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Abstract

The central role of such epistemic concepts as theory, explanation, model, or mechanism is rarely
questioned in philosophy of science. Yet, what is their actual use in the practice of science?
Here, we deploy text-mining methods to investigate the usage of 61 epistemic notions in a
corpus of full-text articles from the biological and biomedical sciences (N = 73,771). The
influence of disciplinary context is also examined by splitting the corpus into subdisciplinary
clusters. The results reveal the intricate semantic networks that these concepts actually form
in the scientific discourse, not always following our intuitions, at least in some parts of
science.

|. Introduction

The explication of epistemic concepts—explanation, model, theory, and many others—
occupies a central place in the philosophy of science (Carnap 1950; Maher 2007; Justus
2012; Cappelen 2018). One only needs to think, for instance, about the numerous
publications the notion of mechanism has triggered in the last couple of decades
(Machamer et al. 2000; Bechtel and Abrahamsen 2005; Craver 2007; Glennan 2017). The
rationale for this type of philosophical work is to be found in the roles these concepts
play in the elaboration and formulation of scientific knowledge. Because these roles
are often abstracted from specific case studies, a question arises as to their actual
representativeness. The question is not new; for instance, some have criticized the
lack of relevance of the early physics-inspired philosophy of science to the sciences at
large and to the biological sciences in particular (Hull 1974; Ruse 1973; Grene and
Depew 2004; Rosenberg and McShea 2008). Also, by often targeting epistemic concepts
in relative isolation from one another, conceptual explication contributes to what can
be thought of as a “silo view” of epistemic concepts, even if nuances exist (e.g., the
concept of mechanism, for instance, has often been explicated with a view to
examining its contribution to the concept of explanation). A most important issue
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would therefore be to get a good footing about the actual usage of epistemic concepts
in science: Which concepts are indeed used? In which contexts?

Using text-mining approaches, Overton examined the usage of the term explanation
in science (N =781, journal Science) and found the term to be more frequently used
than in nonscientific texts (Overton 2013). Similarly, McPhetres and colleagues
recently investigated the usage of theory in psychological research specifically
(N=12,225, journal Psychological Science) and found the term present in 53.6% of
articles and referring to over 350 different named theories (McPhetres et al. 2021).!
Research has also been done on the use of epistemic virtues (through the Journal
Storage [JSTOR] Data for Research interface), highlighting the predominance of
simplicity, accuracy, and consistency over other virtues such as fruitfulness or testability,
but with differences depending on their application to theories, hypotheses, or models
(Mizrahi 2022).

Beyond these studies that we were aware of, several questions remain, notably
about the relative significance of numerous other epistemic terms, the possible
influence of disciplinary context on terminological usage, and the relationships that
epistemic terms entertain with one another. It is indeed quite likely that science and
scientists mobilize a plurality of epistemic concepts in conjunction with one another
while navigating the variegated epistemic landscapes they encounter. Hence, the
objective of the present study was to investigate the actual usage of a large set of
epistemic terms in scientific practice.

For feasibility reasons, we limited our domain of investigation to several of the
biological and biomedical sciences. This choice was in part triggered by the
availability of a corpus of full-text articles from the BioMed Central collection of
journals (N =73,711), to which we chose to apply quantitative text-mining methods.
This was done with a view to assessing the relative significance of epistemic concepts
and their relationships with one another. The present work builds on a previous study
that examined the usage of six epistemic terms in that same corpus (theory, model,
mechanism, explanation, understanding, and prediction) based on terminological co-
occurrences (Malaterre and Léonard, 2023). Here, we targeted a much larger
collection of terms and improved on the methods to identify sets of terms expressing
the same concept.? We defined 61 “epistemic fields,” which are collections of related
terms considered to be epistemic markers of the chosen concepts. We then measured
the frequency of occurrence of these epistemic fields in the corpus articles and
investigated the correlation networks they formed. We also examined the influence of
disciplinary context on concept. The resulting picture is one in which epistemic
concepts form complex networks of semantic dependencies that sometimes align, but
sometimes not, with philosophical conceptual explications.

We first describe the text-mining methods we used (sec. 2) and present our results
in three stages: frequencies of epistemic fields across the entire corpus (sec. 3),
correlations between epistemic fields across the entire corpus (sec. 4), and influence
of disciplinary context on semantic field usage (sec. 5). Finally, the results are
discussed together with future directions for research (sec. 6).

! We thank Maarten Derksen for this reference.
% For example, explanation can be expressed by the term explanation but also by the verb to explain and
its multiple grammatical forms.
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Figure |. Research design. Three major steps of computational methods, from corpus-data preparation to
semantic field correlation analyses. (Textual corpus in dark blue, data in light blue, operations in orange,
analyses in red.) Figure in color online.

2. Methodology

The main intuition that drives computational textual analyses is that words are not
used at random for expressing ideas but in specific patterns, whose investigation can
in turn shed light on the semantic context of these words (Firth 1957). Computational
approaches have turned this intuition into effective algorithms and methods that
make it possible to mine word patterns so as to shed light on the semantic content of
specific corpora (Aggarwal 2015). Such approaches are starting to be used in history
and philosophy of science (HPS) studies (Overton 2013; Pence and Ramsey 2018;
Malaterre et al. 2019; Noichl 2021; Mizrahi 2020; Khelfaoui et al. 2021). Here, we focus
on terminological frequency analyses and the identification of correlation patterns
between groups of terms (notably, between what we call “epistemic fields”). The
research design includes three main steps (fig. 1).

