac{(-x)^{n+k}}{n!}
\end{align*}
$$

Noting the identities

$$
\frac{1}{(n-k)!}=\frac{(-1)^{k}(-n)_{k}}{n!}, \quad(b+k)_{n-k}=\frac{(b)_{n}}{(b)_{k}}
$$

and

$$
(b-a)_{n-k}=\frac{(\lambda)_{n}(\lambda+n)_{p-k}}{(\lambda)_{p}}, \quad \lambda \equiv b-a-p
$$

we now make the change of index $n \mapsto n-k$ in (2.5). Then

$$
\begin{align*}
F & =\frac{e^{x}}{A_{0}(\lambda)_{p}} \sum_{k=0}^{p} A_{k}(a)_{k} \sum_{n=k}^{\infty} \frac{(-n)_{k}(-x)^{n}}{(b)_{n} n!}(\lambda)_{n}(\lambda+n)_{p-k} \tag{2.6}\\
& =\frac{e^{x}}{A_{0}(\lambda)_{p}} \sum_{n=0}^{\infty} \frac{(\lambda)_{n}(-x)^{n}}{(b)_{n} n!} \sum_{k=0}^{p} A_{k}(a)_{k}(-n)_{k}(\lambda+n)_{p-k},
\end{align*}
$$

upon reversal of the order of summation and where we have replaced the lower summation limit $n=k$ by $n=0$ on account of the factor $(-n)_{k}$, which vanishes for $n<k$.

The finite sum appearing in (2.6) can be expressed by means of (2.3) as

$$
\begin{aligned}
\sum_{k=0}^{p} A_{k}(a)_{k}(-n)_{k}(\lambda+n)_{p-k} & =\sum_{k=0}^{p} \sum_{j=k}^{p} s_{p-j}\left\{\begin{array}{l}
j \\
k
\end{array}\right\}(a)_{k}(-n)_{k}(\lambda+n)_{p-k} \\
& =\sum_{j=0}^{p} s_{p-j} \sum_{k=0}^{j}\left\{\begin{array}{l}
j \\
k
\end{array}\right\}(a)_{k}(-n)_{k}(\lambda+n)_{p-k} \equiv Q_{p}(-n),
\end{aligned}
$$

where $Q_{p}(t)$ is the associated parametric polynomial defined in [6, Corollary 1] and we have carried out a reversal of the order of summation. The function $Q_{p}(-n)$ is a polynomial in n of degree p. Some straightforward algebra shows that

$$
Q_{p}(-n)=\alpha_{0} n^{p}+\alpha_{1} n^{p-1}+\cdots+\alpha_{n-1} n+\alpha_{n}
$$

where, in particular, the coefficients

$$
\alpha_{n}=A_{0}(\lambda)_{p}, \quad \alpha_{0}=\sum_{k=0}^{p}(-1)^{k} A_{k}(a)_{k}=\left(c_{1}-a\right) \cdots\left(c_{p}-a\right)
$$

by (2.2). If we let the nonvanishing zeros (which requires the condition $(\lambda)_{p} \neq 0$) of $Q_{p}(t)$ be ξ_{1}, \ldots, ξ_{p}, then $\alpha_{n}=\alpha_{0} \xi_{1} \cdots \xi_{p}$. Assuming $c_{j} \neq a(1 \leq j \leq p)$ so that $\alpha_{0} \neq 0$, we can then write, following [6] Lemma 4],

$$
\begin{aligned}
Q_{p}(-n) & =\alpha_{0}\left(n+\xi_{1}\right) \cdots\left(n+\xi_{p}\right) \\
& =\alpha_{n} \frac{n+\xi_{1}}{\xi_{1}} \cdots \frac{n+\xi_{p}}{\xi_{p}} \\
& =\alpha_{n} \frac{\left(1+\xi_{1}\right)_{n}}{\left(\xi_{1}\right)_{n}} \cdots \frac{\left(1+\xi_{p}\right)_{n}}{\left(\xi_{p}\right)_{n}}
\end{aligned}
$$

Hence, (2.6) can be expressed in the form

$$
F=e^{x} \sum_{n=0}^{\infty} \frac{(\lambda)_{n}\left(\left(\xi_{p}+1\right)\right)_{n}}{(b)_{n}\left(\left(\xi_{p}\right)\right)_{n}} \frac{(-x)^{n}}{n!}
$$

This then finally yields the desired transformation, which we record in the following theorem.

