
1 Classical Relativistic Point Particles

In this chapter, we review classical relativistic point particles and set out our
conventions and notation. Readers familiar with this material can skip through the
chapter and use it as a reference when needed.

1.1 Minkowski Space

According to Einstein’s theory of special relativity, space and time are combined into
‘space-time’, which is modelled by Minkowski space M.1 The elements P, Q, . . . ∈
M are called events. We leave the dimension D of space-time unspecified. Minkowski
space is homogeneous and thus has no preferred origin, which makes it a point
space (affine space) rather than a vector space (linear space). However, displacements
relating events P, Q are vectors,

x =
−−→
PQ ∈ RD, (1.1)

and once we choose a point O ∈ M as the origin of our coordinate system there is a
one-to-one correspondence between events P and position vectors

xP =
−−→
OP. (1.2)

The components

(xμ)μ=0,1,...,D−1 = (x0,�x) , �x = (xi)i=1,...,D−1 (1.3)

of vectors x ∈ RD provide linear coordinates on M. We assume that xi = 0 is the
world-line of an inertial (force-free) observer, so that x0 = ct is proportional to the
time t measured in the associated inertial system, while xi provide linear coordinates
on space. We will normally use natural units where we set the speed of light to unity,
c = 1.2

To measure the distance between events, we use the indefinite scalar product

x · y = ημνxμyν , (1.4)

on the vector space RD, with Gram matrix

η = (ημν) = �� −1 �0 T

�0 1D−1
�� . (1.5)

1 For brevity’s sake we will use ‘Minkowksi space’ instead of ‘Minkowski space-time’.
2 Conventions and units are reviewed in Appendices A and B, respectively.3
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4 Classical Relativistic Point Particles

Note that we use the mostly plus convention for the metric η. Since the metric allows
us to identify the vector space RD with its dual, vectors have covariant components
xμ as well as contravariant components xμ, which are related by raising and lowering
indices xμ = ημνxν , and xμ = ημνxν , where Einstein’s summation convention is
understood. The corresponding line element on Minkowski space is

ds2 = ημνdxμdxν = −dt2 + d�x2. (1.6)

The most general class of transformations which preserve this line element (its
isometries) are the Poincaré transformations

xμ → Λμνxν + aμ, (1.7)

where a = (aμ) ∈ RD and where Λ = (Λμν) is an invertible D × D matrix satisfying

ΛTηΛ = η. (1.8)

The matrices Λ describe Lorentz transformations, which are the most general linear
transformations preserving the metric. The Lorentz transformations form a Lie group
of dimension 1

2 D(D−1), called the Lorentz group O(1, D−1). ElementsΛ ∈ O(1, D−
1) have determinant detΛ = ±1, and satisfy |Λ0

0 | ≥ 1. The matrices with detΛ = 1
form a subgroup SO(1, D − 1). This subgroup still has two connected components,
sinceΛ0

0 ≥ 1 orΛ0
0 ≤ −1. The connected component containing the unit matrix 1 ∈

O(1, D − 1) is the connected or proper orthochronous Lorentz group SO0(1, D − 1).
The corresponding Lie algebra is so(1, D − 1).

The Lorentz group and translation group combine into the Poincaré group, or
inhomogeneous Lorentz group, IO(1, D − 1), which is a Lie group of dimension
1
2 D(D + 1). Since Lorentz transformations and translations do not commute, the
Poincaré group is not a direct product. The composition law

(Λ, a) ◦ (Λ′, a′) = (ΛΛ′, a + Λa′) (1.9)

shows that the Lorentz group operates on the translation group by the fundamental
or vector representation. Therefore, the Poincaré group is the semi-direct product of
the Lorentz and translation group,

IO(1, D − 1) = O(1, D − 1) � RD. (1.10)

Since the Minkowski metric (1.6) is defined by an indefinite scalar product, the
square-distance or square-norm x2 = x · x can be positive, zero, or negative. For
terminological simplicity, we will henceforth refer to x2 = x · x as the norm or length
of x, omitting the qualifier ‘square’. This convention will be applied whenever we
deal with an indefinite scalar product.