The first step consisted of preparing the corpus and data for analysis. The working
corpus was retrieved from Malaterre and Léonard (2023) and consisted of the full-text
content of 73,771 articles from the BioMed collection that had been cleaned and
lemmatized (i.e., terms had been converted to their dictionary forms, for instance,
models to model) and sorted into seven disciplinary clusters (based on topic-modeling
and k-means clustering). An initial major task consisted of preparing a list of
“epistemic markers” or target epistemic terms that could be taken as indicators
of specific epistemic concepts. We proceeded in two main stages. We built a first list of
terms by analyzing the co-occurrence matrices of the six epistemic terms that had
been targeted by Malaterre and Léonard (2023) (explanation, understanding, prediction,
model, theory, mechanism). These matrices included co-occurrences measured over the
entire corpus as well as co-occurrences measured in each of the seven disciplinary
clusters. The extraction of the top-20 co-occurring terms across all matrices resulted
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in a list of 202 unique terms, which were split into three main groups: 52 epistemic
terms (e.g., experiment, confirm, accuracy), 52 disciplinary terms (e.g., molecular, disease,
selection), and 98 common terms that were found to be too generic or difficult to
interpret and were left aside (e.g., number, result, change, system, difference). Second, to
get a broader coverage of epistemic concepts, we analyzed the most frequently used
terms in the overall corpus (8,282 terms present in at least 1,000 documents each). In
complement, a thesaurus search was run for synonyms. This resulted in the
identification of 159 additional epistemic terms of potential interest. Combining the
terms identified through these two stages resulted in a list of 211 target epistemic
markers and 52 disciplinary terms. A second task then consisted of sorting these 263
terms according to their semantic content. For instance, assume, hypothesis, and
suppose all share similar semantic content. This manual operation resulted in 79
“semantic fields” (noted in bold italic typeface): 61 “epistemic fields” and 18
“disciplinary fields.” The 61 epistemic fields were further split into four main types
depending on the different facets of knowledge they were found to highlight more
specifically: 9 epistemic fields were associated with the process of discovery (e.g.,
method-approach), 18 fields were characterized as justification (e.g., confirm,
plausible), 25 fields concerned specific epistemic objects (e.g., model, process), and
9 fields were identified as epistemic virtues (e.g., accuracy, explain) (see table 1 for the
list of semantic fields and their terms).

The second step consisted of measuring the presence of the 79 semantic fields
across the entire corpus of 73,771 articles. The occurrence of each field in each
document was calculated (by counting the number of terms related to each field) and
averaged over all documents in the corpus.® This resulted in an overall occurrence
map showing the relative significance of each field in the entire corpus. A subsequent
analysis consisted of measuring semantic field occurrences at the paragraph
level (n = 29,942,151 paragraphs) for each article and then calculating the Pearson
correlations between semantic fields at the paragraph level.* The reason for
moving from article level to paragraph level was to capture tighter—hence more
meaningful—conjunctions between semantic fields. The resulting 79 x 79
correlation matrix was used to build a correlation network between semantic
fields (limited to correlations above .1), and a Louvain community detection was
carried out (Gephi implementation, with default hyperparameter values) to
identify the most significant groups of semantic fields.

In a third step, the influence of disciplinary context was investigated by splitting
the corpus into seven subcorpora according to article disciplinary clusters as defined
by Malaterre and Léonard (2023) (see table 2). Similar analyses as those of step 2 were
then carried out for each disciplinary cluster, resulting in seven semantic field
correlation networks. In addition, original text excerpts were retrieved where pairs of

3 The measure of the arithmetic means was done with custom Python code; see the Supplementary
Information section.

4 To check whether the sparsity of the semantic field x paragraph matrix affected the similarity
measure, both Pearson correlation and cosine similarity were implemented. Because the results were
extremely consistent with one another—especially given our objectives of understanding the most
salient features of epistemic term usage in the corpus—we chose here to report the results in terms of
Pearson correlation (all ps < .001), which is intuitively easier to interpret.
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Table |. The 79 Semantic Fields (Noted in Bold Italic Typeface) Sorted by Type and with Their Respective

Terms
Types Semantic fields Terms (lemma)
disciplinary algorithm algorithm
animal animal, mouse, rat
behavior behavior, behaviour
cancer cancer, metastasis, tumor
care care, health, social
cell cell, stem
clinical clinical
demographics age, participant, patient, woman
evolution coevolution, evolution, evolutionary
gene code, DNA, gene, genetic, genome, miRNA, sequence
human human
molecular expression, molecular, pathway, regulate, regulation,
regulatory, signal, site, substitution
mortality-survival mortality, survival
pathology disease, injury, pathogenesis, prognosis
phylogenetics tree
protein acid, amino, protein
selection selection
therapy resistance, treatment
discovery  analysis analyse, analysis, analyze
discover discover, discovery, uncover
experiment experiment, experimental, experimentally, experimentation,
trial
interpretation interpret, interpretation
investigate exploration, exploratory, explore, investigate, investigation
method-approach approach, method, methodological, methodology, protocol
observation detect, detectable, detection, observable, observation,
observational, observe
test test
underlie underlie
justification alternative alternative
analogy analog, analogy, analogous, analogue
certainty certainty, proof, true, truth, well-established, well-known
coherence coherence, coherent, compatibility, compatible

(Continued)
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Table |. (Continued)

Types Semantic fields Terms (lemma)
confirm confirm, confirmation, confirmatory, prove, valid, validate,
validation, verification, verify
fit fit
inconsistency conflict, contradict, contradiction, contradictory, incoherence,

incoherent, inconsistency, inconsistent

justification justification, justify

know know, knowledge

learn learn, learning

plausible credibility, credible, plausibility, plausible, plausibly
possible possibility, possible, possibly, potential, potentially, putative
probable likelihood, likely, probable, probably

refute incorrect, refutation, refute, reject, rejection
reproducibility reproducibility, reproducible, replicability, replicable
suggest proposal, propose, suggest, suggestion, suggestive
support support, supportive

uncertainty doubt, doubtful, fallibility, fallible, questionable, suspicion,

suspicious, uncertain, uncertainty, unclear

object axiom axiom
cause causal, causality, causation, cause, influence
data data, dataset, datum
effect effect
equation equation, formula
estimate estimate, estimation
evidence empirical, evidence, evidence-based
framework framework
generalisation generalisation, generalise, generalizability, generalizable,

generalization, generalize

hypothesis assume, assumption, conjecture, hypothesis, hypothesise,
hypothesize, hypothetical, scenario, suppose, supposition

information information

law law, lawful, lawfulness

mathematics- correlate, correlation, Cox, distribution, error, linear, logistic,
statistics multivariate, probabilistic, probability, regression, statistic,

statistical, value

mechanism mechanism, mechanistic

model model, modeling

(Continued)
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Table |I. (Continued)