Theorem 1 For nonnegative integer p and $\lambda \equiv b-a-p$,

$$
{ }_{p+1} F_{p+1}\left(\left.\begin{array}{cc}
a, & \left(c_{p}+1\right) \tag{2.7}\\
b, & \left(c_{p}\right)
\end{array} \right\rvert\, x\right)=e_{p+1}^{x} F_{p+1}\left(\left.\begin{array}{cc}
b-a-p, & \left(\xi_{p}+1\right) \\
b, & \left(\xi_{p}\right)
\end{array} \right\rvert\,-x\right)
$$

provided $(\lambda)_{p} \neq 0$ and $c_{j} \neq a(1 \leq j \leq p)$, where ξ_{1}, \ldots, ξ_{p} are nonvanishing zeros of the associated parametric polynomial $Q_{p}(t)$ of degree p given by

$$
Q_{p}(t)=\sum_{j=0}^{p} s_{p-j} \sum_{k=0}^{j}\left\{\begin{array}{l}
j \tag{2.8}\\
k
\end{array}\right\}(a)_{k}(t)_{k}(\lambda-t)_{p-k},
$$

and the $s_{p-j}(0 \leq j \leq p)$ are determined by the generating relation

$$
\left(c_{1}+n\right) \cdots\left(c_{p}+n\right)=\sum_{j=0}^{p} s_{p-j} n^{j}
$$

Note that when all of the $c_{j}=c$, then $s_{p-j}=\binom{p}{j} c^{p-j}$.

3 Discussion

In the case of the hypergeometric function on the left-hand side of (2.7), with corresponding numeratorial and denominatorial parameters differing by unity, the exponential factor that appears in the transformation is e^{x}. That this is the correct exponential factor to extract, even in the most general case of

$$
{ }_{p} F_{p}\left(\begin{array}{c|c}
a_{1}, a_{2}, \ldots, a_{p} & x), \\
b_{1}, b_{2}, \ldots, b_{p} & x), ~
\end{array}\right.
$$

can be seen from the asymptotic growth of the latter for large x. From [8, §2.3], we have exponential growth as $|x| \rightarrow \infty$ in the right half-plane given by

$$
{ }_{p} F_{p}\left(\left.\begin{array}{l}
a_{1}, a_{2}, \ldots, a_{p} \\
b_{1}, b_{2}, \ldots, b_{p}
\end{array} \right\rvert\, x\right) \sim \prod_{r=1}^{p} \frac{\Gamma\left(a_{r}\right)}{\Gamma\left(b_{r}\right)} x^{\vartheta} e^{x} \quad\left(|\arg x|<\frac{1}{2} \pi\right),
$$

where the parameter $\vartheta=\sum_{r=1}^{p}\left(a_{r}-b_{r}\right)$, and algebraic growth (with possible terms in $\log x$ depending on the values of the $\left.a_{r}\right)$ in the left half-plane $|\arg (-x)|<\frac{1}{2} \pi$.

When $p=1$ and $c_{1}=c$, the polynomial $Q_{1}(t)$ in (2.8) is

$$
Q_{1}(t)=(a-c) t+c(b-a-1)
$$

and the zero $\xi_{1}=\xi$ is given by (1.4). The transformation (2.7) in this case then correctly reduces to that in (1.3).