Vectors are classified as time-like, light-like (also called null), or space-like
according to their norm:

x time-like ⇔ x · x < 0,
x light-like ⇔ x · x = 0,
x space-like ⇔ x · x > 0.

Since signals can only travel with speed v ≤ 1(= c), this encodes information
about the causal relations between events. Two events P, Q are called time-like,
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5 Particles

light-like, or space-like relative to each other, if the displacement vector x =
−−→
PQ

is time-like, light-like, or space-like, respectively. Only non-space-like events can
be causally related, and their causal order is invariant under orthochronous Poincaré
transformations, which exclude the time inversion T : t → −t,�x → �x. Since some
particle interactions are not invariant under the space inversion P : t→ t,�x→ −�x, the
symmetry group relevant for particle physics is the proper orthochronous Poincaré
group SO0(1, D−1)�RD. This is the connected component of the unit element of the
full Poincaré group, which has three further connected components which contain T,
P, and their product TP.

1.2 Particles

The fundamental constituents of matter are usually modelled as particles, that is, as
objects that are localised and can be characterised by a small number of parameters,
such as mass, spin, and charges. While some particles are bound states of others,
the standard model of particle physics is based on a list of particles, assumed to be
elementary in the sense that they do not have constituents and, therefore, no internal
excitations. In classical mechanics, such particles are modelled as mathematical
points. The motion of such a point particle, or particle for short, is described by a
parametrised curve called the world-line. If we restrict ourselves to inertial frames, it
is natural to choose the coordinate time t as the curve parameter. Then, the world-line
of a particle is a parametrised curve

C : I→ M : t 	→ x(t) = (xμ (t)) = (t,�x(t)), (1.11)

where I ⊂ R is the time interval for which the particle is observed. I = R is included
as a limiting case.

The velocity of a particle relative to an inertial frame is

�v =
d�x
dt

, (1.12)

and v =
√
�v · �v ≥ 0 is the speed. Since t and �v are not covariant quantities (Lorentz

tensors), it is useful to formulate relativistic mechanics using the Lorentz vector xμ

and its derivatives with respect to a curve parameter which is a Lorentz scalar. This
works differently for massive and for massless particles.

The inertial mass m of a particle measures its resistance against a change of
velocity. Massive particles, m > 0, propagate with velocities v < 1 and have time-
like world-lines, that is world-lines where the tangent vector is time-like everywhere.
Massless particles, m = 0, propagate with velocity v = 1 and have light-like
world-lines. Poincaré symmetry also admits tachyons, that is, particles with negative
mass-squared, m2 < 0, which propagate with velocity v > 1 and have space-like
world-lines. Such tachyons are discarded because they would allow a-causal effects,
such as sending signals backwards in time. In quantum field theory, tachyons are
re-interpreted as indicating instabilities resulting from expanding a theory around
a local maximum of the potential. This is a physical effect and does not involve
particles propagating with superluminal speed (see Section 7.7).
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6 Classical Relativistic Point Particles

For massive particles, we can use the proper time τ as a curve parameter.
Infinitesimally, the relation between proper time and coordinate time is

− dτ2 = [−dt2 + d�x2] |C =
⎡⎢⎢⎢⎢⎣−1 +

(
d�x
dt

)2⎤⎥⎥⎥⎥⎦ dt2 ⇒ dτ = dt
√

1 − �v 2. (1.13)

Since τ is, by construction, Lorentz invariant, the relativistic velocity

ẋμ =
dxμ

dτ
=

(
dt
dτ

,
d�x
dt

dt
dτ

)
=

1
√

1 − �v 2
(1,�v) (1.14)

is a Lorentz vector. Moreover, it is a time-like unit tangent vector to the world-line,
since ẋ2 = ẋμẋμ = −1. The norm is in particular constant, which makes τ an affine
curve parameter. The name ‘affine’ curve parameter reflects the fact that such curve
parameters are unique up to affine transformations, τ 	→ aτ + b, a, b ∈ R, a � 0.

By further differentiation, we obtain the relativistic acceleration,

aμ = ẍμ. (1.15)

Newton’s first law states that force-free particles are unaccelerated relative to inertial
frames.

