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Controlling the bias is central to estimating semiparametric models. Many methods
have been developed to control bias in estimating conditional expectations while
maintaining a desirable variance order. However, these methods typically do not
perform well at moderate sample sizes. Moreover, and perhaps related to their
performance, nonoptimal windows are selected with undersmoothing needed to
ensure the appropriate bias order. In this paper, we propose a recursive differencing
estimator for conditional expectations. When this method is combined with a bias
control targeting the derivative of the semiparametric expectation, we are able to
obtain asymptotic normality under optimal windows. As suggested by the structure
of the recursion, in a wide variety of triple index designs, the proposed bias control
performs much better at moderate sample sizes than regular or higher-order kernels
and local polynomials.

1. INTRODUCTION

In this paper, our primary emphasis is on semiparametric index models, which
perform well at moderate sample sizes. Often, such models require estimating an
expectation conditioned on a vector of indices, where each index is a parametric
function of observables and an unknown finite-dimensional parameter vector. We
will term such an expectation as semiparametric due to the index structure of
the conditioning variables. For models with an index structure, see, for example,
Robinson (1988), Powell, Stock, and Stoker (1989), Ichimura and Lee (1991),
Ichimura (1993), Klein and Spady (1993), Horowitz (1996), Li and Sun (2014),
and Klein, Shen, and Vella (2015).

The first objective of this paper is to develop a recursive estimator for a
semiparametric expectation that can deliver a bias of any order while maintaining
desirable variance properties and finite-sample performance. Second, for a class
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of models estimated by semiparametric least squares (SLS) (Ichimura and Lee
(1991); Ichimura (1993)), we employ recursive differencing to obtain asymptotic
normality in multiple-index models. When we combine recursive differencing
with an adjustment to utilize a residual property of semiparametric derivatives,
we obtain asymptotic normality under optimal windows. Throughout this paper,
we use the term optimal window to mean that we equate the orders of the squared
bias and variance of the estimator of interest.

To obtain asymptotic normality at a
√

N rate for a finite-dimensional parameter
vector in a semiparametric model, the bias in the estimator must vanish faster
than N−1/2, whereas the variance must converge to zero at a sufficiently fast
rate. Methods have been developed in the literature to control for the bias while
maintaining a desirable variance order. In some cases, an estimate of the bias in the
parameter estimator can be removed from the estimator as in Honoré and Powell
(2005). In other cases, it is possible to employ different estimators for expectations
conditioned on indices. To accommodate higher dimensions of the indices, higher-
order kernels (HKs; e.g., Müller, 1984) increase the bias order by increasing the
degree of the kernel; an extension of Newey et al. (2004) can similarly control the
bias by increasing the convolution degree.

These methods perform reasonably well for single-index models. However,
there are many instances when multiple-index models are required. For example, in
many index models, one of the variables in a main index of interest is endogenous.
Control estimators deal with endogeneity by conditioning not only on the model’s
index, but also on the control (e.g., Blundell and Powell (2003, 2004)). In such
models, the control itself becomes a second index. The estimator for joint binary
models, as in Klein et al. (2015), requires a multiple index formulation. Shen
(2013) examines a multiple equation system for healthcare expenditures and
related decisions, which results in a multiple index formulation. Maurer, Klein,
and Vella (2011) examine a panel model where an unobserved individual effect
is modeled as a separate and additional index to that in the main part of the
model.

When the degree of bias reduction is increased to accommodate multiple
index semiparametric models, the finite-sample variability of these estimators
becomes large. Furthermore, both approaches require suboptimal windows. Local
polynomials (LPs; e.g., Ruppert and Wand (1994); Fan and Gijbels (1995, 1996);
Lu (1996); Masry (1996); Gu, Li, and Yang (2015)) obtain this bias order by
increasing the degree of the LP. While the performance of the local linear estimator
is quite good, higher degrees require more local parameters and hence higher
variability. In this paper, we propose alternative approaches for bias reduction
that enable us to obtain

√
N normality in semiparametric multiple-index models.

In finite samples, we find much lower variability for the recursive differencing
estimator in simulation studies.

The estimator proposed here has a recursive differencing structure with a
local linear estimator providing the basis for the first stage of the recursion.
The bias in the first-stage estimator depends on a localization error defined as
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the difference between the expectation at a point of interest and a nearby point.
Accordingly, in the second stage of the recursion, we remove an estimator of this
localization error from the previous stage. Continuing in this manner, we show
that the bias declines at each stage of the recursion, with the variance order being
unchanged.

Employing the estimator for semiparametric expectations developed here, we
provide two approaches for estimating a class of semiparametric models. One
relies on recursive differencing as the sole bias control. Under additional assump-
tions, the other estimator takes advantage of this recursive mechanism and a
residual property of semiparametric derivatives. Klein and Shen (2010) examine
this second control for single-index models. Using recursive differencing, we are
able to extend this approach to multiple-index models. In so doing, we obtain
asymptotic normality under optimal windows.

In a Monte Carlo study, we considered four semiparametric triple-index mod-
els. Employing a three-stage recursion, which is appropriate in this context
(Theorem 2), we found that the resulting estimators had very good finite-sample
performance in terms of both bias and variance. In all of the cases, the root-mean-
squared error (RMSE) decreased, often substantially, with the recursion stage.
Both estimators also performed much better than either an HK estimator or an
LP whose bias order is below N−1/2. Overall, we found a performance advantage
to employing optimal windows.

To develop the proposed estimators for a conditional expectation and the
parameters in a semiparametric model, Section 2 provides the intuition for
these two estimators and their theoretical properties. Section 3 formally defines
the estimators and obtains their large sample properties. Section 4 discusses
how to implement the proposed estimators. Section 5 provides Monte Carlo
results that demonstrate very good finite-sample properties of the estimators
in triple-index models, exhibiting a substantial improvement over regular, HK,
and LP estimators. We note that the local linear estimator forms the basis for
the first stage of the recursion and does significantly improve its performance.
Section 6 contains our conclusions. The Supplementary Material provides
further details containing proofs of all theorems and supporting intermediate
lemmas.

