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Abstract. We consider inner functions on the unit disk which have a finite number
of singularities on the unit circle. The restriction of such functions to the circle are
maps onto the circle. We give sufficient conditions that these restrictions are exact
endomorphisms whose natural extensions are Bernoulli and that the entropy is given
by Rohlin's formula, /»(/) = Jlog |/'| dp. We also give the entropy in closed form if
/ is in the Nevalinna class N. An example is considered. In the last section we
show that if two restrictions are metrically isomorphic, they are diffeomorphic.

0. Introduction
We consider restrictions to the unit circle of inner functions on the unit disk which
have a finite nonempty set of singularities on the circle. In an earlier paper [11] we
studied the maps which were continuous on the circle and showed they were exact
endomorphisms whose natural extensions are Bernoulli if their derivative on the
circle was larger than one in absolute value.

In § 2 we use the results of Rychlik [19] to give a sufficient condition that
restrictions of inner functions with a finite nonempty set of singularities are exact
endomorphisms whose natural extensions are Bernoulli. In § 3 we give sufficient
conditions that the entropy of such restrictions is given by Rohlin's formula,
h(f) = Jlog|/ ' | d\x,. If/' is in the Nevalinna class N we evaluate this integral in
terms of the critical points of/ in O and the fixed point of/ in O. In § 4 an example
is considered, and in § 5 we show that metrically isomorphic restrictions are confor-
mally conjugate to within a rotation.

The study of ergodic properties of inner functions was begun by Aaronson [1],
[2] and Neuwirth [14], although Adler and Kemperman had studied special inner
functions prior to these papers. Subsequent work can be found in
[7,11,12,16,17,20].

The author would like to thank Francois Ledrappier, Barbara MacCluer, and Loren
Pitt for useful conversations during the preparation of this paper.
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138 N. F. G. Martin

1. Notation and definitions
The open unit disk in the complex plane will be denoted by O and its boundary,
the unit circle, by dO. The set of analytic functions / on O into O with the property
that Ilinv,! / ( r e'e)\ = 1 for Lebesgue almost all 6 are the inner functions on the unit
disk. Every inner function has a representation of the form

a, 1-ajZ

where \c\ = 1, \a}\ < 1, £°1, (1 - \oj\) <°o, and v is a positive measure on dO singular
with respect to Lebesgue measure. In this formula, if a, = 0, |a,|/Oj is taken to be
one (see [9]).

A Blaschke product is an inner function in which the singular measure v in (1)
is identically zero and a singular inner function is one with no zeros in O, i.e., the
Blaschke product in (1) is missing.

It is clear from the representation (1) that an inner function is not only analytic
on O but also on the complement of OudQ except at the poles (a;)"1, j = 1,2,....
It is not defined at the accumulation points of the zeros a, and on the closed support
of the measure v. These points are essential singularities of/ A general inner function
may not be defined at any point of dO; however, by Fatou's theorem /*(e'*) =
lim_r_1/(re'e) exists for almost all 0 and by assumption \f*(e'e)\ = 1 so that/* is
an almost everywhere defined map of dO to dO. This map has the following ergodic
properties:
(1) If/* is nonconstant, it is nonsingular and positively nonsingular with respect

to Lebesgue measure A on dQ, i.e., A(A) = 0 implies that both \(f*~1{A}) = 0
and A (/•{;*}) = 0 ([8]).

(2) If/ is not a Mobius transformation, there exists a unique fixed point 5 in O u dO
such that | / ( 8 ) | < 1 if SeQ, | l imr^,_/(r5)|< 1 if 8edO and for zeO,
limn^0O/"(z) = S, where/" is the composition of/with itself n times. The point
S is called the Denjoy-Wolff point f o r / ([21,4]).

(3) If/ has a fixed point in O a n d / is not a Mobius transformation, then it is the
Denjoy-Wolff point S (hence unique) and I/^S)! < 1 (Schwartz Lemma; [9]).

(4) If the Denjoy-Wolff point S is in O and / is not Mobius, then f* has a unique
finite invariant measure equivalent to Lebesgue measure whose density is the
Poisson Kernel at S, i.e., P«(f) = (1 - |8 | 2) / | f - 5|2 for f e dO, and f* is an exact
endomorphism.