The relativistic momentum of a particle is

pμ = mẋμ = (p0,�p) =

(
m

√
1 − �v 2

,
m�v

√
1 − �v 2

)
. (1.16)

The component p0 = E is the total energy of the particle. The norm of pμ is minus
its mass squared

pμpμ = −m2 = −E2 + �p 2. (1.17)

Note the minus sign which is due to us using the mostly plus convention for the
metric.

Force-free particles propagate with constant velocity, which means that their
world-lines are straight lines. The relativistic version of Newton’s second law states
that motion under a force is determined by the equation

dpμ

dτ
= m

d2xμ

dτ2 = fμ, (1.18)

where the Lorentz vector fμ is the relativistic force. Note that we assume that the
mass m is constant, which is satisfied for stable elementary particles but may not
hold in other applications of relativistic mechanics (e.g., for the motion of a rocket
which expels fuel).

1.3 A Non-covariant Action Principle for Relativistic Particles

The equations of motion of all fundamental physical theories can be obtained from
variational principles. In this approach, a theory is defined by specifying its action
which is a functional on the configuration space. The equations of motion are the
Euler–Lagrange equations obtained by imposing that the action is invariant under
infinitesimal variations of the path, with the initial and final position kept fixed.

https://doi.org/10.1017/9781108611619.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108611619.005


7 A Non-covariant Action Principle for Relativistic Particles

For a point particle, the configuration space is parametrised by its position �x and
velocity �v. The action functional takes the form

S[�x] =
∫

dt L(�x(t),�v(t)). (1.19)

In principle, the Lagrangian L can have an explicit dependence on time, corre-
sponding to a time-dependent potential or external field. In fundamental theories, we
assume the invariance of the field equations under time-translations, which forbids
an explicit time dependence of L.

The action for a free, massive, relativistic particle is proportional to the proper
time along the world-line, and given by minus the product of its mass and the proper
time:

S = −m
∫

dt
√

1 − �v 2. (1.20)

The minus sign has been introduced so that L has the conventional form L = T−V
where T is the part quadratic in time derivatives, that is, the kinetic energy. The
remaining part V is the potential energy. We work in units where the speed of
light and the reduced Planck constant have been set to unity, c = 1, � = 1. In
such natural units the action S is dimensionless. To verify that the action principle
reproduces the equation of motion (1.18), we consider the motion �x(t) of a particle
between the initial postion �x1 = �x(t1) and the final position �x2 = �x(t2). Then,
we compute the first order variation of the action under infinitesimal variations
�x→ �x+δ�x, which are arbitrary, except for the boundary conditions δ�x(ti) = 0, i = 1, 2
(see Figure 1.1). To compare the initial and deformed path we Taylor expand in
δ�x(t):

S[�x(t) + δ�x(t)] = S[�x(t),�v(t)] + δS[�x(t),�v(t)] + · · · (1.21)

where the omitted terms are of quadratic and higher order in δ�x(t). The equations of
motion are found by imposing that the first variation δS vanishes.

Fig. 1.1 The action principle selects the paths for which the action is stationary under variation. The endpoints are
kept fixed.
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8 Classical Relativistic Point Particles

Practical manipulations are most easily performed using the following observa-
tions:

1. The variation δ acts like a derivative. For example, for a function f(�x) we have the
chain rule

δf = ∂ifδxi, (1.22)

as is easily verified by Taylor expanding f(�x+ δ�x). Similarly, sum, constant factor,
product, and quotient apply, for example, δ(fg) = δfg + fδg.

2. �v = d�x
dt is not an independent quantity, and therefore

δ�v = δ
d�x
dt
=

d
dt
δ�x. (1.23)

3. To find δS, we need to collect all terms proportional to δ�x. Derivatives acting
on δ�x have to be removed through integration by parts which creates boundary
terms. If such boundary terms are not automatically zero, we must impose that
they vanish which restricts the class of configurations which qualify as solutions.