2. ESTIMATORS

2.1. Estimating Expectations Under Recursive Differencing

The semiparametric model that we study assumes that

E(Yi|Wi) = E (Yi|V (Wi;θ0)), (1)

where the vector {Yi,Wi} is i.i.d. over i = 1, . . . ,N, and takes on values in R1+dw

with dw the dimension of Wi. Here, V (Wi;θ0) is a vector of d < dw continuous
indices that depend on a finite-dimensional parameter vector, θ0.
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To motivate the form of the bias reduction, assuming that εi is an error satisfying
E(εi|Wi) = 0, consider the model

Yi = E (Yi|V (Wi;θ0))+ εi.

For expositional purposes, in this section, we take the parameter vector as
known and discuss its estimation in the next section. Let Vi = V (Wi;θ0) and
M (Vi) = E(Yi|Vi). Then, an often employed conditional expectation estimator is
given as

M̂(v) ≡
1
N

∑
i YiKi(v)

ĝ(v)
, ĝ(v) ≡ 1

N

∑
i

Ki(v), (2)

where Ki(v) is a kernel weight; for example, in the single-index case, Ki(v) ≡
1
hφ

(
v−Vi

h

)
, where h = N−r is the bandwidth and φ is a standard normal density

function. Define the localization error as

e∗(v) ≡
1
N

∑
i [M (Vi)−M (v)]Ki(v)

ĝ(v)
.

An infeasible bias-corrected estimator would then be given as1

M̃∗(v) ≡ M̂(v)− e∗(v)

=
1
N

∑
i {Yi − [M (Vi)−M (v)]}Ki(v)

ĝ(v)

=
1
N

∑
i {M(v)+ [M(Vi)−M(v)]+ εi − [M (Vi)−M (v)]}Ki(v)

ĝ(v)

= M(v)+
1
N

∑
i εiKi(v)

ĝ(v)
.

Since E(εi|Wi) = 0, the last term has zero expectation and the estimator is
unbiased. As e∗(v) is unknown, define the prediction error as

e(v) =
1
N

∑
i

[
M̂ (Vi)− M̂ (v)

]
Ki(v)

ĝ(v)
.

Then, a feasible bias-corrected estimator is given as

M̃(v) ≡ M̂(v)− e(v).

=
1
N

∑
i

{
Yi −

[
M̂ (Vi)− M̂ (v)

]}
Ki(v)

ĝ(v)
.

1We thank a referee for suggesting this intuition.
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Replacing M̂(Vi) − M̂(v) by M̂s−1(Vi) − M̂s−1(v), then, leads to the recursive
estimator at stage s where s � 2:

M̂s(v) ≡
1
N

∑
i

[
Yi − (M̂s−1(Vi)− M̂s−1(v))

]
Ki(v)

ĝ(v)
. (3)

From the above discussion, it is intuitive that this adjustment lowers the bias.
We prove that the bias order declines over stages with order at stage s given by
O(N−2rs), where r is the kernel window parameter.

To start this recursion, we note that the theory will hold for any initial estimator
that satisfies certain convergence properties. Here, we employ a modified local
linear estimator as it simplifies the bias arguments; furthermore, in Monte Carlo
simulations, it performed noticeably better than the local constant estimator in (2)
and similar to the local linear estimator.

To describe the initial estimator, for observation i, let Vi be a row vector of the
model’s d continuous indices and let v be a conformable row vector of fixed values.
With Zi ≡ Vi−v

h , the local linear estimator solves

M̂L,M̂
′
L ≡ arg min

M,M′

∑
i

[
Yi −M(v)−hZiM

′(v)
]2

Ki(v) (4)

⇒ M̂L = Ȳ(v)−hZ̄(v)M̂′
L, (5)

where Ȳ(v) and Z̄(v) are kernel weighted averages

Ȳ(v) ≡
∑

i

YiKi(v)/
∑

i

Ki(v); Z̄(v) ≡
∑

i

ZiKi(v)/
∑

i

Ki(v),

and M̂′
L is a local linear estimator of the derivative of M(v). To simplify arguments,

define a modified derivative estimator as

M̂′
m ≡ argmin

M′

∑
i

[
Yi − Ȳ(v)−hZiM

′(v)
]2

Ki(v)

= 1

h
[Z′D(v)Z]−1

[
Z′D(v)

][
Y −1

¯
· Ȳ(v)

]
,

where 1 is a vector of ones, and D(v) ≡ diag(Ki(v)). The modified local linear
estimator is, then, defined as

M̂1(v) ≡ Ȳ(v)−hZ̄(v)M̂′
m = Ȳ − Z̄[Z′D(v)Z]−1

[
Z′D(v)

][
Y −1

¯
· Ȳ(v)

]
. (6)

Using a modified local linear estimator as the start of the recursion, we have found
that the recursion based on regular kernels performs very well.

2.2. Estimating Index Parameters in Semiparametric Models

In addition to the recursive differencing structure, we also propose an extra
mechanism to reduce the bias in estimating index parameters in semiparametric
models. Combining these mechanisms, we will be able to estimate a wide class
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of multiple index semiparametric models using optimal windows. We refer to this
additional control as the residual property of semiparametric derivatives, which is
given in the following proposition due to Whitney Newey.2

PROPOSITION 1 Assume that E(Y|W) = M[V(θ0);θ0] from the index assump-
tion in (1), and let δi (θ) ≡ ∇θE(Y|V (θ)). Then,

E [δi (θ0) |V(θ0)] = 0.

The estimators that we consider here are variants of SLS, with conditional
expectations estimated under recursive differencing. We select estimates so as to
minimize an SLS objective function of the form

Q̂(θ) ≡ 1

N

∑
i

τi

[
Yi − M̂s(Vi (θ))

]2
,

where τi is a trimming function and M̂s is the stage-s recursive differencing
estimator for the conditional expectation of Yi given in (3). Under recursive
differencing, we show that the gradient to the objective function asymptotically
can be written as A−B+op(N−1/2), where

√
NA ≡ 1√

N

∑
i

{Yi −M [Vi (θ0)]}τiδi (θ0),

√
NB ≡ 1√

N

∑
i

{
M̂s [Vi (θ0)]−M [Vi (θ0)]

}
τiδi (θ0) .