If S e dO, then / * does not have a finite invariant measure absolutely continuous
with respect to Lebesgue measure, although it may have an equivalent a-finite
invariant measure. If |limr^,_/'(r5)|< l,f* is not ergodic. If |lim_r^i/'(r5)| = 1,/*
can be either exact or not ergodic ([1,2,10,14,17]).

In case / is continuous on dO, then f* is the restriction of/ to dO and / is a finite
Blaschke product, i.e.,

In this case f* is a C°° map of the compact manifold dO to itself and its ergodic
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Ergodic properties of restrictions of inner functions 139

properties can be studied by using results from smooth dynamics. In particular, if
\f{£)\ > 1 for all £ e aO, then/* is an expanding map. This observation was developed
in [11]. Also see [20].

In the following we restrict ourselves to the class 9 of inner functions which
have a finite nonempty set of singularities on aO. If fe &, the singularities of/ on
dQ will be denoted by E(/), or just E. If fe &,f*=f on aO-E(/) and/cannot be
extended continuously to any point in E(/).

Since E(F) is finite for /e 9, we can represent the function in SF by

(2)
~j 1-UjZ/ ( 1=1 D,-Z )

where c, a, are as in (1), \b,\ = 1, m, are positive and the closure of the a/s intersected
with aO is finite. For these maps log/ has a well-defined analytic branch in some
neighbourhood U of £ eaO-E and

(log/)'(z)= I {z_
1~)\f_dz)

+ii (fc ̂ (2 (3)

for zeU.
If (ft, 58, /A) is a Lebesgue space and T is a measure-preserving transformation

on ft, a measurable partition 17 offt is a one-sided generator if V =̂o T~JTJ = e(modO),
where e denotes the point partition and V the common refinement. If T is a countable
to one endomorphism offt, then for each « e ft, e n T~'{w} is a countable partition
of the atom r~'{o)} of T"1 e. By Rohlin's theorem there exists a countable measurable
partition y of ft such that e = e\JT~xe = y\JT~le (mod 0), and T is injective on
each atom of y. The conditional information of e given r - 1 e is defined by
I(e\ T~xe) = I{y\ T~'e). Since T is injective on each atom in y, TA, the restriction
of T to A e % defines a measure /xTA which is nonsingular with respect to /A. The
Jacobian of T is defined by

A connection between JT and / ( e l r ^ e ) is given by

In case the integral of 7(e| T~'e) is defined, the conditional entropy is given by

H(e\T-le)= \ 7(e | T ^ E ) dM = f log JTdn.
Jn Jn

Moreover, the entropy of T, h(T), satisfies

h(T)>H{e\T-xe)

with equality if T has a one-sided generator with finite entropy. If more than one
measure is being considered, we will write Ili(e\T~le) and Hli(e\T~le) for the
conditional information and entropy with respect to the measure /x. For details of
entropy, information, and the Jacobian one may consult [15] and [13].

In the following, m will denote Lebesgue measure on [0,1] and A will denote
normalized Lebesgue measure on aO. If / is a map of a set X to itself, then f(x)
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140 N. F. G. Martin

will denote the composition of/ with itself n times, i.e.,/°(x) = x,f"(x) =f°f~1(x)
for n> 1. If / is differentiable at x, f'(x) denotes the first derivative and /(n )(*)
denotes the nth derivative for n > 1.

If/ is a complex-valued function on an interval of real numbers, / is of bounded
variation if

where the sup is taken over all partitions x0 < x, < • • • < xk of the interval. The
Nevalinna class N is the collection of all analytic functions h on O such that

sup I T \og+\h(re">)\^]^B.
0<r<l IJ-7T ITT)

2. Inner functions whose natural extensions are Bernoulli
LEMMA 2.1. Iffe &, then
(1) there exists an open dense set U in [0,1] such that m(U) = 1;
(2) there exists a countable family B of closed intervals in [0,1] with disjoint interiors

such that {J{B:BeB}=>U and for any BejS the set B n {[0,1] - U} consists
exactly of the end points of B;

(3) there exists a differentiable map TofUto [0,1 ] such that for any Be/3,T restricted
to U n B admits an extension to a diffeomorphism of B into [0,1] and

(4) for every Be(3, teB

/(exp 2TTU) =exp 2viT(t)

and

\f'(exP2mt)\=T'(t).