Solving the variational problem for the action (1.20), we obtain the equation of
motion

d
dt

m�v
√

1 − �v 2
=

d
dt
�p = �0, (1.24)

which is equivalent to (1.18) in the absence of forces, fμ = 0.
Remark: When performing the variation without specifying the Lagrangian L,

one obtains the Euler–Lagrange equations

∂L
∂xi −

d
dt
∂L
∂vi = 0. (1.25)

For L = −m
√

1 − �v 2 this is easily seen to give (1.24).3

Exercise 1.3.1 Verify that the variation of (1.20) takes the form

δS = −
∫ t2

t1

(
d
dt

mvi√
1 − �v 2

)
δxidt +

mvi√
1 − �v 2

δxi
�����
t2

t1
. (1.26)

Does the boundary term impose any conditions on the dynamics?
Exercise 1.3.2 Verify that (1.24) is equivalent to (1.18) with fμ = 0. Then, extend

this to the case where a force term is present. This requires one to know,
or to derive, the relation between the relativistic force fμ and the non-
relativistic expression �F. Show that the non-covariant version of Newton’s
second law,

d�p
dt
= �F , where �p =

m�v
√

1 − v2
(1.27)

is equivalent to (1.18).

3 In my opinion, it is more natural, convenient, and insightful to obtain the equations of motion for a given
concrete theory by varying the corresponding action, as done above, instead of plugging the Lagrangian
into the Euler–Lagrange equations. This procedure reminds one that there may be boundary terms that
one has to worry about, as we will see when replacing particles by strings.
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9 Length, Proper Time, and Reparametrisations

1.4 Canonical Momenta and Hamiltonian

We now turn to the Hamiltonian description of the relativistic particle. In the
Lagrangian formalism we use the configuration space variables (�x,�v) = (xi, vi). In
the Hamiltonian formalism, the velocity �v is replaced by the canonical momentum

πi :=
∂L
∂vi

. (1.28)

For the Lagrangian L = −m
√

1 − �v 2, the canonical momentum agrees with the
kinetic momentum, �π = �p = (1 − �v 2)−1/2m�v. However, conceptually canoncial
and kinetic momentum are different quantities. A standard example where the two
quantities are not equal is a charged particle in a magnetic field (see Section 13.6,
i.p. formula (13.169)).

The Hamiltonian H(�x, �π) is obtained from the Lagrangian L(�x,�v) by a Legendre
transformation:

H(�x, �π) = �π · �v − L(�x,�v(�x, �π)). (1.29)

For L = −m
√

1 − �v 2 the Hamiltonian is equal to the total energy:

H = �π · �v − L = �p · �v − L =
m

√
1 − �v 2

= p0 = E. (1.30)

Describing relativistic particles using the action (1.20) has the following disadvan-
tages:

• We can describe massive particles, but photons, gluons, and the hypothetical
gravitons underlying gravity are believed to be massless. How can we describe
massless particles?

• The independent variables �x,�v are not Lorentz vectors. Therefore, our formalism
lacks manifest Lorentz covariance. How can we formulate an action principle that
is Lorentz covariant?

• We have picked a particular curve parameter for the world-line, namely the inertial
time with respect to a Lorentz frame. While this is a natural choice, ‘physics’, that
is, observational data, cannot depend on how we label points on the world-line.
How can we formulate an action principle that is manifestly covariant with respect
to reparametrisations of the world-line?

We will answer these questions in reverse order.

1.5 Length, Proper Time, and Reparametrisations

To prepare for the following, we first discuss general curve parameters and
reparametrisations. Consider a smooth parametrised curve in Minkowski space,

C : I  σ −→ xμ (σ) ∈ M, (1.31)
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10 Classical Relativistic Point Particles

Fig. 1.2 The world-line of a particle is described by a parametrised curve, that is, by a map from a parameter
interval into space-time. Physical quantities do not depend on the parametrisation.

where σ is an arbitrary curve parameter, taking values in an interval I ⊂ R
(Figure 1.2).

We can reparametrise the curve by introducing a new curve parameter σ̃ ∈ Ĩ which
is related to σ by an invertible map

σ → σ̃(σ) , where
dσ̃
dσ
� 0. (1.32)

While C : I→ M and C̃ : Ĩ→ M are different maps, they have the same image inM
and we regard them as different descriptions (parametrisations) of the same curve.
The quantity dσ̃/dσ is the Jacobian of this reparametrisation.