Types Semantic fields Terms (lemma)

parameter-variable parameter, variable

pattern pattern
phenomena phenomenon
process process
property property
response response
role-function function, role
structure structure
theorem theorem
theory theory
virtue accuracy accuracy, accurate
clarify clarification, clarify, elucidate, elucidation, explicate
explain explain, explanation, explanatory
integration integrate, integration, integrative
predict expect, expectation, forecast, foresee, predict, prediction,

predictive, predictor

simplicity parsimonious, parsimony, simple, simplicity
understand understand, understanding

unification unification, unify

usefulness useful, usefulness, utility, valuable

targeted terms could be found to co-occur. These excerpts helped interpret the
underlying context of semantic field correlations.

3. Occurrences of semantic fields across the entire corpus

The relative importance of the targeted semantic fields throughout the corpus can be
estimated by examining the average frequency of corresponding groups of terms per
article (fig. 2).

Disciplinary fields characterize the disciplinary orientations of the corpus (left-
hand side of the graph in fig. 2, in beige). Unsurprisingly, they also match the
disciplinary clusters of articles identified by Malaterre and Léonard (2023) (table 2). A
dominant share of terms concerns research about cells, genes, and molecular biology
in a broad sense, as denoted by the relative significance of the semantic fields cell,
gene, protein, and molecular (this result accords well with the presence of the article
cluster CELL AND MOLECULAR BIOLOGY but also with the clusters GENETICS, DISEASE BIOLOGY,
oTHeRs and GENOMICS AND PHYLOGENETICS). A biomedical orientation is clearly visible
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Table 2. The Seven Article Clusters (Noted in Small Caps Typeface) with Their Number of Articles and
Their Topical Profiles

Cluster names # docs Top-5 topics

BIOINFORMATICS AND 5113 Method-model, Network-model, Database-

METHODS software, Genetic expression, Protein-
domain

CANCER RESEARCH 2,822 Cancer-tumor, Prognostic, Cell-oncology,
Genetic expression, Genetic expression
RNA

CELL AND MOLECULAR 12,544 Cell signaling, Cell-oncology, Genetic

BIOLOGY pathway, Immunology, Cell-development

GENETICS, DISEASE 23,263 Enzyme-production, Database software,

BIOLOGY, OTHERS Method measurement, Hematology,
Change-effect

GENOMICS AND 6,504 Evolution and phylogenetics, Genetic

PHYLOGENETICS sequence, Protein domain, Plant genetics
and species, Population region

HEALTH AND CLINICAL 19,134 Clinical trials, Health care, Mental health,

RESEARCH Demographics, Statistics

PuBLIC HEALTH 4,391 Health research and policy, Community

health, Linguistic emphasis, Health care,
Survey-report

Figure 2. Average occurrence of the semantic fields per document over the complete corpus. (Semantic
fields are grouped and colored by type. Surface area is proportional to the average number of occurrences of
terms related to each semantic field; to give an idea of scale: suggest, in the upper right-hand corner, has an
average of 5.1 occurrences per article. Numerical values are available in the “Data_for_graphs” file; see
Supplementary Information section.) Figure in color online.
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through the strong presence of terms related to cancer, therapy, clinical, and
pathology, as well as mortality-survival (which makes sense, given the presence of
such article clusters as CANCER RESEARCH; GENETICS, DISEASE BIOLOGY, OTHERS; and HEALTH
AND CLINICAL RESEARCH in the corpus). The semantic field demographics captures the
presence of terms that relate to the description of patients, as is typically the case in
clinical trials and public health studies; the fields care and behavior are also connected
to health issues, notably mental health (these last three fields partly correspond to
the clusters HEALTH AND CLINICAL RESEARCH and PusLic HEALTH). The fields animal and
human denote research with animal models, as can be the case in cellular biology and
cancer research (as in the clusters CANCER RESEARCH and CELL AND MOLECULAR BIOLOGY).
The three fields evolution, selection, and phylogenetics characterize research in
evolutionary biology and phylogenetics (as is distinctive of the cluster Genomics anD
PHYLOGENETICS). A relatively less frequent disciplinary field is algorithm, which denotes
research in bioinformatics (this field relates to the article cluster BIOINFORMATICS AND
METHODS).

The four types of epistemic fields are found on the right-hand side of the graph
(fig. 2). Among the epistemic fields that relate to epistemic objects (in blue), several of
the most significant fields denote the centrality of modeling in the practice of science.
This is the case, of course, for the field model but also for data, mathematics-statistics,
parameter-variable, and estimate. By contrast, theories and generalizations are quite
rarely used, as shown by the reduced size of fields such as theory and generalization. In
between these extremes, there appears to be a moderately significant usage of
hypothesis-related terms, as denoted by the medium-size field hypothesis. The results
also show quite a strong usage of causal notions, as revealed by the relative
importance of such fields as cause, effect, and response. Finally, specific targets of
knowledge, such as mechanisms, structures, patterns, and processes, are also found in
the corpus, as denoted by the presence of the corresponding epistemic fields
mechanism, structure, pattern, and process.

The second-most-represented epistemic type concerns discovery-related episte-
mic fields (in orange, fig. 2). Terms that relate to analysis and observation are among
the most frequent, as denoted by the significance of the corresponding epistemic
fields analysis and observation. Terms that concern experiments and tests are also
quite significantly present throughout the corpus, as shown by the relative
importance of experiment and test. Note the relatively frequent mention of
methods-related terms, as captured by the epistemic field method-approach.