Proof. Let fe 3F and E ( / ) = {exp 2mCj-.j = 0,l,...,K-1} with c0 = 0. Define

q = {exp (2mt): c, < t < cj+l)

for j = 0 , 1 , . . . , K -1 with cK = l. Denote the mod-point of C, by exp 2TH *,.
For each j , / is nonzero and analytic on a simply connected open set V} containing

Cj, and there exists a well-defined analytic branch of log/ on V}, say

with a,(exp 2iri J,-) = 0 and i/c/z) = 0 on Vj n dO.
If / has the representation (2), then

{ °° 1 — la I2 N 1

X I 2J ' ,2 + 1 1 m, csc2 77(0 , -0 ,
fc=i \e -<*k\ i=i iwhere exp 2m j8, = bh p, e [0,1]. Since | / | = 1 on dO-E,

00 1 - l a , I2 N

I/V"i()l= I , 2J
 kl ,2 + h I m,csc2

k=i \e - a k \ , = i

and
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Ergodic properties of restrictions of inner functions 141

For te (cj, cj+x), define

Then

and Aj is differentiable and strictly increasing on (c,, cJ+1) with A,(i/) = 0.
Let Ijtk = {te(Cj,cj+1):k<Aj(t)<k+l} for j = 0,l,2,..., K-l and fc =

0, ±1,±2 Define T on U ^ t by

T(t) = Aj(t)-k foTteIjik.

Take B = {IJk:0<j<K,keZ}, U = \J 1%. Then for any te / ° k

and

exp 27riT(f) = exp 2iri{Aj(t) - £} =/(exp

Remark. A theorem of Lindelof ([5] page 42) implies that for / e 8F, and zeE(/),
the limit of/ restricted to dO-E(/) fails to exist from at least one side at z. Thus,
since Aj increases either lim,_c + A,(f) = -oo or lim,^Cj_ Aj(t) = +oo. It follows from
the definition of T that for given j , T maps IJ>k onto [0,1], either for all positive it
or for all negative k. If lim,^Cj+ Aj(t) = -bj, then T maps I^k onto [l-Rj + bj, 1].
The intervals Ij<k for k<—Rj are empty. A similar analysis can be made for the case
where lim,^c+1_ Aj{t) = bj. Thus T maps all but at most K intervals in B onto [0,1]
where K is the number of points in E(/).

Let

and T) denote the partition of dO given by the arcs Cjk. thus for / e £F, / restricted
to Cjik is a bijection to dQ.

THEOREM 2.2. Letfe &, E(/) = {exp27ri c}: j = 0,1,..., K-l}. Assume
(i) there exists N a 1 SMC/I

for each CeV"=\/y=olrJV
(ii) [/'(c2"")]"1 « of bounded variation on (c,, cJ+1) forj = 0 ,1 ,2 , . . . , K -1.

Tften rlie Denjoy- Wolff point 8 for f is in O so that d/x = Pa(f) d\(£) is f-invariant
and the system (dO,f, /A) is exact and its natural extension is Bernoulli.
Proof. Let T, U, fi denote respectively the map, open dense set of [0,1], and partition
of [0,1] associated with / by Lemma 2.1. Define g(t) on [0,1] by

rL/V-'T1 if tellkeB.
10 otherwise.
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142 N. F. G. Martin

Since [f(e\p2v\t)]~l is of bounded variation on (c,, c,+,), g(t) is of bounded
variation on [0,1].

If g»(t) = U^ g(TJ(t)), then gN(r) = | ( /N) ' (e2*")r a.e. so that \\gN\\x< 1. Let

U" = [0 ,1 ] - U r^([0,1] - U), ^ N = V T~Jp.
j - \ j=0

Then UN is an open dense set in [0,1] such that m(UN) = 1, /3N is a countable
family of closed intervals in [0,1] with disjoint interiors such that [^j{B: B&pN}=>
C/N and for any B e p N the set B n {[0,1] - C/N} consists exactly of the end points
of B; TN is a differentiate map of UN to [0,1] such that for any BepN, TN

restricted to UN nB admits an extension to a difleomorphism of B into [0,1].
Corollary 1 of [19], together with remarks preceding this corollary imply that TN,
UN, gN and pN satisfy the hypothesis on the maps considered in [19]. Let TB denote
TN restricted to B for Be pN. Then for x e TNB.