Often, one imposes the stronger condition

dσ̃
dσ
> 0, (1.33)

which means that the orientation (direction) of the curve is preserved.

The tangent vector field of the curve is

x′ μ :=
dxμ

dσ
. (1.34)

A curve C : I→ M is called space-like, light-like, or space-like if its tangent vector
field is space-like, light-like, or space-like, respectively, for all σ ∈ I. This property
is reparametrisation invariant.

For a space-like curve, I = [σ1, σ2] → M, the length (or ‘proper length’) is
defined as

L =
∫ σ2

σ1

dσ
√
ημν

dxμ

dσ
dxν
dσ

. (1.35)

For a time-like curve, we can define a ‘length’ by

τ(σ1, σ2) =
∫ σ2

σ1

dσ
√
−ημν

dxμ

dσ
dxν
dσ

, (1.36)

and this quantity is precisely the proper time for a particle that has this curve as
its world-line. We note that the proper length and proper time are distinguished
affine curve parameters, characterised by the tangent vector field having unit norm.
For light-like curves there is no analogous quantity, but we will see that there still
is a distinguished class of affine curve parameters for the world-lines of massless
particles.
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11 A Covariant Action for Massive Relativistic Particles

Exercise 1.5.1 Verify that the length (1.35) of a space-like curve is reparametrisation
invariant. Why does this not depend on whether the reparametrisation pre-
serves the orientation of the curve?

Exercise 1.5.2 Show that the tangent vector field dxμ
dτ for the curve parameter τ defined

by (1.36) has norm ẋ2 = −1, thus verifying that τ is the proper time.

1.6 A Covariant Action for Massive Relativistic Particles

Using the concepts of the previous section, we introduce the following action:

S[x] = −m
∫

dσ
√
−ημν

dxμ

dσ
dxν
dσ

. (1.37)

Up to the constant factor −m, the action is the proper time for the motion
of the particle along the world-line. We use an arbitrary curve parameter σ,
and configuration space variables (x, x′) = (xμ, x′μ), which transform covariantly
under Lorentz transformations. The action (1.37) has the following symmetries
(invariances):

• The action is invariant under reparametrisations σ → σ̃(σ) of the world-line.

• The action is invariant under Poincaré transformations of space-time.

To verify that the new action (1.37) leads to the same field equations as (1.20), we
perform the variation xμ → xμ + δxμ and obtain:

δS
δxμ
= 0⇔ d

dσ

(
m x′ μ
√
−x′ · x′

)
= 0. (1.38)

To get the physical interpretation, we choose the curve parameter σ to be the proper
time τ:

d
dτ

(
m

dxμ

dτ

)
= mẍμ = 0, (1.39)

where a ‘dot’ denotes the derivative with respect to proper time. This is indeed (1.18)
with fμ = 0.

The general solution of this equation, which describes the motion of a free massive
particle in Minkowski space is the straight world-line

xμ (τ) = xμ (0) + ẋμ (0)τ. (1.40)

Remark: Reparametrisations vs Diffeomorphisms. Reparametrisation invariance
is also referred to as diffeomorphism invariance. We use the term reparametrisation,
rather than diffeomorphism, to emphasise that we interpret the map σ 	→ σ̃ passively,
that is, as a change parametrisation. In contrast, an active transformation maps a
given point to another point. The expressions for passive and active transformation
agree up to an overall minus sign, as we will see in later examples, in particular, in
Exercise 5.2.2.
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12 Classical Relativistic Point Particles

Remark: ‘Local’ vs ‘global’ in mathematical and physical terminology. In mathe-
matics, ‘local’ refers to statements which hold on open neighbourhoods around each
point, whereas ‘global’ refers to statements holding for the whole space. In contrast,
physicists call symmetries ‘global’ or ‘rigid’ if the transformation parameters are
independent of space-time, and ‘local’ if the transformation parameters are functions
on space-time. In the case of the point particle action, Poincaré transformations
are global symmetries, while reparametrisations are local. I will try to reduce the
risk of confusion by saying ‘rigid symmetry’ rather than ‘global symmetry’, and
when a symmetry is referred to as local, it is meant in the physicist’s sense. Also,
it is common for physicists to talk about statements which are true locally (in the
mathematician’s sense) but not necessarily true globally, using ‘global terminology’.4