When it comes to modalities of justification (in red, fig. 2), one notes the
dominance of weak forms of justification that consist of suggestions, possibilities, or
probabilities, as denoted by the predominance of the corresponding semantic fields
possible, suggest, probable, and even alternative. The second-most-significant group of
justification-related epistemic fields includes somewhat stronger forms of justifica-
tion, such as confirmation or corroboration, with the fields confirm and support. On
the other hand, negative forms of epistemic appraisal that would notably consist of
refuting or establishing incompatibilities appear relatively rare, as shown by the
relatively infrequent usage of terms that relate to inconsistency, for instance.
Similarly, very strong forms of justification—for instance, in terms of truth or
certainty—are also rare, as shown notably by the reduced size of the field certainty.
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Finally, when it comes to epistemic virtues (in green, fig. 2), the dominant semantic
field is predict. This shows the importance of prediction in science, which is much
more significant than other virtues, such as explanation or understanding (as
characterized by the fields explain and understand). Other virtues that are notably
present, although less frequent, are accuracy and, to a lesser extent, simplicity, as
denoted by their respective epistemic fields.

Note that several epistemic fields are absent from the graph, their presence in the
corpus being too low (average occurrence < 0.25 terms/article). Among epistemic
objects, law is noticeably absent, showing that the notion of law (e.g., as in “law of
nature”) is clearly not mobilized in the biological and biomedical sciences of the
corpus, despite the amount of conceptual work the notion has triggered in philosophy
of biology, not to mention philosophy of science (for a review, see, e.g., Hamilton
2007). In terms of epistemic virtues, the field unification is also hardly present at all.
This notion seems to play no effective role in the practice of science, not even in
connection with explanation or understanding, which in particular seems to run
contrary to unification-based accounts of explanation (e.g., Friedman 1974; Kitcher
1985). Several epistemic fields that relate to justification are also remarkably absent.
This is the case for the field refute, which indicates that the notion of refutation is
hardly at work in the practice of science. In fact, the results tend to show that
epistemic justification mostly happens in terms of possibility and probability:
negative forms of justification are rarely mobilized, if at all. In short, science is more
probabilistic and Bayesian than Popperian. The field coherence is also very rare across
the corpus, which shows that the notion is not much used: the fact that hypotheses or
models exhibit some form of coherence with other hypotheses or models and the rest
of science appears to play little or no role in practice. Similar comments apply to the
field analogy. Despite extensive research by philosophers (for a review, see, e.g.,
Bartha 2019), the notion of analogy hardly seems to be mobilized, at least explicitly, in
actual scientific articles. Finally, note that the field reproducibility is also barely
present, if at all. Even if reproducibility and replicability should be desirable
properties of scientific knowledge, the notions are not discussed in articles.

4. Correlations between semantic fields across the entire corpus

In order to analyze not just the quantitative significance of epistemic fields but also
their relatedness with one another, correlation analyses were run over the whole
corpus, resulting in the correlation network shown in fig. 3 (Here, semantic fields are
not colored depending on their type, as was the case in fig. 2, but depending on the
subnetworks they tend to form when frequently used in conjunction with one another
in article paragraphs). As is immediately visible, the correlation network is dominated
by three large subnetworks of semantic fields, with a small fourth one attached to the
most central subnetwork.

The largest subnetwork (18 semantic fields, center position in fig. 3, in blue)
includes several disciplinary fields that relate to molecular biology, genetics, and
cellular biology (in decreasing order of occurrence: gene, molecular, cell, and protein
but also human and animal). The epistemic field role-function is one of the fields that
are most connected to these disciplinary fields, meaning that the identification of
functions and roles is one major epistemic target for research on molecular processes
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Figure 3. Correlation network of the most significant semantic fields over the whole corpus. (Correlations
calculated at the paragraph level; for analysis, only correlations of >0.| were kept; all ps < .001. Colors
indicate correlation clusters based on Louvain community detection, node size is proportional to average
occurrence in the corpus, and edge thickness is proportional to correlation strength; rendering was done
with ForceAtlas2 on Gephi [Bastian et al. 2009]. To give an idea of scale: suggest, in the upper-middle part of
the network, has an average of 5.1 occurrences per article. Numerical values are available in the
“Data_for_graphs” file; see Supplementary Information section.) Figure in color online.

or entities, notably proteins and genes (see text excerpts A10-18 in table S1, available
in the Supplementary Information). Response and pattern are also frequently used in
connection with molecular (A20-21). Role-function is correlated with process but also,
and more significantly, with suggest, which is in turn correlated with evidence and
observation; this tends to indicate that the role or function of molecular objects such
as proteins is often, at most, suggested by observation and evidence (A30-34). This
hypothetical or suggested epistemic status is also reinforced by the relatively
frequent usage of possible (A35-38). Another significant epistemic object in this
subnetwork—although only about half as significant as role-function—is mechanism.
This field is strongly connected to molecular but also to gene and cell, thereby
corroborating the significant role that mechanisms play in molecular and cellular
biology. Similarly to role-function, mechanism is also significantly correlated with
suggest, indicating an epistemic status that is often taken to be hypothetical (A40-41).
Mechanism is also frequently found in conjunction with underlie, as well as with
clarify and understand. Mechanisms are thereby addressed by scientists as things that
underlie a phenomenon of interest (e.g., an effect, a disease) and that are to be
uncovered and clarified (A42-44). The correlation of mechanism with understand is
ambivalent: it could mean that mechanisms provide some form of understanding, for
instance, of molecular phenomena (as is defended by the new mechanicist philosophy).
But it could be taken to mean that mechanisms are things that need to be understood.
Most text excerpts by far corroborate the latter (A45-48). This is not to say that
mechanisms never provide understanding but that they are usually rather thought of as
objects that need to be understood. This finding attributes a quite different epistemic role
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to the concept of mechanism than the one identified by the mechanicist philosophy
(Machamer et al. 2000): mechanisms are rarely thought of as epistemic objects that have a
form of explanatory epistemic virtue (understanding) but are more often conceived as
research objectives, so to speak, in a context of discovery.