In the case $p=2$, we have 6]

$$
\begin{equation*}
Q_{2}(t)=\alpha t^{2}-((\alpha+\beta) \lambda+\beta) t+c_{1} c_{2} \lambda(\lambda+1) \tag{3.1}
\end{equation*}
$$

where $\lambda=b-a-2$ and

$$
\alpha=\left(c_{1}-a\right)\left(c_{2}-a\right), \quad \beta=c_{1} c_{2}-a(a+1)
$$

For real parameters a, b, c_{1}, and c_{2}, we note that the zeros ξ_{1}, ξ_{2} can be real or a complex conjugate pair. For example, if $a=\frac{1}{2}, b=1, c_{1}=\frac{3}{4}$, and $c_{2}=\frac{5}{4}$ then

$$
Q_{2}(t)=\frac{1}{16}\left(3 t^{2}+6 t+\frac{45}{4}\right),
$$

so that $\xi_{1,2}=-1 \pm \frac{1}{2} i \sqrt{ } 11$. We then find the Kummer-type transformation

$$
{ }_{3} F_{3}\left(\begin{array}{ccc|}
\frac{1}{2}, & \frac{7}{4}, & \frac{9}{4} \\
1, & \frac{3}{4}, & \frac{5}{4}
\end{array}\right)=e^{x}{ }_{3} F_{3}\left(\left.\begin{array}{ccc}
-\frac{3}{2}, & \frac{1}{2} i \sqrt{11}, & -\frac{1}{2} i \sqrt{11} \\
1, & -1+\frac{1}{2} i \sqrt{11}, & -1-\frac{1}{2} i \sqrt{11}
\end{array} \right\rvert\,-x\right) .
$$

Finally, we comment on the situation when the difference Δ_{j} between corresponding pairs of numeratorial and denominatorial parameters c_{j} exceeds unity. For example, if $p=1$ and $\Delta_{1}=2$, then

$$
\begin{aligned}
{ }_{2} F_{2}\left(\left.\begin{array}{cc|}
a, & c+2 \\
b, & c
\end{array} \right\rvert\, x\right) & ={ }_{3} F_{3}\left(\begin{array}{ccc|c}
a, & c+1, & c+2 \\
b, & c, & c+1 & x
\end{array}\right) \\
& =e^{x}{ }_{3} F_{3}\left(\left.\begin{array}{ccc}
b-a-2, & \xi_{1}+1, & \xi_{2}+1 \\
b, & \xi_{1}, & \xi_{2}
\end{array} \right\rvert\,-x\right),
\end{aligned}
$$

where ξ_{1}, ξ_{2} are the zeros of the quadratic $Q_{2}(t)$ in (3.1) with $c_{1}=c$ and $c_{2}=c+1$. If $\Delta_{1}=m$, where m is a positive integer, then we have

$$
\begin{align*}
{ }_{2} F_{2}\left(\left.\begin{array}{cc}
a, & c+m \\
b, & c
\end{array} \right\rvert\, x\right) & ={ }_{m+1} F_{m+1}\left(\left.\begin{array}{ccc}
a, & c+1, c+2, \ldots, c+m \\
b, & c, c+1, \ldots, c+m-1
\end{array} \right\rvert\, x\right) \tag{3.2}\\
& =e^{x}{ }_{m+1} F_{m+1}\left(\left.\begin{array}{cc}
b-a-1, & \left(\xi_{m}+1\right) \\
b, & \left(\xi_{m}\right)
\end{array} \right\rvert\,-x\right)
\end{align*}
$$

where ξ_{1}, \ldots, ξ_{m} are the zeros of the polynomial $Q_{m}(t)$ with $c_{r}=c+r-1(1 \leq r \leq$ $m)$. Similarly, if the difference associated with the parameters c_{j} is $\Delta_{j}=m_{j}$, where the m_{j} are positive integers, then we find in the case $p=2$, for example, that

$$
\begin{align*}
& { }_{3} F_{3}\left(\begin{array}{ccc|c}
a, & d_{1}+m_{1}, & d_{2}+m_{2} & x \\
b, & d_{1}, & d_{2} & x
\end{array}\right) \tag{3.3}\\
& ={ }_{\mu+1} F_{\mu+1}\left(\begin{array}{ccc}
a, & d_{1}+1, \ldots, d_{1}+m_{1}, & d_{2}+1, \ldots, d_{2}+m_{2} \\
b, & d_{1}, \ldots, d_{1}+m_{1}-1, & d_{2}, \ldots, d_{2}+m_{2}-1
\end{array}\right. \\
& \left.=e^{2}\right) \\
& ={ }_{\mu+1}^{x} F_{\mu+1}\left(\left.\begin{array}{cc}
b-a-\mu, & \left(\xi_{\mu}+1\right) \\
b, & \left(\xi_{\mu}\right)
\end{array} \right\rvert\,-x\right),
\end{align*}
$$