The A-term is straightforward as it is an i.i.d. normalized sum with expectation 0.
The B-term is more difficult to analyze and is the source of the bias. Employing
an index assumption and omitting technical details, in essence, we let

F(V0) ≡ E
{

M̂s [Vi (θ0)]−M [Vi (θ0)] |W
}

.

Then,

E(B) = EE(B|W) = E {F(V0)τiδi (θ0)} = E {F(V0)E [τiδi (θ0) |Vi (θ0)]} .

Although E (δi (θ0) |Vi (θ0)) = 0, it is not possible to exploit this residual property
with regular trimming. Here, we employ trimming that is asymptotically equivalent
to trimming on the true index, Vi (θ0).

Recursive differencing makes it possible to take the derivative δi (θ0) as known,
which is required for implementing the residual control. Given an initial

√
N-

normally distributed estimator θ̂1,3 we can exploit the residual property by using a
similar strategy as in Klein and Shen (2010) combined with recursive differencing.

2See Klein and Shen (2010) for Newey’s proof of this property.
3A specific initial estimator is provided in (D7) in Section 3.1).
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Specifically, we can trim based on Vi(θ̂1), which we show is asymptotically
equivalent to trimming based on Vi (θ0). Then, E(B) = 0.

Consistency requires that the density for Vi (θ) does not converge to 0 “too
fast” for θ away from θ0. Unfortunately, the above trimming only controls Vi (θ)

when θ is close to θ0. To solve this problem, we follow the strategy in Klein and
Shen (2010) and Klein et al. (2015) in which we adjust density denominators so
as to control the rate at which they converge to 0. The adjusted density has the
form

ĝa(v;θ) = ĝ(v;θ)+ Â(v;θ).

The adjustment term Â(v;θ) is set to vanish very slowly when v is close to its
boundary where the density is going to zero and to rapidly vanish for v in the
interior. In this manner, the rate at which the density tends to zero is controlled, and
we preserve the consistency argument without impacting the asymptotic normality
argument for the gradient.

By exploiting the residual control, we are able to establish asymptotic
normality for the adjusted estimator, θ̂2, with optimal windows. Here, it
should be noted that the optimal window, r∗, depends on the stage of the
recursion and is obtained by equating squared-bias and variance orders. In
particular, with d as the number of indices and s as the recursion stage,
r∗ = 1

4s+d . We discuss selection of the number of stages in Section 4 on
implementation.

3. LARGE-SAMPLE RESULTS

3.1. Definitions and Notations

To establish large-sample results for the recursive differencing estimator and
for estimators of a class of semiparametric models, we require definitions and
notations. Of particular note, we will provide both the initial (θ̂1) and the adjusted
(θ̂2) estimators for the index parameters, each of which will require separate
definitions for the conditional expectation estimators (D6 and D9) and separate
corresponding trimming (D3).

(D1) Index Functions. Let Wi be an i.i.d. vector of continuous variables Xi and
discrete variables, i = 1, . . . ,N. Let θ be a finite-dimensional parameter
vector, and let Vi = V(Wi;θ) be a vector of d continuous parametric index
functions.

(D2) Conditional Expectations. M(v) ≡ E [Yi|V(Wi;θ) = v] .
(D3) Trimming. For a continuous random variable Tk, denote q1k and q2k as its

lower and upper population quantiles. With trimming based on a set that
slowly expands to the full support for Tk, we use the notation B for the case
where the lower support point ak is bounded and B̄ when the upper support
point bk is bounded. Let U refer to the unbounded support case. Then, for
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an arbitrarily small ϑ > 0 and with cN expanding slowly, let

q1k(N) ≡
⎧⎨
⎩

q1k+akϑ ln(N)

ϑ ln(N)+1 : B
¯
,

q1k−cNϑ ln(N)

ϑ ln(N)+1 : U,
q2k(N) ≡

⎧⎨
⎩

q2k+bkϑ ln(N)

ϑ ln(N)+1 : B̄,

q2k+cNϑ ln(N)

ϑ ln(N)+1 : U.

With Tik as the ith observation on Tk, define indicator trimming for Tik

as: τ(Tik;qk(N)) ≡ 1{Tk : q1k(N) < Tik < q2k(N)}. Define a corresponding
smooth trimming function approximating the above as

τsm(Tik;qk(N)) ≡{
1+ exp

(−(lnN)2[Tik −q1k(N)]
)}−1

{
1+ exp

(−(lnN)2[q2k(N)−Tik]
)}−1

.

Let τ(Ti;q(N)) ≡
∏

k

τ(Tik;qk(N)) and τsm(Ti;q(N)) ≡
∏

k

τsm(Tik;qk(N)).

For ϑ = 0, we define fixed indicator trimming as τ(Tik;qk) ≡ 1{Tk : q1k <

Tik < q2k}, and let τ(Ti;q) ≡
∏

k

τ(Tik;qk).

(D4) Kernel. Let v and Vi be d-dimensional vectors with lth elements as v(l) and
Vi (l), respectively, and denote sl as the standard deviation (SD) of Vi (l).4

Referring to (D3), define

Kjl(v) ≡ 1

slh
φ

(
v(l)−Vj (l)

slh

)
,Ki(v) ≡

d∏
l=1

Kil(v), Di(v) ≡ diag(Ki(v)),

k(z) ≡
d∏

l=1
φ (z(l)), K∗

i (v) ≡ τsm(Ti,q̂(N))Ki(v),

where z is an arbitrary vector with lth component z(l), h = N−r, 0 < r < 1
2d ,

φ(·) is a density symmetric about 0 with finite moments of all orders, and
q̂(N) depends on sample quantiles. When evaluated at a data point Vi, we
set Kjl(Vi) to zero for i = j.

(D5) Kernel Averages. Referring to (D4), for stage s, define

ĝs(v) ≡
{

ĝ1 (v) ≡ 1
N

∑N
i=1 Ki(v), s = 1,

ĝ2 (v) ≡ 1
N

∑N
i=1 K∗

i (v), s > 1.

When the estimators are evaluated at a data point, the average is taken over
the N −1 observations excluding that data point observation.