The second-largest subnetwork (in green in fig. 3, left-hand side) includes
disciplinary fields that relate to data analysis and the elaboration of models: data,
analysis, mathematics-statistics, and model. The field data plays a very central role (in
conjunction with information): it is strongly correlated with interpretation and
analysis, the latter being, in turn, correlated with mathematics-statistics (and with the
disciplinary field gene). This suggests that data, in practice, are often submitted to
interpretation and analysis that are mediated by mathematical and statistical
approaches (see excerpts B10-19). The epistemic field mathematics-statistics is also
strongly correlated with the fields parameter-variable and model, the latter also being
correlated with fit. This shows the importance of model fitting (B20-22), together
with the strong role of statistics as the basis for both model building and model
testing (as shown by the significant correlation of test with mathematics-statistics)
(B23-26). Interestingly, the notion of test is much more connected to the notion of
model (through the use of statistical tests) than to the notions of hypothesis, theory,
and experiment. But note the presence of hypothesis and its correlation with model
and mathematics-statistics: this is explained in particular by the practice of null-
hypothesis testing in modeling (B27) but also by the testing of more general
hypotheses, as would be expected in science (B28-29). The epistemic function of
models is clearly one of prediction, as shown by the strong correlation between model
and predict (B30-33). In this respect, accuracy is the most sought-after epistemic
virtue (strong correlation between predict and accuracy) (B34-36). In the disciplinary
context of the present corpus, prediction notably concerns the structure of molecular
entities such as proteins and others (correlation of predict with structure and protein)
(B37-39). On the contrary, note the absence of a significant correlation between model
and explain or understand. This means that neither explanation nor understanding is
found to be a desirable characteristic of models, a finding that runs somewhat
contrary to theses defending the explanatory role of models in science (e.g., Strevens
2008; Potochnik 2017).

The third largest subnetwork (in red in fig. 3, right-hand side) has to do with the
health sciences as broadly construed. Note the central position of demographics in
this cluster, which relates to the frequent usage of terms describing populations of
patients. This field is most strongly correlated with pathology, therapy, and clinical,
which denotes research on public health and epidemiology, as well as clinical studies
(C10-15). It is also correlated with care and support, denoting research on health
support and health care (C16-19) (note that support is not used here in the sense of
epistemic justification). Demographics is correlated with mortality-survival and
cancer, too, denoting the presence of cancer research in the corpus (C20-23). This
latter field sits at the border between the health sciences subnetwork and the
molecular biology subnetwork, in particular because of its strong correlation with cell
and, to a lesser extent, with molecular. From an epistemic viewpoint, causal notions
appear to be relatively frequent in this health sciences subnetwork, and possibly one
of its epistemic characteristics, as shown by the size of cause and effect, notably in
conjunction with the disciplinary fields pathology and therapy (C30-33). Interestingly,
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the field experiment is frequently used in this disciplinary context (correlation with
clinical) and not in the molecular biology context (as characterized by the central
subnetwork, in blue in fig. 3). Text excerpts indicate that terminological usage often
relates to experiments on animal models and comparison with clinical data (C40-41).

Finally, the fourth subnetwork (in pink in fig. 3) denotes research in evolutionary
biology and phylogenetics. This subnetwork comprises only three disciplinary fields
(evolution, selection, and phylogenetics) and no epistemic field at this level of analysis.
Although conjunctions of terms pertaining to evolution and selection usually tend to
characterize research on Darwinian evolution (D10-11), conjunctions of terms related
to evolution and phylogenetics appear to specifically pick out taxonomical works
(D12-13). In any case, most of these studies are gene based (hence the connection of
this subnetwork to the field gene of the molecular biology subnetwork).

Note that the overall network comprises 48 of the 77 targeted semantic fields,
meaning that 29 fields were left out. This can be explained by their relatively low level
of occurrence in corpus articles and by insufficient correlation with other fields. In
particular, missing fields of the type object include property, generalization, law, and
theory. This indicates that corresponding epistemic objects are actually rarely
mobilized in scientific practice, despite being frequently discussed in philosophy of
science (e.g., Nagel 1961; Carnap 1966; Suppe 1989; Savage 1990; Hamilton 2007).
Noticeable justification fields that are absent are analogy and coherence, as well
as certainty and confirm (as noted in sec. 3). Although it could be expected that
certainty and truth would not be much present (being too strong for the biological
and biomedical sciences), the results show that confirmation-related concepts are
also very little used in the practice of science, which can appear somewhat
counterintuitive. Finally, noticeable missing fields related to epistemic virtues include
explain, unification, integration, and simplicity. Explanation therefore does not appear
to be a much-discussed topic during the course of scientific investigation (nor does
understanding, as discussed earlier). Similarly, unification, integration, and simplicity
do not play a significant role. This contrasts quite starkly with the attention these
concepts have attracted from numerous philosophers, notably since the 1950s (e.g.,
Hempel 1965; Friedman 1974; Kitcher 1985; Mitchell 2003; Salmon 1989; Sober 2015).