\(r-B
lY(x)\ = \(TN)'(T-B\x))\-\

For (peLtidm), let

P<P(X)= 1 NgN(t)<p(y).

Since gN(y) = \(TNY(y)\~1, we can write

P<P(X)= S XT-»Mr
N

= I XT»B(X)<P(TB\X))\{TNY(T?(X))\-1.
BepN

Since pN is a countable partition

= 1 <p(y) dm(y).

It now follows as in Remark 2 of [19] that for <p, i/» in Lx{dm), P{<p{TN)h) - <pP(h).
Theorem 1 of [19] proves among other things that if P is considered as an operator

on BV (the set of L^ functions with a version of bounded variation) then 1 is an
eigenvalue for P so there exists a non-zero Lx function h such that Ph = h. Let
dpi = h dm. For any <p e C([0,1])

I (<p • TN)h dm=\ P((<p • TN)h) dm

I
I

= (pPh dm

= I <ph dm
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Ergodic properties of restrictions of inner functions 143

i.e.,

and /I is a TN invariant measure absolutely continuous with respect to m. Since
exp 2TH TN(t) =/N(exp 2ir\t),fN has an absolutely continuous invariant probabil-
ity fi on dO. Since fN is an inner function (5) implies that dp = PSN d\ where SN e O
is the Denjoy-Wolff point for fN, and / N is an exact endomorphism of dO, and
hence TN is an exact endomorphism of [0,1]. Article 3 of [19] shows that since
TN is exact, it has a Bernoulli natural extension, so fN has a Bernoulli natural
extension with respect to ft. Let S denote the Denjoy-Wolff point for / Since
/ N (g N ) = 5N and limn^ao/"(8N) = S, S = SN and fi is an absolutely continuous
invariant measure for / on dO. If r denotes the natural extension of (fN, ju.), r" is
the natural extension of {fN, fi), and since roots of Bernoulli automorphisms are
Bernoulli, T is Bernoulli.
LEMMA 2.3. If ft is analytic on a smooth path y: (a, b)-»C, and (h'° y) y'eLl(m),
then h° y is of bounded variation on (a, b).

Proof. Define a complex measure fi on [a, b] by

= I
JA

The total variation measure |/i| of ^ (see Rudin [18] page 116) satisfies

= sup

where the sup is taken over all partitions {£,: j = 1,2,...} of the set E, and |/i|
[a, fe]<oo.

Let a <xo< JC, < • • • <xn < b be given. Then

and ft o y is of bounded variation on (a, b).

Remark 2.4. Suppose / is a singular inner function in 3F, say

for 0 < c, < 1. Then, if h(t) = |/ '(exp 2irit)\~\

4£*";1m) esc2 ir(c,-t) cot ir(c,-t)

Let
Amj CSC2 TTJCj - t) COt TTJCj — t)
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then

hm —— = 1
t~c, hj(t)

and since lim,^Cj hj(t) = 0, lim,_Cj h'(t) = 0. Since h' is continuous on (c,, cj+J), it is
bounded and it follows from Lemma 2.3 that [/'(exp 2irif)]"' is of bounded variation.
Thus hypothesis (ii) of Theorem 2.2 is satisfied for singular inner functions.

Notice also that i f / e 9 and/ ' (z)[/(z)]~2 is in L,(dO, A) then hypothesis (ii) of
Theorem 2.2 is also satisfied. This is true because if y(t) = e\p(2irit) and h(z) =
[f(z)y\ then

h'(y(t))y'(t) = 27n /V 7 i ' ) [ /V r i ' ) r 2 e2""

is in L,(m) and the claim follows from Lemma 2.3.

3. Entropy of inner functions
If feSF, Lemma 2.1 associates a partition T/ of dO into arcs C such t h a t / is a
diffeomorphism of C to dO.

THEOREM 3.1. Let f e & and assume

(i) f/ie Denjoy-Wolff point 8 for f is in O,
(ii) inf{|/'(z)|: ze C}A(C) > P > 0 /or all atoms C e v.