(D6) Unadjusted Conditional Expectation Estimator. Let D be the N ×N diago-
nal matrix with jth element Kj(Vi). Let Z be an N × d matrix with jth row
(Vi − Vj)/h. Referring to (6), with Ȳ(Vi) and Z̄(Vi) depending on ĝ1 (Vi),

for stage s = 1,

M̂1(Vi) ≡ Ȳ(Vi)− Z̄(Vi)
[
Z′DZ

]−1
Z′D

[
Y −1

¯
· Ȳ(Vi)

]
,

4It can be shown that the SD can be taken as known.
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where E
[

Z′DZ
N−1

]
is positive definite. For stage s > 1, refer to (D3) and set

Tk ≡ Xk so that τsm represents smooth X-trimming here. Then,

M̂s(Vi) ≡
1

N−1

∑
j�=i

{
Yj −

[
M̂s−1(Vj)− M̂s−1 (Vi)

]}
τsm(Xj;q̂(N))Kj(Vi)

ĝs(Vi)
.

(D7) Initial Index Parameter Estimator. Let (q̂′
1k,q̂

′
2k) and (q̂1k,q̂2k) be vectors of

sample quantiles for Xik,q̂1k < q̂′
1k < q̂′

2k < q̂2k. Then, with q̂′
1k,q̂

′
2k replacing

q1k,q2k, define

θ̂1 ≡ argmin
θ

Q̂1 (θ), (7)

Q̂1 (θ) ≡ 1

N

N∑
i=1

τ(Xi;q̂′)
{

Yi − M̂s [Vi (θ)]
}2

.

Referring to (D3), set Ti ≡ Xi so that τ represents indicator X-trimming
here.

(D8) Adjusted Densities. To adjust the density estimators in (D4), let γ̂s be a
lower sample quantile for ĝs(Vj(θ̂1)) and τ	(ĝs(v)) a smooth trimming
function with the following form:

τ	(ĝs(v)) ≡ {
1+ exp

(−(lnN)2[ĝs(v)−N−ar]
)}−1

.

Then, define an estimated adjustment factor as

Âs(v) ≡ γ̂sN
−ar

[
1− τ	(ĝs(v))

]
.

Referring to the definition of ϑ in (D3), set the adjustment parameter a to
satisfy ϑ < a < 2

s . With 1 − τ	(ĝs(v)) approaching 1 in the tails for ĝs(v),
adjusted estimated densities are then defined as

ĝsa(v) ≡ ĝs(v)+ Âs(v).

(D9) Adjusted Conditional Expectations Estimator. Let

Ȳa = ĝ1(Vi)

ĝ1a(Vi)
Ȳ, Z̄a = ĝ1(Vi)

ĝ1a(Vi)
Z̄.

Refer to (D3) and set Ti ≡ Vi(θ̂1), where θ̂1 is the estimator in (D7), so that
τsm represents smooth index trimming here. Define

M̂1a(Vi) ≡ Ȳa(Vi)− Z̄a(Vi)
[
Z′D̂aZ

]−1
Z′D

[
Y −1

¯
· Ȳ(Vi)

]
,

D̂a = D+ Â1(v).
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For s > 1, define M̂sa(Vi) as:

1
N−1

∑
j�=i

{
Yj −

[
M̂(s−1)a(Vj (θ))− M̂(s−1)a (Vi (θ))

]}
τsm(Vj(θ̂1);q̂(N))Kj(Vi (θ))

ĝsa(Vi (θ))
.

(D10) Adjusted Index Parameter Estimator. Referring to (D7), let (q̂′
1k,q̂

′
2k) and

(q̂1k,q̂2k) be vectors of sample quantiles for Vi(θ̂),q̂1k < q̂′
1k < q̂′

2k < q̂2k.
Define

θ̂2 ≡ argmin
θ

Q̂2

(
θ;θ̂1

)
, (8)

Q̂2

(
θ;θ̂1

)
≡ 1

N

N∑
i=1

τ
(

Vi

(
θ̂1

)
,q̂′

){
Yi − M̂sa [Vi (θ)]

}2
.

Referring to (D3), set Ti ≡ Vi(θ̂1) so that τ represents indicator index
trimming.

While the purpose of most of these definitions is clear, further discussion of
kernel windows, trimming, and adjustment strategies can be useful. Throughout,
we take the SDs of the indices as known, because consistency for our index
parameter estimator does not depend on the consistency of the estimator for this
SD (see Newey and McFadden, 1994).

The estimators above depend on different types of trimming, which we provide
in (D3). Within M̂sa and M̂s, for s > 1, trimming sequences are on sets that expand
to the full support of the continuous variables as the sample size increases. For the
bounded cases (B and B̄), we can interpret the trimming as a weighted average of
the population quantiles and support points. For example, in the lower bound (B)
case, we could write it as q1 · (1−wN)+ak ·wN, where the weight wN ≡ ϑ ln(N)

[ϑ ln(N)+1]
slowly approaches one ensuring that the density slowly converge to 0. The ln(N)

function is a commonly employed slowly increasing function, increasing slower
than Nα for any α > 0. For the unbounded case, a slowly expanding sequence
cN plays a similar role as the support point.5 We view the quantiles as the
reference or anchoring points from which we slowly depart as the sample size
increases.

In (D4), we provide conditions for the regular kernel that we employ. Note
the restriction on the window parameter, r: 0 < r < 1

2d . This condition, which
is commonly satisfied in the literature on semiparametric models, is important
for Lemma 3 on kernel products. It ensures an asymptotic independence property
which facilitates the calculation of an expectation of a product of terms involving
averages of kernel functions. Definitions of kernel averages are provided in (D5),
which are needed in the construction of the estimators.

5For example, with cN = √
δ ln (N), we can accommodate any density with tails no thinner than that for a normal

density.
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Because of the recursive structure of the estimator for conditional expectations
in (D6), the estimator at stage s will depend on the previous stage. Namely, M̂s(Vi)

depends on the bias correction term M̂s−1(Vj)− M̂s−1(Vi) from stage s−1. Notice
that this bias correction term is evaluated at both observations i and j. Therefore, we
need smooth trimming within the M̂-function to control the density denominator
at j in addition to the indicator trimming controlling i in the objective Q̂-function.
We need indicator trimming in the Q̂-function to be on a narrower set compared
to the smooth trimming in the M̂-function to ensure enough Vj observations in a
neighborhood of Vi to avoid a bias.