5. Effect of disciplinary context on semantic fields

To investigate whether the usage of epistemic concepts depended on disciplinary
context, we made use of the relative diversity of the articles found in the corpus.
Although all articles stem from the biological and biomedical sciences, broadly
speaking, there are notable differences in terms of subdisciplines, ranging from
molecular biology to phylogenetics and clinical research. To capture these
differences, we used the article clustering conducted by Malaterre and Léonard
(2023) to build semantic field correlation networks for all seven disciplinary clusters
(see fig. 4). As could be expected, the relative significance of disciplinary fields reflects
the disciplinary orientations of the article clusters (as depicted by their topical
profiles; see table 2; for instance, as shown in fig. 4b, cancer is a dominant field in the
correlation network stemming from the cluster CANCER RESEARCH). In what follows, we
mostly leave aside disciplinary fields and focus on epistemic fields. The networks
partly display features that were already apparent at the level of the entire corpus but
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(a) Bioinformatics and methods (b) Cancer research

(c) cell and molecular biology (d) Genetics, disease biology, others

(e) Genomics and phylogenetics (f) Health and clinical research  (g) Public health

Figure 4. Correlation network of the most significant semantic fields for the seven disciplinary clusters.
(Correlations calculated at the paragraph level; for analysis, only correlations > 0.] were kept; all ps < .001.
Node size is proportional to average occurrence in the cluster; edge thickness is proportional to correlation
strength. Subnetwork identification is based on Louvain community detection; subnetwork colors depend
on the size of the network, from the largest subnetwork in blue to the smallest subnetwork in brown.
Rendering was done with ForceAtlas on Gephi. To give an idea of scale: model has an average of 25.6
occurrences per article in network (a) and 6.1 in network (g). Numerical values are available in the
“Data_for_graphs” file; see Supplementary Information section.) Figure in color online.
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also—and this is what matters here—specificities that depend on clusters’
disciplinary orientations and their topical profiles.

Consider the correlation network for the cluster BIOINFORMATICS AND METHODS
(fig. 4a): the fields model, fit, parameter, and mathematics-statistics are all strongly
correlated, showing the importance of statistical model fitting and testing (CA10-11).
Refute, which was absent from the corpus-level network, is here seen in conjunction
with hypothesis: refutation is therefore sometimes at work in science, although not
very frequently, and in relation to hypotheses, notably null hypotheses, but not
theories (CA12-13). Note also the usage of causal notions such as effect and cause in
connection with hypothesis, typically denoting that hypotheses are sometimes about
observed effects and possible causes (CA14-15). Note the correlation threads between
model, predict, structure, and protein: as noted earlier, models are often used to
predict, and such prediction often targets the structure of molecular entities such as
proteins (CA20-21). A key virtue of prediction clearly is accuracy, as denoted by the
strong correlation between predict and accuracy (CA22-23), with such accuracy
resulting from the use of methods (correlation with method-approach) that are
specifically developed for improving predictive accuracy (CA24-25). Confirmation
tends to apply to prediction (correlation of confirm and predict) (CA26-27, although
sometimes confirmation concerns prediction methods, e.g., CA28). The relatively
strong correlations between data, method-approach, and analysis indicate the
importance of data analysis, and additional correlations with selection reveal the use
of feature- and variable-selection methods and data-reduction techniques (CA30-32).
Note the epistemic field integration and its correlation with data, which captures the
practical issue of integrating data from multiple sources (CA33-34) rather than
theoretical integration (as is the case in, e.g., Mitchell [2003]). The field mechanism
exhibits some correlation with understand and molecular, but its role turns out to be
modest (low frequency and connectivity). As noted earlier, these correlations usually
do not denote any explanatory role of mechanisms but rather point to mechanisms as
objects in need of understanding (CA40, but see CA41). Both role-function and property
appear correlated to protein (in addition to structure, as mentioned earlier), meaning
that proteins are the focus of much research on their characteristics (CA50-52).

The correlation network of the cluster Cancer researcH (fig. 4b) exhibits strong
correlations between model, mathematics-statistics, and parameter, as in the network
of BIOINFORMATICS AND METHODS, denoting the importance of statistical model building
(CB10-11). One notable specificity is the correlation of model with animal, which
indicates the frequent use of animal models in this domain of research (CB12-13),
even when statistics are involved (CB14-15). As also noted earlier, the main epistemic
virtue of models is prediction, with accuracy if possible (as shown by the correlation
between model, predict, and accuracy). Here, prediction is directed toward a specific
objective: predicting survival or mortality (correlation with mortality-survival)
(CB16-17). The fields data, method-approach, analysis, mathematics-statistics, and
interpretation are again all connected, showing that data are often statistically
analyzed and interpreted (CA18-19). Defining a subnetwork of its own, mechanism is
found to be mostly correlated to understand, underlie, and clarify; these correlations
actually denote that mechanisms are things to be understood, not things that provide
understanding (CB20-22). In addition, discussions often concern how-possibly
mechanisms, as shown by correlations with possible and suggest (CB23), and the
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elucidation of related roles or functions (correlation with role-function) (CB24). Note
the correlations between support, evidence, and hypothesis, highlighting the role of
evidence in providing epistemic support, notably to hypotheses (CB30). Interestingly,
explain is found to be correlated with possible: often, explanations of specific
phenomena are not known but offered as possible (CB31-35). This indicates the key
role of how-possibly explanations, over and above how-actual explanations. There is
also a correlation between confirm and gene: confirmation is here predominantly tied
to the presence or role of specific genes (CB36-38), as opposed to epistemic objects
such as hypotheses, models, or theories (as could have been expected).

In the CELL AND MOLECULAR BIoLoGY network (fig. 4c), the fields model and animal are
strongly correlated (as in the cluster Cancer researcH), denoting the prevalence of
models in the sense of animal models (CC10-13). Note the absence of correlation with
predict in this disciplinary context; this corroborates the presence of a different type
of model concept in this article cluster compared to BIOINFORMATICS AND METHODS,
where models are used for prediction. This also makes sense given the correlation of
model with pathology, which notably captures research on animal models of specific
diseases (CC14-15). As in other clusters, data, analysis, mathematics-statistics, and
interpretation are all correlated. A specificity is the correlation with confirm. Data are
often said to confirm other epistemic objects, for instance, other studies or other
results (CC20-21), although the reverse can also be the case: sometimes results or
findings are said to confirm data (CC22). As seen in other clusters, mechanism turns
out to be correlated with underlie, understand, and clarify. 1t is also correlated with
role-function, which may denote different use contexts: for instance, a system can
have a role that is made possible by an underlying mechanism (CC30); elsewhere,
some entity may have a role within a mechanism (CC31). In any case, much
uncertainty is found in connection with mechanisms and associated roles and
functions, as shown by correlations with such fields as possible, probable, uncertainty,
and suggest (CC32-35). Support can be directed toward hypotheses (correlation of
support with hypothesis, CC40) or toward mechanisms (correlation with mechanism;
CC41). Note again the correlation between explain and possible; this denotes much of
the uncertainty that surrounds explanations, the latter often being formulated as
how-possibly explanations only (CC51-52).

