BULL. AUSTRAL. MATH. SOC. VOL. 20 (1979), 152-154.

Multiplier problems for spaces of continuous functions with p —summable transforms

Lynette Myra Bloom (née Butler)

The space A^p , $p \in [1, \infty)$, is defined as the set of those functions on the circle group T that are continuous and have *p*-summable Fourier transforms. Each A^p space will be normed by $N_p : f \to ||f||_{\infty} + ||\hat{f}||_p$, under which it is a Banach space. In this thesis we are concerned with these spaces and both their Fourier (or convolution) and pointwise multiplier spaces.

In Chapter 2 we consider the spaces A^p in detail. In particular, we prove that A^p , $p \in (1, 2)$, is not an algebra and establish constructively the strict inclusion results

$$\bigcup_{p \in [1,q)} A^{p} \subsetneq A^{q}, \text{ if } q \in (1, 2],$$

and

$$A^{q} \neq \bigcap_{p \in (q,2]} A^{p}, \text{ if } q \in [1,2)$$

In Chapter 3 we consider the spaces (A^p, A^q) of Fourier multipliers from A^p to A^q . We identify $M + Fl^{p'}$ as the strong dual of A^p , and prove that $(A^p, A^q) = M + Fl^{p'}$ if $p \in [1, 2]$, $q \in [p, 2]$. In the

Received 27 March 1979. Thesis submitted to the Australian National University, February 1978. Degree approved, March 1979. Supervisors: Professor R.E. Edwards, Dr R.J. Loy.

case $p \in (1, 2]$, $q \in [1, p)$, we give a sufficient and several necessary conditions for membership of (A^p, A^q) . In addition, we establish constructively the strict inclusion results

$$(A^q, A^q) \not\subseteq \bigcap_{p \in [1,q)} (A^p, A^p)$$
, if $q \in (1, 2]$,

and

$$\bigcup_{p \in (q,2]} (A^p, A^q) \neq (A^q, A^q), \text{ if } q \in [1, 2).$$

In Appendix B we identify the idempotent elements of $({\tt A}^p,\,{\tt A}^q)$.

In Chapter 4 we consider the pointwise multiplier spaces $M(A^p, A^p)$. It is proved there that $M(A^p, A^q) = \{0\}$ when $2 \ge p > q \ge 1$. Here, and in Appendix B, we establish various inclusion results for these multiplier spaces and prove several results involving the translation-continuity of functions in $M(A^p, A^p)$. With the aid of results in Appendix A we obtain sufficient conditions for membership of $M(A^p, A^p)$ in such a way as to show that the functions so obtained are translation-continuous. In Appendix B we prove that $M(A^p, A^p) = M_p \cap C$, $p \in [1, 2]$, where M_p is the set of $f \in L^{\infty}$ for which $\hat{f} \star t^p \subseteq t^p$. We then discuss some consequences of this, including the result that the maximal ideal space Δ_p of $M(A^p)$ cannot be identified with T.

An analogue, for non-discrete locally compact abelian groups, of the strict inclusion results for the A^p spaces has been given by Hewitt and Ritter in [4]. The material from Chapter 2 and Chapter 3 has appeared in [3] and [1]. The results concerning idempotent elements of (A^p, A^q) have since been extended to arbitrary compact abelian groups and will appear in [2].

References

- [1] Lynette M. Bloom, "The Fourier multiplier problem for spaces of continuous functions with p-summable transforms", J. Austral. Math. Soc. 17 (1974), 319-331.
- [2] Lynette M. Bloom and Walter R. Bloom, "Idempotent Fourier multipliers on spaces of continuous functions with p-summable transforms", *Proc. Amer. Math. Soc.* (to appear).
- [3] Lynette M. Butler, "Certain non-algebras in harmonic analysis", Bull. Austral. Math. Soc. 4 (1971), 247-254.
- [4] Edwin Hewitt und Gunter Ritter, "Über die Integrierbarkeit von Fourier-Transformierten auf Gruppen. Teil 1. Stetige Funktionen mit kompaktem Träger und eine Bemerkung über hyperbolische Differentialoperatoren", Math. Ann. 224 (1976), 77-96.