Then the entropy off with respect to the measure Psd\ is given by

[ PsU)\og\f'U)\d\U).
Jao

Proof. Since SeQ, d(j, = Psd\ is invariant and (dO,/, /A) is exact. Thus, for any
nontrivial partition f, the o--algebra of the partition V£=of~

k£; is nonatomic and in
particular lim^^ ^((~]l=of~

kCk) = 0 for any selection of Ck in 77. Since fi is
equivalent to A it follows that lim,,..^ X((~)k=of~kCk) = 0.

The atom

where / 0 = / | Co, and since / 0 is a homeomorphism, this intersection is an arc in
dO-E(/) , and the diameters of these arcs go to zero as n -»oo. Thus, if x, x' are in
the same atom of Wk=of~kV, x = x', and 77 is a one-sided generator for /

Let 77 = {Ck: k = 0,1,2, . . .}. Since£ A (Ck) = 1, limfc^0 A (Ck) - 0 and there is K > 0
such that for all k> X, A(Ck) < P. By hypothesis (ii), |/ '(z)| > P/A(Ck) for all zeCk

so that

for all z e Ck, fc > K. Thus |/ '(z)| is bounded from below and the integral of log | / (z) |
exists. Moreover,

J
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Ergodic properties of restrictions of inner functions 145

for all k, so that

I log|/ |dA>HA(r,) + logP. (4)
Jao

Now iffk denotes the restriction of/ to an atom Ck of 17, h is continuous on dO
and A is a Borel set in <9O. Then

h(t)d»(t)=\ h(t)Ps(t) d\(t)
JfkA

I h(t)d»(t)=\
JfkA Jfk

= \ (h-fk)(Ps-fk)\f'k\d\
JA

= f (h-fk)(Ps-fk)(Ps)-
l\f'k\dp.

JA

Thus the Jacobian J^ is given by

Since \dO log |/'| dk exists and n has positive density with respect to A, Jao log \f\ dfj,
exists and

= I log J
Jao
I

Ja

= I log (Pa • / ) dM - I log PCT dM + I log \f'\
Jao Jao Jao

= [ log l/'l dfi
Jao

since /1 is /-invariant.
If log l/'l is integrable on dO, then by (4) HA(TJ) < 00 and since /A has a bounded

density function with respect to A, H^ (rj) < 00. Thus 17 is a one-sided generator with
finite fi-entropy and

Jao

If log I/I is not integrable, since HA ( TJ ) > 0, (4) implies that |aO log |/' | d/x = +00 and

ls)=\ log|/'|d/x=+oo.
Jao

LEMMA 3.2. i/"/e ^ «5 SMC/I

for every C e 17, f/iew there exists P > 0 suc/i

inf{|/ '(z)|:zeC}A(C)>P.

Proo/ Let C € 77. Since / restricted to C is a diffeomorphism

|/1dA=A(/(C)).
c
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B y t h e m e a n v a l u e t h e o r e m f o r i n t e g r a l s t h e r e e x i s t s z^eC s u c h t h a t

Since A(/(C))>0 and is equal to one for all but a finite number of C e 77, there
exists P > 0 such that

\f'(z1)\\(C)> P for all Cer,.

L e t P = PQ~\ F o r a n y zeC

COROLLARY 3.3. Let fe & be such that
(i) f/iere exists N > 1 suc/i

(iii) sup{|/'(z,)|/|/(z2)|:z1,z2€C}<C? allCer,.

(1) there exists an invariant probability measure n on dO given by dp = Psdk where
SeO andf(S) = S,

(2) (dQ,/, fj.) is exact and has a Bernoulli natural extension,
(3) M / ) = J*>ft(z) log 1/(2)1 d\(z).
Proof. Follows from Remark 2.4, Lemma 3.2, and Theorem 3.1.

LEMMA 3.4. Ifh is in the Nevalinna class N, z0eO, and h has a zero of order d at
z0 then

log(1~'Z,o |2 )V(d)(z0)|L
log

l-bjzo

Jao

where {bjr. j = 1,2,...} are the zeros of h in O which are different from z0, and /AS is
a signed measure on <9<0 singular with respect to Lebesgue measure on dO.