As shown in the network for BioINFORMATICS AND METHODS, the fields model, fit,
parameter, and mathematics-statistics exhibit significant correlation in the network
for GENETICS, DISEASE BIOLOGY, OTHERS (fig. 4d). This shows the importance of statistical
model fitting in this disciplinary context (CD10-12). The correlation of model with
hypothesis maps with the confrontation of hypotheses (notably, null hypotheses) in
the context of model building (CD13-14). Further correlation of mathematics-statistics
with test reveals the ubiquity of statistical tests, for instance, to identify significant
variables in datasets (CD15-16), sometimes associated with specific statistical models
(CD17). Prediction accuracy is significant in this context, as shown earlier in the
network for BIOINFORMATICS AND METHODS (correlation of predict and accuracy) (CD18-
19). Note that accuracy is also often discussed in association with specific methods,
with some methods being known to provide more or less accuracy than others
(correlation of accuracy and method-approach) (CD20-21). The fields method-
approach, data, analysis, and mathematics-statistics exhibit tight correlations, notably
showing the importance of data analysis by means of different statistical approaches
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(CD22-23). The correlation of data with integration reveals the practical significance
of multiple-source data integration, notably to generate and test novel hypotheses on
the basis of varied sets of data (CD24-27). As shown in the network for BioINFORMATICS
AND METHODS, this specific epistemic role for integration concerns data and not models,
as might have been expected. Note the presence of much uncertainty in research,
with multiple correlations of the fields suggest, possible, and probable with such fields
as mechanism or role-function, indicating numerous discussions about how-possibly
mechanisms and how-possibly roles or functions (CD30-33). As seen in other
disciplinary networks, mechanism is also correlated with both underlie and
understand, typically in the sense that mechanisms that underlie phenomena of
interest need to be (better) understood (CD34-35). Note also the use of causal notions
such as cause and effect, mostly in connection with research on specific diseases
(correlation of cause and pathology) or modeling (correlation of effect and model):
diseases are often said to be caused by specific agents, pathogens, viruses, and so forth
(CD40-41), whereas models can be used to study the effects of certain variables
(CD42-43).

In Genomics AND PHYLOGENETICS (fig, 4e), the fields model, parameter-variable,
mathematics-statistics, and fit are correlated with one another, as seen also in
BIOINFORMATICS AND METHODS and GENETICS, DISEASE BIOLOGY, OTHERS, highlighting here,
too, the significance of (statistical) model fitting (CE10). Hypothesis and test are also
correlated to model, whereas refute is connected with hypothesis: both models and
hypotheses can be tested (CE11-12); sometimes hypotheses are tested with models
(CE13), and at other times, hypotheses are refuted (CE14-15; note here a relatively
rare occurrence of refutation). A peculiarity is the lack of a significant correlation of
model with predict (as encountered in CELL AND MOLECULAR BIOLOGY). The major
epistemic role of models here is to be fitted to (phylogenetic) data, not to make
predictions. Prediction is more frequently used in the context of molecular structures
(correlation between prediction, protein, structure, and gene) (CE20-21). Prediction
accuracy is still a major concern and is affected by the use of specific methods
(correlation between predict and accuracy, and with method-approach) (CE22-23). As
can be expected, predictions can get confirmed (CE24), and experiments may play a
confirmatory role (CE25) (correlations of predict with confirm and correlations of
confirm with experiment). Note here again that much uncertainty surrounds
mechanisms and functions (CE30-31) (correlations among suggest, possible, role-
function, and mechanism) and that mechanisms are epistemic objects in need of being
understood (CE32-33) (correlations of mechanism with underlie and understand).
Interestingly, mechanism is here correlated with evolution, which denotes discussions
about specific mechanisms of evolution (CE34-36) (not about whether evolution itself
should be considered a mechanism, as in, e.g., Barros [2008]). As for the correlation
between explain and hypothesis, it tends to capture instances of how-possibly
explanations (CE37-39). Data is again correlated with analysis and method-approach,
as well as with phylogenetics (disciplinary field). In this specific context, correlation
with simplicity denotes the significant use of the notion of simplicity/parsimony as
an epistemic value to sort explanations, interpretations, and hypotheses (CE40-41),
but also the use of specific methods that make use of parsimony, such as statistical
parsimony analyses and networks (CE42-43). Also note the correlation of phylogenetics
with support and inconsistency, for which this disciplinary context is a rare case of
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occurrence. This reveals the complementary use of supporting and contradicting
judgments (CE44-46). In other words, justification is not just a matter of corroboration
but also of noncontradiction of accepted hypotheses (or of contradiction of rival
hypotheses). Finally, causal notions appear to be connected to disease research (which is
still somehow present in this cluster, likely through genomics studies), as denoted by
correlations between pathology, effect, and cause.

The fields model, parameter-variable, mathematics-statistics, and fit are correlated
in the network for HEALTH AND CLINICAL RESEARCH, as seen elsewhere (fig. 4f). Modeling
appears to play a significant prediction-related role (CF10-11) (correlation with
predict). Here, too, analysis, data, and interpretation are strongly correlated, showing
the importance of data analysis (CF20). Uncertainty is also much present, as indicated
by correlations between evidence and suggest, as well as explain and possible: evidence
often only has a suggestive status (as opposed to being corroborative) (CF30-32),
whereas explanation is mentioned in the role of how-possibly explanation (CF33-34).
Causal notions are again seen very much in connection with disease and pathology
(correlation of cause with pathology and mortality-survival, correlation of effect with
therapy) (CF40-43). Mechanism plays a minor role in this disciplinary context (as
opposed to the central role it had in CANCER RESEARCH; CELL AND MOLECULAR BIOLOGY; OF
GENETICS, DISEASE BIOLOGY, OTHERS) and is only connected to underlie. Experiments
appear to be most often conducted in a clinical setting (as denoted by the correlation
between experiment and clinical) (CF50).

