MODULES OVER BOUNDED HEREDITARY NOETHERIAN PRIME RINGS

BY
M. ZUBAIR KHAN

Singh introduced two conditions on a module M_{R} in [7]. The author introduced the concept of h-neat submodule of such module in [3] and generalized some of the well known results of neat subgroups. A theorem of Erdelyi was also shown to be true for such modules in [4]. The main purpose of this paper is to generalize a well known result of K. M. Benabdallah and J. M. Irwin and M. Rafiq [2, Theorem 10]. If M is a torsion module over a bounded (hnp)-ring R then under some conditions we have obtained an h-pure submodule C of M such that M / C is divisible (Theorem 7). Proposition 10 gives a necessary and sufficient condition for a quotient submodule to be complement of some given submodule. If M is torsion module over bounded (hnp)-ring \boldsymbol{R} and K is an h-neat submodule of M then the question: "under what conditions $M=K+H_{n}(M)$ for every $n \geq 0$ '? is answered in Theorem 11.

Throughout this paper M will be taken to be torsion module over bounded hereditary noetherian prime ring R. For any uniform element $x \in M$ the composition length $d(x R)$ is called exponent of x and is denoted as $e(x)$; $\sup \{d(y R / x R)\}$ where y is uniform element of M such that $x \in y R$, will be called the height of x and denoted by $H_{M}(x)$ (or simply $H(x)$). For any $k \geq 0$, $H_{k}(M)$ will denote the submodule generated by uniform elements of M of height at least $k . M^{1}$ will denote the submodule generated by uniform elements of infinite height in M.

As defined in [7], a submodule N of M is called h-pure if $H_{k}(N)=$ $N \cap H_{k}(M)$ for every $k \geq 0$.

As defined in [3] a submodule N of M is called h-neat if $N \cap H_{1}(M)=$ $H_{1}(N)$. If M is a module satisfying conditions (I) and (II) as introduced in [7], then we call M an S_{2}-module.

Now we restate the following results proved in [3].
Lemma 1 ([3,Prop. 1]). If M is an S_{2}-module and N is a submodule of M then any complement of N is h-neat in M.

Lemma 2 ([3, Lemma 2]). If M is an S_{2}-module and N is h-neat submodule of M with same socle then $N=M$.

Lemma 3 ([3, Lemma 3]). If M is an S_{2}-module and N is h-neat submodule of M such that $\operatorname{Soc}(N) \oplus \operatorname{Soc}(T)=\operatorname{Soc}(M)$ then N is a complement of T.

The following lemma is of set theoretic nature and hence is stated for arbitrary modules.

Lemma 4. If M is a right R-module and $U \subseteq V$ are submodules of M. Let K be a complement of U in M. Then every complement of $K \cap V$ in K is a complement of V in M.

It is well known that the homomorphic image of divisible module is divisible. In view of the Lemma 4 the next result is valid for arbitrary modules but we state for torsion modules over bounded (hnp)-ring as needed in the sequel.

Lemma 5. Suppose M is a torsion module over bounded (hnp)-ring R and N is a submodule of M. Suppose M / K is divisible for every complement K of N in M. Then M / T is also divisible for any complement T of any submodule U of N.

Now we have the following proposition which generalizes [2, Lemma 7]. The technique of the proof is same as in groups.

Proposition 6. If M is a torsion module over a bounded (hnp)-ring R and N is a submodule of M such that M / K is divisible for every complement K of N in M then $\operatorname{Soc}(N) \subseteq M^{1}$.

Proof. Let x be a uniform element in $\operatorname{Soc}(N)$ and $x \notin M^{1}$. Then appealing to [5, Theorem 10] we get $M=y R \oplus T$ such that $\operatorname{Soc}(y R)=x R$ and $y R$ is uniform submodule of finite length. It is easy to check that T is a complement of $x R$. Now by Lemma 5, we get M / T to be divisible which is not possible consequently we have $\operatorname{Soc}(N) \subseteq M^{1}$.

Theorem 7. Suppose M is a torsion module over a bounded (hnp)-ring R and S is a subsocle of M with $\operatorname{Soc}(M)=S+\operatorname{Soc}\left(H_{k}(M)\right)$ for every $k \geq 0$. Then there exists an h-pure submodule C of M such that $S=\operatorname{Soc}(C)$ and M / C is divisible.