As discussed in Section 2.2, the second estimator, θ̂2, is implemented so as to
take advantage of Newey’s residual result for bias control. Trimming sequences
based on X have the desirable property that they do not depend on the unknown
parameters. However, as discussed earlier, there is a problem in exploiting Newey’s
residual result when trimming is not based on the true index. Accordingly, for θ̂2,

all trimming is based on the estimated index obtained from the initial estimator θ̂1.
We show that such trimming is asymptotically equivalent to trimming on the true
index.

This strategy does not control density denominators when evaluated at θ not in
a neighborhood of θ0, which is important for consistency. As previously explained
we adjust density denominators so as to control how fast they converge to 0.
(D8) defines this adjustment to have the following desirable properties. When
the density for V (θ) is N−ar or smaller, the adjustment ensures that the density
reciprocal is O(Nar), with a < 2

s . When studying the gradient evaluated at θ0,

index trimming ensures that the adjustment rapidly approaches 0 at a rate faster
than O(1/N) as is required for normality. Employing this adjustment mechanism,
(D9) defines a corresponding adjusted expectations estimator, and the adjusted
parameter estimator is defined in (D10).

3.2. Assumptions

The main assumptions underlying theoretical results are shown below. Assump-
tions that may be required for one estimator but not for another are provided
directly in theorems.

(A1) The vector {Yi,Wi} is i.i.d. over i = 1, . . . ,N, and takes on values in R1+dw,

where dw is the dimension of Wi.
(A2) The following index restriction holds:

E(Yi|Wi) = E (Yi|V (Wi;θ0)) .

With εi ≡ Yi −E(Yi|Wi), assume that σ 2
ε ≡ Variance(εi|Wi) is constant.6

(A3) Refer to (D1), and assume that θε, a compact set. Let g(v(w;θ) ;θ)

be the density for V (Wi;θ) evaluated at v(w;θ). Let α = 0,1,2 and

6Note that this is a restrictive homoscedasticity assumption.
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β = 0,1, . . . ,2s + 1, where s is the stage. Let ε∗ ≡ 0 under fixed trimming
and 0 < ε∗ < ar from (D8) under expanding trimming. Recall from (D3) that
with Ti ≡ Vi or Xi, τ

∗(Ti;q(N)) constrains Ti to a slowly expanding set. In
either case, for θε, Vi is constrained to a slowly expanding set C∗

N . Define
Av and Ax as compact subsets of the supports for V and X, respectively, and
let B be C∗

N or Av Then, with S as the support for V ,

(a) : inf
vεB

|g(v;θ0)| and inf
vεB,θε

|g(v;θ)| = O(N−ε∗
),

(b) : sup
vεS

∣∣∇β
v [M(v;θ0)g(v;θ0)]

∣∣ and sup
vεS

∣∣∇β
v g(v;θ0)

∣∣ = O(1),

(c) : sup
w(xεAx),θε

∣∣∇α
θ ∇β

v [M(v(w;θ);θ)]
∣∣ and

sup
w(xεAx),θε

∣∣∇α
θ ∇β

v g(v(w;θ);θ)
∣∣ = O(1).

(A4) We assume that Y and each variable in X have a density whose tails are
smaller than that of a t-distribution with, respectively, my + 1 and mx + 1
degrees of freedom. With these variables having my and mx moments, we
assume that my,mx > 4.

The first two assumptions are standard for index models. When trimming
expands to the full support of the continuous variables, we need to construct
a trimming sequence that controls how fast the density approaches. For
example, when the continuous X’s are jointly distributed as normal, the
index will follow a normal density. Assumption (A3) ensures that density
denominators do not converge to zero too fast. Assumption (A4) is useful
for obtaining uniform convergence results for functions of unbounded random
variables.

3.3. Theorems

Theorem 1 provides the properties of the expectation estimator whereas Theorem 2
obtains the asymptotic properties of the two proposed parameter estimators in a
class of multiple-index models.

Convergence properties for the recursive differencing estimator are impor-
tant for obtaining

√
N-normality for a finite-dimensional parameter vector

in semiparametric models. These properties are also useful for obtaining
asymptotic properties of marginal effects. To provide these results, we show
that an approximating recursion is close to the original one and then focus
on the properties of the approximation. The definition below provides the
approximation.

Definition 1 (Recursion approximation). Recall the definition of the conditional
expectation estimator in (D6) and kernel functions in (D4) and (D5). With D ≡
diag(K(v)),L, and P positive integers, Vi ≡ V(Wi;θ0), and Zi (v) ≡ Vi−v

h as the ith
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row of Z, define

Â ≡ 1

N

[
Z (v)′ DZ (v)

] ; A ≡ E(Â); δA (v) ≡
L∑

l=1

[
(A− Â)A−1

]l ;

ḡs(v) = E(ĝs(v));δgs ≡
P∑

p=1

[
ḡs(Vi)− ĝs(Vi)

ḡs(Vi)

]p

;

d̂(v) ≡ [
Z′DZ

]−1
Z′D

[
Y −1

¯
· Ȳ(v)

] ;

d̂∗(v) ≡ A−1[I + δA (v)]
1

N

N∑
i=1

Zi (v)
[
Yi − Ȳ(v)

]
ĝ1(v)K∗

i (v)

ḡ1(v)

[
1+ δg1(v)

]
.

With 	s(v) ≡ ĝs(v)[M̂s(v)−M(v)], we have

	1(v) = ĝ2(v)

ĝ1(v)

[ 1
N

∑N
i=1 [M(Vi)−M(v)+ εi]Ki(v)

− 1
N

∑N
i=1 Zi (v)Ki(v)d̂(v)

]
,

	s(v) ≡ 	s−1(v)−
N∑

i=1

	s−1(Vi)

ĝ2(Vi)
K∗

i (v)+ 1

N

N∑
i=1

εiK
∗
i (v), s > 1.