1.7 Particle Interactions

So far we have considered free particles. Interactions can be introduced by adding
terms which couple the particle to external fields. The most important examples are
the following:

• If the force fμ has a potential, fμ = −∂μV(x), then the equation of motion (1.18)
follows from the action

S = −m
∫ √

−ẋ2dτ −
∫

V(x(τ))dτ. (1.41)

• If fμ is the Lorentz force acting on a particle with charge q, that is fμ = qFμν ẋν ,
then the action is

S = −m
∫ √

−ẋ2dτ + q
∫

Aμdxμ. (1.42)

In the second term, the vector potential Aμ is integrated along the world-line of
the particle ∫

Aμdxμ =
∫

Aμ (x(τ))
dxμ

dτ
dτ. (1.43)

The resulting equation of motion is

mẍμ = qFμν ẋν , (1.44)

where Fμν = ∂μAν − ∂νAμ is the field strength tensor. Equation (1.44) is the
manifestly covariant version of the Lorentz force

d�p
dt
= q
(
�E + �v × �B

)
. (1.45)

4 An example where the distinction between local and global aspects is relevant will be given later in
Section 4.2 when we discuss the actions of the conformal Lie algebra and of the conformal group on
the string world-sheet.
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13 Particle Interactions

g g'

Fig. 1.3 Particle interactions can be described by the splitting and joining of world-lines. Note that every type of
vertex will in general have its own independent coupling constant.

• The coupling to gravity can be obtained by replacing the Minkowski metric ημν by
a general pseudo-Riemannian metric gμν (x):

S = −m
∫

dτ
√
−gμν (x)ẋμẋν . (1.46)

The resulting equation of motion is the geodesic equation

ẍμ + Γμνρ ẋν ẋρ = 0, (1.47)

with affine curve parameter τ.

Exercise 1.7.1 Derive the Euler–Lagrange equations for the actions (1.41), (1.44), and
(1.46). How do the equations of motion look like for a general (non-affine)
curve parameter?

Remark: Coupling to fields vs splitting word-lines. In all three examples the
interaction is introduced by coupling the particle to a background field.5 A different
way to describe particle interactions is to allow the word-lines of particles to split
and join (see Figure 1.3). Note that the resulting particle trajectories are not one-
dimensional manifolds, but graphs. Each type of interaction between particles has
its own type of vertex, and the associated coupling constants will, in general, be
independent.

In a quantum theory both descriptions are related, since particles and fields can
be viewed as different types of excitations of quantum fields. Particles correspond to
eigenstates of the particle number operator, whereas fields correspond to coherent
states which are eigenstates of the particle annihilation operator. The standard
formalism used in theoretical particle physics is obtained by quantising classical field
theories, rather than classical particles. However, the Feynman rules are naturally
interpreted in terms of a particle picture. For example, the left vertex in Figure 1.3

5 Background field means that the field is ‘given’, and while it may solve some field equations of its own,
the backreaction of the particle on the field is neglected. The full coupled theory of particles and fields
would require us to consider both the field equations for the particle and for the field. In electrodynamics
this would be the combined system of Lorentz forces and Maxwell equations, with the particle providing
a source for the Maxwell field.
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14 Classical Relativistic Point Particles

can be interpreted as representing interactions in a scalar φ3 theory. Quantum field
theory can be reformulated using the word-line formalism, which builds upon the
classical particle picture. In string theory, the world-sheet formalism is the standard
formulation, while string field theory is less well-developed.