Proof. Let C be maximal with respect to $\operatorname{Soc}(C)=S$ then we prove that $H_{1}(M) \cap C=H_{1}(C)$. Let x be a uniform element in $H_{1}(M) \cap C$ then there exists a uniform element $y \in M$ such that $x \in y R$ and $d(y R / x R)=1$. If $y \in C$ then we are done. Let $y \notin C$ then $S<\operatorname{Soc}(C+y R)$; Hence there exists a uniform element $z \in \operatorname{Soc}(C+y R)$ such that $z \notin S$ and $z=u+y r$ for some $u \in C$, $r \in R$. As $y R$ is totally ordered it is easy to check that $y r R=y R$, hence without any loss of generality we can assume that $z=u+y$. Now define $\eta: y R \rightarrow u R$ given as $y r \rightarrow u r$. Let $y r=0$ then $z r=u r$. Now either $z r R=z R$ or $z r=0$. If $z r R=z R$ then $z=z r r^{\prime}$ for some $r^{\prime} \in R$; hence $z=u r r^{\prime} \in S$ which is a contradiction. Consequently $z r=0$ and we get $u r=0$, therefore η is well defined. Trivially η is onto homomorphism and we get $u R$, being homomorphic image of $y R$, to be a uniform module.

Now let $P=\operatorname{ann}(y R / x R)$ then by Eisenbud and Griffith [1, Corollary 3.2] R / P is a generalized uniserial ring. Hence appealing to [6, Lemma 2.3] we get
$y P=x R$. Now $x=y r$ for some $r \in P$ and for every $r \in P, z r=u r+y r$. Trivially $z r=0$, hence $x=y r=-u r$. Now we assert that $u r R<u R$. Suppose $u r R=u R$ then $u=y r_{1}$ for some $r_{1} \in R$ and hence $z=y c_{1}$ for some $c_{1} \in R$. Trivially $y c_{1} R \subseteq y R$. Now either $y c_{1} R \subseteq x R$ or $x R<y c_{1} R$. If $y c_{1} R \subseteq x R$, then $z \in S$, which is not possible. Hence $x R<y c_{1} R$ and we get $y c_{1} R=y R=z R$ which is a contradiction. Therefore $u r R<u R$ and we get $x \in H_{1}(C)$. Consequently $C \cap H_{1}(M)=H_{1}(C)$. Now suppose $H_{n}(C)=C \cap H_{n}(M)$ then we show that $H_{n+1}(C)=C \cap H_{n+1}(M)$. Let x be a uniform element in $C \cap H_{n+1}(M)$ then we can find a uniform element $y \in M$ such that $d(y R / x R)=n+1$. Let $\operatorname{Soc}(y R / x R)=z R / x R$. If $z \in C$ then there is nothing to prove. Let $z \notin C$. As $d(z R / x R)=1$, we can find a uniform element $u \in C$ such that $x \in u R$ and $d(u R / x R)=1$. Hence by [5, Lemma 2] there exists an isomorphism $\theta: z R \rightarrow u R$ such that θ is identity on $x R$. Choose θ such that $\theta(z)=u$. Now define $\eta: z R \rightarrow(z-\theta(z)) R$ given as $z r \rightarrow(z-\theta(z)) r$ then η is R-epimorphism with $x R \subseteq \operatorname{ker} \eta$. Hence $e(z-\theta(z)) \leq 1$ and we get $z-\theta(z)=z-u \in \operatorname{Soc}(M)$. Hence $z-u-s \in H_{n}(M)$ for some $s \in S$ and $z-u-s=t$ for some $t \in H_{n}(M)$. Now by supposition $z-t=u+s \in H_{n}(C)$. Now appealing to [5, Lemma 1] $(u+s) R=$ $\oplus \Sigma b_{i} R$ where $b_{i} \in H_{n}(C)$. Trivially every b_{i} can not be of exponent 1 . Similarly $s R=\oplus \Sigma t_{i} R$ where $t_{i} R$ are simple modules. Let $P_{i}=\operatorname{ann}\left(t_{i} R\right)$ then $s P_{1} P_{2} \cdots P_{q}=0$. Let $P=\operatorname{ann}(u R / x R)$ then $u P=x R$. Let $b_{1}, \ldots, b_{\alpha}$ be uniform elements of exponent greater than 1 and $b_{\alpha+1}, \ldots, b_{n}$ be uniform elements of exponent 1 . Now we can find submodules $d_{j} R$ such that $d\left(b_{j} R / d_{j} R\right)=1$. Let $Q_{j}=\operatorname{ann}\left(b_{j} R / d_{j} R\right)$ then $b_{j} Q_{j}=d_{j} R$ for $j=1, \ldots, \alpha$. Let $Q_{i}=\operatorname{ann}\left(b_{i} R\right), i=\alpha+1, \ldots, n$ then $b_{i} Q_{i}=0$. Without any loss of generality we can assume $P_{1}, \ldots, P_{q}, Q_{1}, \ldots, Q_{\alpha}, P$ to be distinct. Now

$$
\begin{aligned}
(u+s) R P_{1} \cdots P_{q} Q_{1} \cdots Q_{\alpha} Q_{\alpha+1} & \cdots Q_{n} P \\
& =u P_{1} \cdots P_{q} Q_{1} \cdots Q_{\alpha} Q_{\alpha+1} \cdots Q_{n} P=u P=x R
\end{aligned}
$$

