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Polar analogues of two theorems

by Minkowski

Kurt Mahler

Since Minkowski's time, much progress has been made in the

geometry of numbers, even as far as the geometry of numbers of

convex bodies is concerned. But, surprisingly, one rather obvious

interpretation of classical theorems in this theory has so far

escaped notice.

Minkowski's basic theorem establishes an upper estimate for the

smallest positive value of a convex distance function F(x) on

the lattice of all points X with integral coordinates. By

contrast, we shall establish a lower estimate for F(x) at all

the real points X on a suitable hyperplane

with integral coefficients u , ..., u not all zero. We arrive

at this estimate by means of applying to Minkowski's Theorem the

classical concept of polarity relative to the unit hypersphere

2 2

This concept of polarity allows generally to associate with known

theorems on point lattices analogous theorems on what we call

hyperplane lattices. These new theorems, although implicit in

the old ones, seem to have some interest and perhaps further work

on hyperplane lattices may lead to useful results.

In the first sections of this note a number of notations and

results from the classical theory will be collected. The later
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sections deal then with the consequences of polarity.

1.

Let K be the space of all points or vectors

x = {x±, . . . , xn), y = [IJX, . . . , y n ) , u = {u±, . . . , w J , 0 = ( o , . . . . 0 ) ,

and so on, with real coordinates; thus 0 is the origin. The vector

operations are as usual defined by

x + y = ( a ^ + j ^ , . . . , xn+yn), e x = (ca^ c x j , x - y = x ^ + . . . + Xypn .

A convex distance function F(x) is a function F : Rn •* R with the

following properties,

(1) F(0) = 0 , F{x) > 0 if X * 0 ;

(2) F(ex) = |c|F(x) for all real c ;

(3) F(x+y) 5 P(x) + F(y) .

The point set K in Rn defined by

K : F(x) 5 1

is then a symmetric convex body; that is, a bounded closed convex set in

f? which contains the origin 0 as an interior points and is symmetric in

this point. Every such convex body has a volume V(K) defined by

We can associate with every convex distance function F(x) a second

convex distance function G(u) by putting

G(u) = sup - ^ y = sup U-X .
X#0 * W F(X)=1

Then, conversely, also

F(X) = sup 775Y= sup U-X .
U*0 G ( U ) G(U)=1

The set of a l l points

K* : G(x) S l

https://doi.org/10.1017/S0004972700043690 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700043690


T h e o r e m s by M i n k o w s k i 123

i s again a symmetric convex body and i s said to be polar reciprocal to K

with respect to the unit hypersphere

U : X'X = 1 .

This reciprocity relation is symmetric, and K similarly is polar

reciprocal to K* .

The classical polarity relation relative to the unit hypersphere U

associates with every point X = U as pole the hyperplane U*X = 1 as

polar, and vice versa. One verifies easily that the pole X = U lies in

the interior, on the frontier, or on the outside of K , according as to

whether the polar U'X = 1 lies on the outside of K* , is a tac-hyper-

plane of K* , or penetrates into the interior of K* . Analogous

properties hold if K and K* are interchanged.

We shall require the inequality [/, p. 108],

(A) n~n/2K2 5 V(K)V(K*) < K 2

n n

where

denotes the volume of the unit hypersphere U . Here the upper estimate

for V(K)V(K*) is best possible, but not also the lower estimate. The

latter is known for n = 2 when it is equal to 8 , but it does not seem

to have yet been obtained for larger n .

2.

Denote by A the point lattice of all points X in R with

integral coordinates x , ..., x . One main problem of the geometry of

numbers deals with the question whether a given set I of points inter-

sects A in a point X + 0 .

For the case that £ is a symmetric convex body J! : f(x) S 1 ,

Minkowski himself already obtained two very basic results which have

allowed important applications to the theory of algebraic number fields and

to diophantine approximations.

Minkowski's first theorem states that H , pp. 33-31*],
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(I) If V(K) 2 2n , then K contains at least one point X * 0 of A .

This theorem is contained in the very deep second theorem of Minkowski on

the successive minima of K in A . Here the successive minima are

obtained by the following construction.

Select a la t t ice point X^1' # 0 for which

(2)is a minimum. Next choose a lattice point X which is linearly

independent of X and for which, under this restriction,

is as small as possible. Generally, for k = 2, 3, , n , if the lattice

points x , . . . , x and the corresponding minima m , ... , m,

have already been defined, let X be a latt ice point which is linearly

independent of X^1 , . . . , X̂  ' such that

is as small as possible.

The n minima m,, . . . , m so defined are called the successive
1 n

minima of K on A , and they are uniquely determined. From the

definition,

0 < tn < m — . , , — fti .
1 2 n

Minkowski ' s second theorem a s s e r t s now t h a t [ 7 , p . 5 2 ] ,

?w n
(II) ^-SBIA . . . mW <2 ,

K! 1 d n
where the right-hand inequality is best possible.

The M l a t t i c e points X , . . . , X , at which the successive

minima m , . . . , m are attained, wil l not in general form a basis of A .

For such bases the following slightly weaker result holds [7, p. 6 l ] .
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There exists a basis x , . . . , x of A for which

(III) ^ 2 F ( x [ l V ( x t 2 ] ) ••• F[XM)V(K) ±2nl .