The approximating recursion is given as

	∗
1(v) ≡ ĝ2(v)

ḡ1(v)
[1+ δgs−1(Vi)]

[ 1
N

∑N
i=1 [M1(Vi)−M1(v)+ εi]Ki(v)

− 1
N

∑N
i=1 Zi (v)Ki(v)d̂∗(v)

]
,

	∗
s (v) ≡ 	∗

s−1(v)−
N∑

i=1

[
	∗

s−1(Vi)

ḡ2(Vi)

]
[1+ δg2(Vi)]K

∗
i (v)+ 1

N

N∑
i=1

εiK
∗
i (v),s > 1.

Employing this approximating recursion, Theorem 1 provides properties of the
recursive differencing estimator for conditional expectations.

THEOREM 1 (The recursive differencing estimator). Assume (A1)–(A4), with
window parameter, r,0 < r < 1

2d, v and θ in compact sets, and 	∗
s (v) defined

above:

(a) : sup
v

∣∣	∗
s (v)−	s(v)

∣∣ = op(N
− 1

2 ),

(b) : sup
v

∣∣E	∗
s (v)

∣∣ = O(h2s)+o(N− 1
2 ),

(c) : sup
v

Var
[
	∗

s (v)
] = O

(
(Nhd

)−1
),

(d) :
∣∣∣M̂s (v)−M (v)

∣∣∣ = Op
(
h2s

)+Op((Nhd)−
1
2 ).

For estimating semiparametric models, it can be readily shown that it is the bias
in the scaled estimator 	s(v) that is relevant. As this quantity is nonlinear, it is
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difficult to study directly. We provide an approximating sequence 	∗
s (v) that from

(a) is uniformly within op(N− 1
2 ) of 	s(v). The bias result is, then, given in (b),

followed by a variance result in (c) and a convergence rate in (d).
To obtain

√
N-normality for a finite-dimensional parameter vector, we will

require conditions on the stage s and the window parameter r. Employing variants
of SLS introduced by Ichimura and Lee (1991) and Ichimura (1993), Theorem 2
provides these conditions for two estimators in a class of multiple-index models.
The first estimator employs recursive differencing as the sole bias control under
X-trimming and makes no assumptions on the X-variables being bounded. This
estimator is important in part because it makes weaker assumptions on the
existence of X-moments. Furthermore, the other estimator in Theorem 2 depends
on it. There are also moment-based estimators where the residual control is not
applicable (e.g., semiparametric instrumental variable estimators). The second
estimator is asymptotically distributed as normal under optimal windows when
recursive differencing is combined with the residual control.

THEOREM 2 (Estimating index parameters). Under assumptions (A1)–(A4),
with γ ≡ my

my+1 − 2
mx+1, set the stage s and window parameter r to satisfy7

(C1) : s >
(d +2)

2γ
,

1

4s
< r <

γ

2(d +2)
. (9)

With δi (θ0) ≡ ∇θ [M (V (Wi;θ) ;θ)]θ0
and trimming function τ in (D3), let

H1 ≡ E
[
τ(Xi;q′)δiδ

′
i

]
,

G1i ≡ τ(Xi;q′)δi −E(τ (Xi;q′)δi|Vi).

With �1 ≡ σ 2
ε H−1

1 E
(
G1G′

1

)
H−1

1 and σ 2
ε ≡ Var(εi),

(a) : θ̂1
p→ θ0,

√
N

[
θ̂1 − θ0

]
d→ Z1 ∼ N(0,�1).

For the second-step estimator θ̂2, assume that each variable in X is bounded. Set
the stage s, window parameter r, and adjustment parameter a to satisfy8

(C2) : s >
d +4

4
+ d +2

2my
, (10)

r = 1

4s+d
<

1

2[d +2]

my

my +1
, 0 < a <

2

s
.

7The upper bound for r follows from uniform convergence for second derivatives (Lemma 9). The lower bound for r
follows because the bias order of O(N−2rs) must be o(N−1/2). The condition on s is required for the interval on r to
be nonempty.
8The upper bound for r follows from uniform convergence for second derivatives. We set s to ensure that this condition
on r can hold.
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With �2 ≡ σ 2
ε E

[
τ(Vi (θ0) ;q)δiδ

′
i

]−1
,

(b) : θ̂2
p→ θ0;

√
N

(
θ̂2 − θ0

)
d→ Z2 ∼ N (0,�2) .

With the proof of this theorem being in the Supplementary Material, here we
make a few brief remarks on the proof strategy. For part (a), consistency for the first
estimator is established under identification conditions by showing that M̂s [Vi (θ)]
converges uniformly (w.r.t. θ) in probability to the true conditional mean function.
Asymptotic normality follows largely from a U-statistic result based on a low-order
bias obtained in Theorem 1. In part (b), we employ both residual and recursive
differencing controls, which makes it possible to set optimal window parameter
r = 1

4s+d in (10). As described below in 1(a) and 1(b) of Section 4, the window
parameter was chosen at the beginning of implementation based on the final stage.

It suffices to adjust the expectations so as to ensure that density denominators
vanish slowly when the index is away from the truth and rapidly at the truth. This
strategy, which was developed in Klein and Shen (2010) for single-index models
under bounded X’s, is extended here to the multiple-index case. To take advantage
of the residual control, trimming at this second step is based on θ̂1 in part (a).

4. IMPLEMENTATION

In this section, we describe the steps needed to implement the estimators in
Theorem 2. One of these estimators employs recursive differencing as the sole
bias control, whereas the other controls for the bias with recursive differencing
and a residual control. As a necessary part of this discussion, we also provide
the details for constructing the recursive differencing estimator for a conditional
expectation. To guarantee that the estimators work well in practice as well as in
theory, there are several different bias correcting mechanisms, trimming levels, and
window parameters that must be selected. We provide these choices below. For the
case of three indices, Gauss code for implementing the estimators is available at
https://economics.rutgers.edu/people/faculty/people/86-faculty/220-klein-roger.

4.1. Recursive Differencing Bias Control

In this subsection, we describe the steps required to implement the estimator in
(D7).