Also

$$
\begin{array}{rl}
(u+s) R P_{1} \cdots P_{q} Q_{1} \cdots Q_{\alpha} Q_{\alpha+1} \cdots Q_{n} & P \\
& =\sum_{1}^{\alpha} b_{i} P_{1} \cdots P_{q} Q_{1} \cdots Q_{\alpha} Q_{\alpha+1} \cdots Q_{n} P
\end{array}
$$

but $x R$ is uniform hence $x R=b_{i} P_{1} \cdots P_{q} Q_{1} \cdots Q_{\alpha} Q_{\alpha+1} \cdots Q_{n} P \subseteq d_{j} R<b_{j} R$ and we get $d\left(b_{i} R / x R\right) \geq 1$. Therefore, $x \in H_{n+1}(C)$. Hence C is h-pure submodule of M.

Now let \bar{x} be a uniform element in $\operatorname{Soc}(M / C)$ then by [7, Lemma 2], there exists a uniform element $x^{\prime} \in M$ such that $\bar{x}=\bar{x}^{\prime}$ and $e\left(x^{\prime}\right)=1$. As $\operatorname{Soc}(M)=$ $S+\operatorname{Soc}\left(H_{k}(M)\right)$ for every k we get $\bar{x} \in H_{k}(M / C)$ for every k. Therefore \bar{x} is of infinite height in M / C. Hence by [5, Lemma 8, Cor. 4], M/C is divisible.

Now an easy application of Lemma 1, Lemma 2, and Theorem 7, gives the following:

Corollary 8. If M is a torsion module over a bounded (hnp)-ring R and N is
a submodule of M with $N \subseteq M^{1}$ then every complement U of N is h-pure and M / U is divisible.

Now appealing to proposition 6 and Corollary 8 we have the following:
Corollary 9. If M is a torsion module over a bounded (hnp)-ring R and N is a submodule of M then M / K is divisible for every complement K of N if and only if $\operatorname{Soc}(N) \subseteq M^{1}$.

Now we give a characterization for complement submodules which generalizes [2, Lemma 8].

Proposition 10. Let M be a torsion module over a bounded (hnp)-ring R and K be a submodule of M. If S is a sub socle of M with $S \subseteq \operatorname{Soc}(K)$ then K / S is a complement of $\operatorname{Soc}(M) / S$ in M / S if and only if $\operatorname{Soc}(K)=S$ and K is h-neat in M.

Proof. Let K / S be complement of $\operatorname{Soc}(M) / S$ in M / S. Let $x_{1} \in K \cap H_{1}(M)$, then there exists a uniform element $y \in M$ such that $x \in y R$ and $d(y R / x R)=1$. If $y \in K$ we are done. Let $y \notin K$ then $(\bar{y} R+K / S) \cap \operatorname{Soc}(M) / S \neq 0$, hence for some uniform element $\bar{z} \in \operatorname{Soc}(M) / S$ we have $\bar{z}=\bar{y} r+\bar{k}$. It is trivial to see that $y r R=y R$, hence without any loss of generality we can assume $\bar{z}=\bar{y}+\bar{k}$. Define $\eta: \bar{y} R \rightarrow \bar{k} R$ given as $\bar{y} r \rightarrow \bar{k} r$ it is easy to check that η is a well defined onto homomorphism. Hence $\bar{k} R$ is uniform module. So we can take k to be uniform otherwise there will exist a uniform element k^{\prime} such that $\bar{k}=\bar{k}^{\prime}$. Trivially $e(k)>1$. Hence we can find a submodule $d R \subseteq k R$ such that $d(k R / d R)=1$. Let $Q=$ $\operatorname{ann}(k R / d R)$ then $k Q=d R$. Let $P=\operatorname{ann}(y R / x R)$ then $y P=x R$. Now $z-y-k \in$ S, so $z-y-k=s$ for some $s \in S$. Let $s R=\oplus \Sigma b_{i} R$ where $b_{i} R$ are simple submodules. Let $P_{i}=\operatorname{ann}\left(b_{i} R\right)$ and $Q^{\prime}=\operatorname{ann}(z R)$ then $s P_{1} P_{2} \cdots P_{t}=0$ and $z Q^{\prime}=0$. Now $(y+s) R Q Q^{\prime} P_{1} \cdots P_{t} P=(-k+z) R Q Q^{\prime} P_{1} \cdots P_{t} P$. But $(y+s) R Q Q^{\prime} P_{1} \cdots P_{t} P=y Q Q^{\prime} P_{1} \cdots P_{t} P=y P=x R$ and $(-k+z) R Q Q^{\prime} P_{1} \cdots$ $P_{t} P=-k Q Q^{\prime} P_{1} \cdots P_{t} P \subseteq d R$. Hence $x R \subseteq d R$ consequently $d(k R / x R) \geq 1$ and we have $x \in H_{1}(K)$, Therefore K is h-neat submodule of M.