Here neither of the two bounds is in general best possible.

3.

The three theorems ( I ) , (II), and (III) can naturally also be applied

to the body K* which is polar reciprocal to K . The polarity relation

relative to the unit hypersphere V leads then immediately to new

properties of the original convex body K .

Denote by V the set of all hyperplanes

U'X = 1

where U lies in A , thus is a point with integral coordinates. As we

noted already, with the point U as pole, this hyperplane is the polar

relative to U . It is convenient to exclude the improper hyperplane

0»X = 1 which corresponds to the origin 0 .

Assume, firstly, that the volume of the polar reciprocal body K*

satisfies the inequality

(It) V(K*) 2 2" .

Then, by (I), K* contains a point U # 0 of the point lattice A ; thus

U lies either in the interior or on the frontier of K* . By what was

said in §1, this means that the hyperplane U'X = 1 does not meet K in

any interior point. Hence at all points of this hyperplane F(\) is at

least 1 . Since, by (A), the inequality (h) is certainly satisfied if

V(K) 2 (hn)~n/2<2 ,
n

the following result holds.

THEOREM 1. Let K : F(x) 5 1 be a convex body of volume

(5) V(K) < (kn)-nl2K2n .

Then there exists an integral vector u ^ 0 such that

F{x) 2 l at all real points x satisfying u#x = 1 .
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4.

To give an example to Theorem 1, let n = m + 1 ; let a,, .... a

1 m

and t be real numbers where t > 1 ; and le t F(x) be the convex

distance function

F ( x ) = max t | 1 | | J

A l 6 ( m + l ) } ( m + 1 ) / V 2 Aa * + . . . + ax+x l
m+1 ' 1 1 mm m+1'

The convex body K : F(x) 5 1 evidently has the volume

so that the condition (5) of Theorem 1 is satisfied.

Hence, by this theorem, there exist integers it-. , . .. , u , u .. not
X fit 171+1

all zero such that F(x) > 1 at all real points X = [x. , . .. , x , x )
v 1 m 171+1

satisfying

( 6 ) "ixl + • • • + Vm + W W l = X •

Hence, whenever X lies on this hyperplane while at the same time

(7) k j < t, ..., \xj < t ,

then necessarily

(8) | « A + ... + amxm+xm+1\ , t-

Here we can immediately assert that

Vi * ° •

For assume that u = 0 ; then at least one of the integers u , ..., u
171+1 1 171

is distinct from zero. Since by hypothesis t > 1 , there exist real

numbers x. , . . . , x which satisfy both the inequalities (7) and the

equation

Y l + • • • + V m = X •

On defining now x . by the formula
77H" _L
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V l + • • • + amXm + *Wl = ° '

we obta in a c o n t r a d i c t i o n t o the i n e q u a l i t y ( 8 ) .

Since then u # 0 , t he equation (6) shows t h a t

x , = u~ , ( l -u , x , - . . . - u x ) ,
m+1 m+1'- 1 1 m mJ '

so that we arrive at the following rather strange result.

Let a.,...,a , and t , be real numbers where t > 1 . Then there

exist integers u,...,u,u -, , where u ̂  + 0 , such that
1 TTi 17l+± 171+1.

every set of m real numbers x , ..., x satisfying

1*3.1 < *• •••• 1 ^ 1 < * •

5 .

In a similar manner as we deduced Theorem 1 from Minkowski's Theorem

(I), we shall now establish polar analogues of the Theorems (II) and (III).

For this purpose we first apply these theorems to the symmetric convex body

K* : G(x) 5 1 which is polar reciprocal to K : F(x) 5 1 .

To begin wi-th the Theorem (II), let m*,...,m* be the successive

minima of K* in A , and let U , ..., U be a set of n linearly

independent points in A at which the minima are attained,

m* = G(u(fe)) (k = 1, 2, ..., n) .

-1 (k)
Thus the points m} U satisfy the equations

= 1 (fc = 1, 2, ..., n) ,

hence lie on the frontier G(x) = 1 of K* . The polar relative to the

-1 (k)unit hypersphere U of the pole mf u is the hyperplane
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and by §1, this hyperplane is a tac-hyperplane of K . I t follows that the
parallel hyperplane

u ( * } . x = l

is a tak-hyperplane of the convex body defined by the inequality

F(x) 5 mfX ,

and that therefore

mfX = inf F(x) (k = 1, 2, . . . , n) .

Now, by Minkowski's Theorem (II) applied to K* ,

••• lK)

and here, by (A),

n~n/2K2 < V{K)V(K*) 5 K2 .

Hence

(kn)Kn ( ^ )

This resu l t may be formulated as follows.

THEOREM 2. Let K : Fix) 5 1 ie a symmetric convex body. Then

there exist n linearly independent lattice points u , . . . , u such

that

ihn)~nK2 5 ViK) f T f i n f

n fe=l "• ik)
K i/*'«x=l

On applying the same considerations to the inequality (III) instead of
( I I ) , we obtain the following similar result.

THEOREM 3. Let K -. F(x) S I be a symmetric convex body. Then

there exists a basis u , . . . , u of the lattice A such that
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(2n!)"Vn/2K2 5 V(K) J T I i n f

In both Theorems 2 and 3 the coordinates of x may run over arbitrary real

numbers.
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