Proof. Since h is in the Nevanlinna class N, if B denotes the Blaschke product
formed from the zeros of h in O, and g(z) = h(z)/B(z), then

log|g(z)| = j Pz(t)

where dfi = log \h\d\ + dfi,. (See [9] page 70.)
Since h has a zero of order d at z0 e O,
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Ergodic properties of restrictions of inner functions 147

and if the other zeros of h are denoted by {£>,}, j = 1, 2 , . . .
_ d

g ( z ) = h ( z ) "

and

Thus

log
d\

I log

= f pZo(0)iog\h(e)\d\(e)+\ p j
Jao Jao

and

Jao
d\(6) = l

2\dh{d\z0){\-\z0\
2)

d\

+ 1 log
J = l

COROLLARY 3.5. Let fe 5F. Assume
(i) the Denjoy-Wolff point 8 for f is in O,

Jao

(iii) inf{|/(z)|: zeC}\(C)> P>0 for all atoms C in TJ.
Then the entropy off with respect to the measure d/x = Ps dk is given by

where v is a signed measure singular with respect to Lebesgue measure on dO, {h}}
are the zeros off in O different from S, and d — 1 is the order of the zero off at 8.
[If d = 1, f (8) *0].

Remark. Ahern and Clark [3] show that if the zeros {an} of a Blaschke product /
satisfy £~=1 (1 - | a n | ) r <oo for some 0< r < h h e n / ' e Hl'r and it follows t h a t / e N.
Cullen [6] shows that if/ is a singular inner function in 5F then / ' e Hp for 0 < p < \
and hence fsN. In either case if/ satisfies conditions (i) and (iii) of Corollary
3.5, the entropy of/ is given by the formula in this corollary. Moreover the singular
measure v is a positive measure since in either case f e Hp for some p > 0.
COROLLARY 3.6. Iff is a finite Blaschke product whose Denjoy- Wolff point is in O
andf{8) ^ 0, then the entropy off\dO is given by

*(/) = - I logp(8,b,),

where p denotes the pseudo-hyperbolic metric in O, and bj are the critical points off
in O counted with their multiplicity.

Proof. Since / is a finite Blaschke product, / ' is non-zero and continuous on dO, so
that f is bounded away from zero on dO. Moreover the singular measure v in
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Corollary 3.5 is zero. Since p(S, bs) = \S- bj\/\l-8bj\, and the critical points of/ in
O are the zeros of/' in O, the result is obtained from Corollary 3.5.

An Example. Let

/z + l\
/(z) = expel I forc>0.\z-\J

There is one singularity at z = 1 so E = {1}. There is a unique solution S to z =/(z)
in O, which is real, and this solution is the Denjoy-Wolff point for /

Since

i\ —— cot irt\ for 0 < t < 1

the map on [0,1] associated with / by Lemma 2.1 is

T(/) = cot 77/(modi) 0 < / < l
2ir

and
C 2

2

The intervals /„ are

/„={/€ (0,1): n<T(t)<n + \}

f 1 / 2T7M\ 1 / 2ir(n + l)\]
= w: — arc cot I < / < — arc cot I ]>.

I 77 \ C ) 77 \ C / J

Assume n > 0. Since 7" is increasing for / > \

inf{T'(r): /€ /„}=-esc2 (arc cot ( — — J j

2c

and

2T7C
m(/n)inf{r(/): teln} = arc tan

277C

Thus

n-*oo

A similar calculation shows that

lim m(7 n ) in f{ r ( / ) : / € / n }= l ,

so there is K > 0 such that

m(/n)inf{7"(/): teIn}>K for all n.

Carrying Lebesgue measure to dO with the exponential map gives

a n d / satisfies condition (ii) of Theorem 3.1.

https://doi.org/10.1017/S0143385700004867 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004867


Ergodic properties of restrictions of inner functions 149

Since / is a singular inner function in SF, log \f(e'e)\ e V and from Theorem 3.1
we have that

Now

so that

and

However,

Thus

K(f)=—\ Ps(e)log\f(eie)\d6.