Now let x be a uniform element of $\operatorname{Soc}(K)$ then as $K / S \cap \operatorname{Soc}(M) / S=0$, $x \in S$. Hence $\operatorname{Soc}(K)=S$. For the converse trivially $K \cap \operatorname{Soc}(M)=S$ and $\operatorname{Soc}(K / S) \cap \operatorname{Soc}(M) / S=0$. Now we show that $\operatorname{Soc}(M / S)=\operatorname{Soc}(M) /$ $S \oplus \operatorname{Soc}(K / S)$. Let \bar{x} be a uniform element in $\operatorname{Soc}(M / S)$. Let $P=\operatorname{ann}(\bar{x} R)$ then $\bar{x} P=0$, hence for every $r \in P, x r \in S$. If $x r R=x R$ then $x=x r r^{\prime}$ for some $r^{\prime} \in R$ hence $\bar{x}=(x r+S) r^{\prime}=0$ which is a contradiction. Consequently $x r R<$ $x R$. It is easy to check that $d(x R / x r R)=1$. By h-neatness of K there exists a uniform element $z \in K$ such that $x r R \subseteq z R$ and $d(z R / x r R)=1$. Appealing to [5, Lemma 2] we can find an isomorphism $\theta: x R \rightarrow z R$ which is identity on $x r R$. Let $\eta: x R \rightarrow(x-\theta(x)) R$ be the natural epimorphism then $x r R \subseteq \operatorname{ker} \eta$ and $e(x-\theta(x)) \leq d(x R / x r R)=1$. Therefore $x-\theta(x) \in \operatorname{Soc}(M)$ and $x-\theta(x)=v$ for some $v \in \operatorname{Soc}(M)$. This yields $\bar{x} \in \operatorname{Soc}(M) / S+\operatorname{Soc}(K / S)$. Hence $\operatorname{Soc}(M / S)=$

$\operatorname{Soc}(M) / S \oplus \operatorname{Soc}(K / S)$. Appealing to Lemma 3 we get K / S to be complement of $\operatorname{Soc}(M) / S$ in M / S.

Now we have the following main theorem which generalizes [2, Theorem 10], since the proof runs on similar lines it is omitted.

Theorem 11. Let M be a torsion module over a bounded (hnp)-ring R and K be a h-neat submodule of M such that $\operatorname{Soc}(K)=S$ where $S \subseteq \operatorname{Soc}(M)$. Then $M=K+H_{n}(M)$ for every $n \geq 0$ if and only if $\operatorname{Soc}(M)=S+\operatorname{Soc}\left(H_{n}(M)\right.$) for every $\mathrm{n} \geq 0$.

Acknowledgement. I am extremely grateful to Professor Surjeet Singh for his help and interest during my stay with him.

References

1. D. Eisenbud and P. Griffith, Serial rings; J. Algebra 17 (1971) 389-400.
2. K. M. Benabdullah, J. M. Irwin and M. Rafiq, N-high subgroups of abelian p-groups. Archiv. Der. Math. 25 (1974) 29-34.
3. M. Zubair Khan, Modules behaving like torsion abelian groups. Communicated.
4. M. Zubair Khan: On a generalization of a theorem of Erdelyi. Communicated.
5. S. Singh, Modules over hereditary Noetherian prime rings. Can. J. Math. 27 (1975) 867-883.
6. S. Singh, Modules over hereditary Noetherian prime rings. Can. J. Math. 28 (1976) 73-82.
7. S. Singh, Some decomposition Theorems in abelian groups and their generalizations: Ring Theory; Proc. of Ohio Univ. Conference Marcel Dekker N.Y. 1976.

Department of Mathematics,
Aligarh Muslim University, Aligarh 202001 (India).