1(a) Window parameter r, and final stage s∗. Set r and s∗ to satisfy conditions in
(C1) of Theorem 2. We set s∗ to be the smallest stage value satisfying (C1)
and r as close as possible to its optimal value 1

4s∗+d, which equates the orders
of squared bias and variance.

2(a) Initial (stage s = 1) estimated expectation. Employing the kernel function
in (D4), refer to (D6) and calculate the initial stage 1 estimator M̂1 for the
conditional expectation.
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3(a) Stage s estimated expectation. For s � 2, recursively calculate the stage s
estimator M̂s as in (D6) until the final stage s∗ is reached. Note that this
estimator uses τsm(Xi;q̂(N)) in (D3). This smooth trimming function depends
on lower and upper sample quantiles (e.g., 0.02 and 0.98).

4(a) The estimator for index parameters θ̂1. Referring to (D7), calculate the index
parameter estimator in Theorem 2(a). Here, the indicator trimming τ(Xi;q̂′)
is based on sample quantiles (e.g., 0.03 and 0.97).

While the estimator in Step 4(a) performs very well in simulations, the perfor-
mance generally improves when we combine recursive differencing and residual
controls. The implementation of this estimator is discussed in the next section.

4.2. Recursive Differencing and Residual Bias Controls

To combine the residual control with recursive differencing for estimating index
parameters, we require a somewhat different estimation strategy than that above.
For the estimator in (D10), the required steps are as follows:

1(b) Window parameter r, final stage s∗, and adjustment parameter a. Set r,s∗,
and a as in (C2) of Theorem 2(b), with s∗ set to be the smallest stage value
satisfying (C2). For example, with s∗ = 3 in the Monte Carlo, we set a = 1/2
and r = 1/15.

2(b) Stage 1 adjusted expectation estimator. Calculate the stage 1 adjusted
expectation M̂1a as in (D9), using the kernel function in (D4) and (D5).
This adjusted expectation is obtained by replacing estimated densities with
adjusted ones as provided in (D8). There are three multiplicative components
in this adjustment. First, it depends on γ̂s, a lower sample quantile for
ĝ1(Vj(θ̂1);θ̂1), which we suggest setting at the 0.01 level. Second, it depends
on N−ar. Finally, it depends on the smooth trimming function in (D8). Note
that only the last component depends on θ .

3(b) Stage s adjusted expectation estimator. For s � 2, recursively calculate the
stage s estimator M̂sa as in (D9) until the final stage s∗ is reached. Note that
this estimator uses τsm(Vj(θ̂1);q̂(N)) in (D3). This smooth trimming function
depends on lower and upper sample quantiles (e.g., 0.02 and 0.98).

4(b) The estimator for index parameters, θ̂2. Referring to (D10), calculate the
index parameter estimator with trimming based on τ(Vi(θ̂1);q̂′), which
restricts the estimated index to a quantile region that must be a subset of that
in Step 3(b). We suggest setting these sample quantiles at the 0.03 and 0.97
levels, respectively.

Inferences are then conducted as if this were a parametric problem using
an estimator for the covariance matrix. The estimator is given by replacing all
components of the covariance matrices in Theorem 2 by their sample counterparts,
with the estimated error variance σ̂ 2

ε given as an average of squared residuals. For
the second estimator, if maximum likelihood software is available (e.g., maxlik in
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Gauss), then the calculation can be simplified as follows. Define

θ̂2 ≡ argmax
θ

(
−1

2

)
Q̂2(θ;θ̂1).

Let Ĉ be the returned covariance matrix obtained from maximum likelihood
software. Then, a consistent estimator for the covariance matrix is given as σ̂ 2

ε Ĉ.

5. MONTE CARLO RESULTS

We conducted Monte Carlo experiments using four different designs: quadratic,
cubic, exponential, and sin. In all designs, we constructed three indices: V1 = X1 +
X4,V2 = X2 − X4, and V3 = X3 + X4, where X1, X2, X3, and X4 follow truncated
standard normal distributions with |Xk| < 3. We also generated an error term ε

that follows a standard normal distribution. In all designs, the outcome has the
form

Y = αV1 +βT2 +γ V1V3 + ε,

where T2 was set, respectively, to be a quadratic, cubic, exponential, or sin function
of V2 in the four designs. The α,β,γ are standardizing constants selected so that,
in all designs, each of the three explanatory components has an approximate SD
of one.

As the focus of this paper is on the semiparametric case, we begin by reporting
results for different estimators of the parameters in the four designs discussed
above (Figure 1). We will also compare results for different estimators of the
conditional mean function (Figure 2). We set the sample size at 2,000 and the
number of replications at 100 for both Figures 1 and 2.

Figure 1 provides a comparison between four
√

N-asymptotically normal esti-
mators and results to check theoretical predictions on the recursive differencing
estimator. Each design has three estimated parameters, and the plots are organized
by design and parameter. In a series of box plots, each provides distributional
results for comparing estimators. With deviations from the truth shown on the
vertical axis, the figure indicates the types of estimators on the horizontal axis. The
estimators have been shifted so that 0 corresponds to the true value. The length of
each box is the interquartile range, with the median of each estimator shown by
the bold line within the box.

The first box plot provides results for an HK estimator, which is an extension of
the twicing kernel (Newey, Hsieh, and Robins, 2004). The second box plot is for
a fifth degree LP estimator with bias O(h6) as in Ruppert and Wand (1994). For
these two estimators, we set r = 1

11.99 to ensure that the bias is o(N−1/2). For the
estimator with recursive differencing as the sole bias control (RDS), we employ the
undersmoothing window parameter r = 1

11.99 to ensure
√

N asymptotic normality.
The next three estimators (WF1, WF2, and WF3) provide results for three stages
of the recursive differencing estimator without residual control. We fix the window
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Figure 1. Monte Carlo results: Parameter estimators.

parameter at r = 1
15 throughout these three stages so as to facilitate the comparison

between stages.9

The last three box plots show the results for the proposed recursive differencing
estimator with optimal windows set for single, double, and triple stages (WO1,

9We chose r = 1/15 as it is the optimal window for the third-stage estimator.
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WO2, and WO3). The optimal windows were set by equating the orders of squared
bias and variance. More specifically, WO1 had a window size r = 1

7 ; WO2 had a
window size r = 1

11 ; whereas WO3 had a window size r = 1
15 . The triple stage

estimator also has the residual control to ensure
√

N normality.
Across all designs and parameters, the recursive differencing estimator with

undersmoothing (RDS) strongly dominates the other two estimators (HK and LP)
with much smaller variation and low median bias. As a result, the RDS estimator
had substantially smaller RMSE. Similarly, the proposed recursive differencing
estimator with residual control also strongly dominates the HK and LP estimators.
We found that the performance of the proposed recursive differencing estimator
with residual control (WO3) is overall better than the undersmoothing version
(RDS). The average reduction in RMSE was 0.013, which is an improvement of
at least 10%. In summary, recursive differencing estimators dominate the other
estimators, and there is a value added to employing the residual bias control with
recursive differencing.