1.8 Canonical Momenta and Hamiltonian
for the Covariant Action

From the action (1.37)

S =
∫

Ldσ = −m
∫

dσ
√
− x′ 2, (1.48)

we obtain the following canonical momentum vector:

πμ =
∂L
∂ x′ μ

= m
x′ μ
√
− x′ 2

= mẋμ. (1.49)

A new feature compared to the action (1.20) is that the components of the canonical
momentum are not independent, but subject to the constraint

πμπμ = −m2. (1.50)

Since canonical and kinetic momenta agree, πμ = pμ, we can interpret the constraint
as the mass shell condition p2 = −m2. The Hamiltonian associated to (1.37) is

H = πμẋμ − L = 0. (1.51)

Thus the Hamiltonian is not equal to the total energy, but rather vanishes. Since
H ∝ p2 + m2, the Hamiltonian does not vanish identically, but only for the subset
of configurations which satisfy the mass shell condition. Thus, H = 0 is a constraint
which needs to be imposed on top of the dynamical field equations. This is sometimes
denoted H � 0, and one says that the Hamiltonian is weakly zero. This type of
constraint arises when mechanical or field theoretical systems are formulated in a
manifestly Lorentz covariant or manifestly reparametrisation invariant way. We will
not need to go deeply into constrained dynamcis, because the constraints we will
encounter can be imposed as initial conditions. We will demonstrate this explicitly
for strings later, see Section 2.2.5.

Remark: Hamiltonian and time evolution. For those readers who are familiar with
the formulation of mechanics using Poisson brackets, we add that while the Hamil-
tonian is weakly zero, it still generates the infinitesimal time evolution of physical
quantities. Similarly, in the quantum version of the theory, the infinitesimal time
evolution of an operator in the Heisenberg picture is still given by its commutator
with the Hamiltonian. For the point particle, the only constraint is the vanishing of
the Hamiltonian.

By accepting that constraints are the prize to pay for a covariant formalism, we can
describe relativistic massive particles in a Lorentz covariant and reparametrisation
invariant way. But we still need to find a way to include massless particles.
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15 A Covariant Action for Massless and Massive Particles

1.9 A Covariant Action for Massless and Massive Particles

To include massless particles, we use a trick which works by introducing an auxiliary
field e(σ) on the word-line. We require that e dσ is reparamentrisation invariant:

e dσ = ẽ dσ̃. (1.52)

This implies that e transforms inversely to a coordinate differential:

ẽ(σ̃) = e(σ)
dσ
dσ̃

. (1.53)

We also require that e does not have any zeros, which makes e dσ a one-dimensional
volume element. We take e > 0 for definiteness, and this condition is preserved under
reparametrisations which respect the orientation of the world-line.

Using the invariant line element, we write down the following action:

S[x, e] =
1
2

∫
edσ �� 1

e2

(
dxμ

dσ

)2

− K�� , (1.54)

where K is a real constant.
The action (1.54) has the following symmetries:

• S[x, e] is invariant under reparametrisations σ → σ̃.
• S[x, e] is invariant under Poincaré transformations xμ → Λμνxν + aμ.

The action depends on the fields x = (xμ) and e. Performing the variations x→ x+δx
and e→ e + δe, respectively, we obtain the following equations of motion.

d
dσ

(
x′ μ

e

)
= 0, (1.55)

x′ 2
+ e2K = 0. (1.56)

Exercise 1.9.1 Derive the equations of motion (1.55) and (1.56) by variation of the
action (1.54).

The equation of motion for e is algebraic, and tells us that for K > 0 the solution
is a time-like curve, while for K = 0 it is light-like and for K < 0 space-like. To
show that the time-like case brings us back to (1.37), we set K = m2 and solve for the
auxiliary field e:

e =
√
− x′ 2

m
, (1.57)

where we have used that e > 0. Substituting the solution for e into (1.54) we recover
the action (1.37) for a massive particle of mass m.

The advantage of (1.54) is that it includes the case of massless particles as well.
Let us consider K = m2 ≥ 0. Instead of solving for e we now fix it by imposing
a gauge, which, in this case means that we pick a particular parametrisation of the
world-line.
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16 Classical Relativistic Point Particles

• For m2 > 0, we impose the gauge

e =
1
m

. (1.58)

The equations of motion become:

ẍμ = 0 , ẋ2 = −1. (1.59)

The second equation tells us that this gauge is equivalent to choosing the proper
time τ as curve parameter.