where $\mu=m_{1}+m_{2}$ and $\xi_{1}, \ldots, \xi_{\mu}$ are the zeros of the polynomial $Q_{\mu}(t)$ in (2.8) with

$$
c_{r}=d_{1}+r-1 \quad\left(1 \leq r \leq m_{1}\right), \quad c_{m_{1}+r}=d_{2}+r-1 \quad\left(1 \leq r \leq m_{2}\right)
$$

Extension to higher order ${ }_{p} F_{p}(x)$ is straightforward.
The results in (3.2) and (3.3) express a ${ }_{p} F_{p}(x)$ function, when corresponding parameters differ by more than unity, in terms of higher-order hypergeometric functions with argument $-x$. In the case of ${ }_{2} F_{2}(x)$, however, an alternative representation for the left-hand side of (3.2) can be given in terms of a finite number of ${ }_{2} F_{2}(-x)$ functions as [7]

$$
{ }_{2} F_{2}\left(\left.\begin{array}{cc|}
a, & c+m \\
b, & c
\end{array} \right\rvert\, x\right)=e^{x} \sum_{k=0}^{m}\binom{m}{k} \frac{x^{k}}{(c)_{k}}{ }_{2} F_{2}\left(\begin{array}{cc|c}
b-a, & c+m & -x \\
b, & c+k & -x
\end{array}\right) .
$$

References

[1] W. Chu and W. Zhang, Transformations of Kummer-type for ${ }_{2} F_{2}$-series and their q-analogues. J. Comput. Appl. Math. 216(2008), no. 2, 467-473. http://dx.doi.org/10.1016/j.cam.2007.05.024
[2] H. Exton, On the reducibility of the Kampé de Fériet function. J. Comput. Appl. Math. 83(1997), no. 1, 119-121. http://dx.doi.org/10.1016/S0377-0427(97)86597-1
[3] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Second edition. Addison-Wesley, Reading, MA, 1994.
[4] A. R. Miller, On a Kummer-type transformation for the generalized hypergeometric function ${ }_{2} F_{2}$. J. Comput. Appl. Math. 157(2003), no. 2, 507-509. http://dx.doi.org/10.1016/S0377-0427(03)00383-2
[5] \longrightarrow A summation formula for Clausen's series ${ }_{3} F_{2}(1)$ with an application to Goursat's function ${ }_{2} F_{2}(x)$. J. Phys. A 38(2005), no. 16, 3541-3545. http://dx.doi.org/10.1088/0305-4470/38/16/005
[6] \longrightarrow, Certain summation and transformation formulas for generalized hypergeometric series. J. Comput. Appl. Math. 231(2009), no. 2, 964-972. http://dx.doi.org/10.1016/j.cam.2009.05.013
[7] R. B. Paris, A Kummer-type transformation for $a_{2} F_{2}$ hypergeometric function. J. Comput. Appl. Math. 173(2005), no. 2, 379-382. http://dx.doi.org/10.1016/j.cam.2004.05.005
[8] R. B. Paris and D. Kaminski, Asymptotics and Mellin-Barnes Integrals. Encyclopedia of Mathematics and its Applications 85. Cambridge University Press, Cambridge, 2001.
[9] A. K. Rathie and R. B. Paris, An extension of the Euler-type transformation for the ${ }_{3} F_{2}$ series. Far East J. Math. Sci. 27(2007), no. 1, 43-48.

Department of Mathematics, George Washington University, Washington, DC 20009-2525, USA
Division of Complex Systems, University of Abertay Dundee, Dundee DD1 1HG, UK
e-mail: r.paris@abertay.ac.uk