-2cexp \ -

-2cexp \ -

d-O2

Lo

if 0 5*0

if0=O

2c
if 0 5* 0.

| = log
1-z

1 + z
1-z"

1 + 5
1-5

= log-
2c

Since 5 is the unique real solution of/(z) = z such that 0 < 5 < l , -c( l + 8) =
(1-5) log 5 and

1 - 5 . 1
c =

, 1
log —

1 + 5 6 5

so that

Since

-in = c/2,
" ' l - c o s 0 '

and Theorem 2.2, with Remark 2.4 shows that/is a one-sided Bernoulli shift if c> 2.
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Notice that if we parametrize the family

in terms of the Denjoy-Wolff points 8 we have the family
fg[(l-«)/(l+«)][(l + z)/d-2)l. 0 < S < 1|

of inner functions whose entropy is given by

Since hs is increasing on 0< S < 1, no two functions in this family are isomorphic.

5. Rigidity of inner functions
In this section we use the technique of Shub and Sullivan [20] to show that metrically
isomorphic inner functions with finitely many singularities on d<0 and Denjoy-Wolff
points in O are diffeomorphic to within a rotation.

THEOREM 5.1. Let f and g be in & withf(0) = g(0) = 0 and with finite nonempty sets
Ej and Eg respectively of singularities on dO. Iff* and g* are measure theoretically
isomorphic on (dO, A) there exists an isometry t/> of O and a constant c of modulus
one such that tfi~l ° g ° ip = cf.

Proof. Since /(0) = g(0) = 0, f* and g* preserve Lebesgue measure on dO. Assume
<p °f= g ° (p on dO where <p is a metric isomorphism of (dO, A). Then <p °f= g ° cp
on dQ — Ef u Eg, and if Jf and Jg denote the Jacobian of/ and g respectively on dO,
Jf = Jg°(p a.e. on dO. However, |/'| = Jf and \g'\ = Jg a.e. on d<0 - Ef u Eg so \f'\ = \g'\ ° <p
a.e. on aO-E/uEg.

Let A be an arc in dO-Eg. Since |g'| is real analytic on A, there is an arc /<= A
such that |g'| is monotone on J. Define I = \g'\(J) and let h: / - » / be such that
h o |g'| = id on J.

Let Bfc denote the arcs between the singularities of/ on dO. Since (p'^J) has
positive Lebesgue measure, there is some k such that <p~1(J)r\Bk has positive
measure. If x e Bk n (p-1U) and x £ Eg, then | / | (x) = \g'\ ° <p(x) e / and | /T l ( / ) n
(Bfc n <p~'(/)) is not empty. Since \f\~\l) is a countable union of arcs, there exists
an arc K c |/'|~'(7) such that K n (Bk n <p~l(J)) has positive measure.

On Xn(B k n < p- 1 ( / ) ) -E g , /i ° (|g'| ° <p) = (A ° |g|')° «P = «P- Since |g ' | °^ = |/'| on
K n Bk-Eg, h° |/'| = <p a.e. on K nB k -E g , and there is some arc L<= Knbk such
that (p = h ° |/'| a.e. on L.

Since ip has Radon Nikodym derivative one a.e. on L and h ° |/'| is real analytic
on L, the derivative of h ° \f\ is one everywhere on L and h ° \f'\ is an isometry on
L. Let i/f denote this isometry extended to O. We have |/'| = |g'| ° I/J a.e. on L and
hence everywhere on L by continuity.

Let g = <p~l ° g o $ so that \g'\ = \g'\ ° i/» = |/'| on L. Since

for z € L it follows that (log,g(z))' = (log/(z))' on L. Thus g(z) = cf{z) for all zeL.
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Since | / (z) | = \g(z)\ = 1 on L, \c\ = 1. Since g and cf are analytic o n O u L , it follows
that g = t/j'1 ° g ° I/J = cf on O.

COROLLARY 5.2. Let f and g be in 3F. Assume the Denjoy-Wolff points, 8X and S2,
off and g are in O. If (dO, fi.s,,f*) and (O, fi^, g*) are metrically isomorphic, where
fiSl, Msj are the invariant measures given by (4) of § 1, there exist Mobius transforma-
tions i/>, and i/f2 and a constant c of modulus one such that

if>2l°g°<l'2 = c(il'71°f°ilJi) onO.

Proof. Let ipt and i/>2 denote the Mobius transformations which send O to O, dO to
dO and 5, and S2 respectively to zero. The conjugates i/^1 ° / ° </» and c/^1 ° g ° iA2 fix
zero and the corollary follows.
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