• For m2 = 0, we impose the gauge

e = 1. (1.60)

The equations of motion become:

ẍμ = 0 , ẋ2 = 0. (1.61)

The second equation tells us that the world-line is light-like, as expected for
a massless particle. In this case there is no proper time, but choosing e = 1
still corresponds to choosing a distinguished curve parameter. Observe that the
first, dynamical equation of motion only simplifies to ẍμ = 0 if we choose e
to be constant. Conversely, the equation ẍμ = 0 is only invariant under affine
reparametrisations σ 	→ aσ + b, a � 0 of the world-line. Imposing e = 1 (or any
other constant value) corresponds to choosing an affine curve parameter. Since for
light-like curves the concept of length or proper time does not exist, choosing an
affine curve parameter serves as a substitute. We can fix the affine parameter up
to an additive constant by imposing that pμ = ẋμ, where pμ is the momentum of
the massless particle. While a relativistic velocity cannot be defined for massless
particles, the relativistic momentum, which is related to measurable quantities, is
well defined.

Remark: Readers who are familiar with field theory will observe that the first term
of the action (1.54) looks like the action for a one-dimensional free massless scalar
field. Readers familiar with general relativity will recognise that the one-dimensional
invariant volume element e dσ is analogous to the D-dimensional invariant volume
element

√
|g|dDx appearing in the Einstein–Hilbert action, and in actions describing

the coupling of matter to gravity. Since g = det(gμν ) is the determinant of the
metric, we can interpret e as the square root of the determinant of an intrinsic
one-dimensional metric on the world-line. A one-dimensional metric has only one
component, given by e2(σ). Therefore, the first term of (1.54) is the action for a
one-dimensional free massless scalar field coupled to one-dimensional gravity.

Exercise 1.9.2 Demonstrate that the gauge choices (1.58), (1.60) are possible by
showing that you can change the parametrisation of the world-line accordingly.

Remark: The action (1.54) is not only useful in physics, but also in geometry,
because it allows one to formulate a variational principle which treats null (light-
like) curves on the same footing as non-null (time-like and space-like) curves.
Actions of the type (1.54) and their higher-dimensional generalisations are known as
sigma models in physics. Geometrically, (1.54) is an energy functional (sometimes
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called the Dirichlet energy functional) for maps between two Riemannian spaces:6

the world-line and Minkowski space. Maps which extremise the energy functional
are called harmonic maps, and in the specific case of a one-dimensional action
functional, geodesic curves. Note that we have seen above that the solutions for the
Minkowski space are straight lines in affine parametrisation, and therefore geodesics.

1.10 Literature

Some remarks in this chapter assume a basic knowledge of general relativity and
quantum field theory, which can be found in any standard textbook. Coherent states
are frequently used in quantum optics, but do not belong to the standard canon of
quantum field theory as used by particle theorists. See, for example, Duncan (2012)
who also discusses the subtleties of the particle concept. The world-line formalism
is reviewed in Schubert (2001). We also assume some background in Lie groups and
Lie algebras. While the material included in particle theory and quantum field theory
textbooks should be sufficient to follow the text, we mention some books for further
reading: Gilmore (1974), Cahn (1984), Cornwell (1997), Fuchs and Schweigert
(1997), Ramond (2010), cover group theory and its applications to particle theory.
Sexl and Urbantke (2001) give a detailed discussion of the Lorentz and Poincaré
group in the context of special relativity, while Woit (2017) is a comprehensive and
pedagogical introduction into group theory as used in quantum theory. Mathematical
texts are Humphreys (1972), Fulton and Harris (1991), Bump (2004), and the classic,
Weyl (1939).

The study of constrained dynamics is a research subject in its own right, starting
with Dirac (1964). Classical textbooks on the subject are Sudarshan and Mukunda
(1974) and Sundermeyer (1982). Modern approaches to the quantisation of ‘general
gauge theories’, including string theory, use the BRS and BV formalisms which are
covered in detail in the monograph Henneaux and Teitelboim (1992), see also the
review article Marnelius (1982).

6 For terminological simplicity we will refer to real manifolds which are equipped with a symmetric
and non-degenerate rank two co-tensor field as Riemannanian spaces or Riemannian manifolds. In
the literarature one often uses the terms pseudo-Riemannian or semi-Riemannian to indicate that non-
definite signatures are admitted.
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