We also made a number of comparisons to check predictions made by the
theory. Turning to recursive differencing under fixed windows, comparing WF1,
WF2, and WF3, the proposed recursive differencing estimator for the most part
has decreasing bias over the stages, whereas the variation as reflected in the
interquartile range remains stable. This finding is consistent with the theory behind
the recursive differencing mechanism. The decline is most pronounced for the
sin design. Similarly, we made comparisons between WO1, WO2, and WO3. As
predicted by the theory, we found that the RMSE monotonically declined over the
stages in most cases; in all cases, the third stage achieved the smallest RMSE.
The small third-stage RMSE is due both to recursive differencing and the residual
control.

The value added by using the residual control can be seen by comparing
recursive differencing estimators with optimal windows and residual control
(WO3) to the recursive differencing estimator without residual control (WF3).
Across all four designs, we found that RMSE decreased substantially when the
additional residual bias control is employed. For the first design (quadratic), we
also compared the performance of our proposed recursive differencing estimator
(WO3) at different sample sizes: N = 500, 1,000, and 2,000. We found that
the bias in the estimators remained reasonably small at the smaller sample sizes
(ranging 00.02 ∼ 0.06 at N = 500, 0.01 ∼ 0.05 at N = 1,000, and 0.01 ∼ 0.03
at N = 2,000), whereas the SDs were larger (ranging 0.13 ∼ 0.24 at N = 500,
0.08 ∼ 0.14 at N = 1,000, and 0.05 ∼ 0.09 at N = 2,000). The theory suggests
that the doubling of the sample size would reduce standard errors by 1/

√
2 if the

sample size is sufficiently large. We found this to be approximately the case when
going from 1,000 to 2,000 observations, but not from 500 to 1,000 observations.
Therefore, our experiment suggests that the sample size of 500 is probably too
small.

In addition to comparing parameter estimators, we also compared results for
estimating the conditional mean functions. The estimation of these functions
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Figure 2. Monte Carlo results: Conditional expectation estimators by deciles.

plays a fundamental role in estimating parameters. Furthermore, changes in these
conditional mean functions are important objects of interest in empirical studies.
Therefore, we provide results on the estimation of conditional mean functions in
Figure 2. We investigated the performance of three conditional mean estimators
underlying the parameter estimators we studied above: the recursive differencing
(RD) estimator, the HK estimator, and the LP estimator. We organized the plots
by design and estimator. We calculated the conditional mean function estimators
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at every point in a trimmed set10 and then averaged over decile intervals. In
so doing, a window size of r = 1

11.99 was set for all three estimators. In each
plot, we provided the results by deciles. To avoid confounding performance of
the parameter estimators with those for conditional mean functions, all esti-
mators for the conditional mean functions are reported at the true parameter
values.

From the box plots in Figure 2, the bias for the recursive differencing and the
higher-order kernel estimators are similar to each other with both having smaller
bias than the LP estimator. The variation of the recursive differencing estimator is
smaller than that of the higher-order kernel and LP estimators across designs and
deciles, with substantial advantage at the higher and lower deciles. As expected
from the bias and variation results, we found that overall the recursive differencing
estimator had smaller RMSE than the higher-order kernel and LP estimators across
designs and deciles. The advantage was especially pronounced at the higher and
lower deciles.

We remark that the performance of the LP estimator near the boundary improves
significantly when the sample size increases. We experimented with increasing
the sample size to 10,000 for the cubic design, which is the most challenging
design for LP estimator. In that case, the RMSE of the LP estimator for the first
decile reduced from 1.027 to 0.275; bias reduced from −0.848 to −0.222; and
SD reduced from 0.583 to 0.162. However, the recursive differencing estimator
continues to dominate it with first decile RMSE of 0.126, bias of 0.115, and SD of
0.053. Results are similar for the 10th decile.

In summary, the Monte Carlo experiment showed that the proposed recursive
differencing estimator performs much better under a moderate sample size than
the other methods that were considered. Furthermore, the behavior of the recursive
differencing estimator is consistent with the underlying theory.

6. CONCLUSIONS

In this paper, we propose recursive differencing estimators for estimating con-
ditional expectations and parameters in semiparametric models with multiple
indices. The most important feature that we want to highlight is that the order of
the bias decreases with the stage of the recursion, whereas the order of the variance
remains the same.

While HKs and LPs share the above properties, they differ from the pro-
posed estimator in two important respects. First, the RMSE of the recursive
differencing estimator becomes smaller over the stages. In contrast, HK or LP
estimators would require higher-order terms to achieve the same bias order, which

10Each index was trimmed at 3% and 1% from each tail based on indicator and smooth trimming functions,
respectively.
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often leads to higher RMSEs.11 Second, in estimating index models, we show
that, with recursive differencing, it is possible to exploit a residual property of
semiparametric derivatives. In so doing, we obtain asymptotic normality without
undersmoothing, regardless of the dimension of the index vector. This theoretical
property contributes to the very good finite-sample performance of the proposed
estimator.

SUPPLEMENTARY MATERIAL

Shen, C. and Klein R. (2022): Supplement to “Recursive Differencing for Esti-
mating Semiparametric Models”, Econometric Theory Supplementary Material.
To view, please visit: https://doi.org/10.1017/S0266466622000329
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