The network for PusLic HeaLTH (fig. 4g) bears some similarities with the network for
HEALTH AND CLINICAL RESEARCH. The fields model, parameter-variable, mathematics-
statistics, and fit are all correlated, with correlation also to predict, highlighting the
predictive role of statistical models (CG10). In this cluster, behavior is one particular
target of prediction, as well as what triggers the search for causes, notably causes that
may influence specific behavior patterns (CG20-22) (correlations between prediction,
cause, and behavior). Yet, and most interestingly in comparison to other clusters,
social psychology and behavior research appear to rely on the formulation of
theories, which in turn play an explanatory role (correlation of behavior, theory, and
explain). Mentioned theories include the theory of reasoned action, the theory of
planned behavior, and other diverse social cognitive theories (CG23-25), which are all
frequently endowed with explanatory power (CG26-28). Data, analysis, method-
approach, and interpretation are all correlated as well, as seen elsewhere, denoting the
importance of data analysis and the role of specific methods in this respect (CG30-31).
Notions of support, integration, and role or function tend, in this cluster, to be used in
a nonepistemic sense in connection with the notion of care—for instance, to discuss
whether specific organizational support may favor the integration of different types
of health-care services (CG40-43) (correlation of care with support, integration, and
role-function). Finally, note the correlation between process and understand, which
sometimes denotes research on the process of understanding (CG50) but more
frequently on biological processes as objects that need to be understood (CG51), quite
similar to the way mechanisms are also taken as targets for understanding in other
clusters, such as CELL AND MOLECULAR BIOLOGY; CANCER RESEARCH; and GENETICS, DISEASE
BIOLOGY, OTHERS.
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6. Discussion and concluding remarks

Word patterns matter because they denote the presence of specific concepts of
interest and the relationships these concepts have with one another. When the focus
is on epistemic terms, as in this research, investigating terminological usage in
scientific articles reveals the place that key epistemic concepts actually occupy in the
practice of science and sheds light on the intricate connections these concepts have
with one another, depending also on disciplinary context. This should be most
relevant to our own work as philosophers of science. Of course, one may argue that
the way philosophers talk about epistemic concepts will likely be different from the
way scientists talk about these same concepts, even more so if philosophers engage in
some form of normative conceptual reengineering. Yet if we think of our discipline as
capturing the way knowledge is actually built in the practice of science, then
philosophical reconstructions of key epistemic terms should be at least consistent
with how these concepts are used in scientific publications. Although the study
undertaken by Malaterre and Léonard (2023) had already noted the importance of
models, data, and prediction; the secondary role of explanations; and the ambivalent
correlation between mechanisms and understanding, that study was nevertheless
limited to six epistemic notions and their most frequent co-occurring terms. Here, the
research perimeter has been significantly enriched to encompass 61 epistemic fields
(understood as sets of terms with shared semantic content) covering a vast number of
epistemic objects and virtues, as well as concepts related to knowledge discovery and
justification.

Among the main findings, we noted here, too, the significance of models, data, and
prediction, corroborating the view that models are central epistemic objects in
science (Morgan and Morrison 1999; Weisberg 2012; Frigg and Nguyen 2020). Models
are found across all the biological and biomedical disciplines represented in the
corpus, although perhaps somewhat less frequently in cancer research and cellular
and molecular biology (where the notion of animal models tends to predominate
(Leonelli and Ankeny 2012; Levy and Currie 2015) and where much effort is also
deployed to identify mechanisms and the roles or functions of numerous molecular
entities). The significance of models goes together with the central role played by data
in day-to-day science: data are ubiquitous, as are mathematical and statistical notions
of equations, parameters, variables, estimates, and so forth. In this respect, a critical
activity that scientists pursue is the fitting of models to data: models are not just
conceived or elaborated on the basis of observations but are finely tuned to fit the
data. How this is done and how this affects the formation of knowledge deserve
further investigation, as do the complex relationships that models and data entertain
with one another (Krohs and Callebaut 2007; Leonelli 2019; Bokulich 2021). Another
striking point is the question of data integration, which surfaces in different
disciplinary contexts and is also worthy of further analysis.

Interestingly, models seem to play hardly any explanatory role at all, as our
findings did not highlight any significant role played by such epistemic virtues as
explanation or understanding. This contrasts quite starkly with the amount of work
these concepts have triggered in philosophy of science (e.g., Strevens 2008; Potochnik
2017). The epistemic virtue that dominates—and by far—the epistemic landscape
is that of prediction, much significantly as exhibited by models (especially in
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bioinformatics and in genomics and phylogenetics) and in connection with accuracy
(which triggers, in turn, specific methodological research, notably in bioinformatics).
Parsimony is sometimes mobilized as well, although quite rarely, and in specific
disciplinary contexts, such as bioinformatics and phylogenetics, and it would be
interesting to investigate why. This finding is consistent with the relatively more
frequent use of simplicity when referring to models in ecology and evolutionary
biology compared to other domains of biology, as reported by Mizrahi (2022).°
Somewhat surprising is the context in which explanation is mobilized: explanations
are not offered as answers (notably, to why-questions) but as hypotheses. This is
evidenced by the frequent use of conjoint terms such as possible, probable, and suggest.
Overton interpreted the relatively high frequency of explanation-related terms
(compared to nonscientific corpora) as demonstrating the significance of explanation
as a goal of science (Overton 2013). Our findings relativize this interpretation:
explanation in the practice of science relates much more to the notion of how-
possibly explanation than to the notion of how-actual explanation.® This situation
tends to lend support to research on how-possibly explanations (Dray 1968; Resnik
1991; Forber 2010; Bokulich 2014; Verreault-Julien 2019) while clearly changing the
emphasis on the epistemic work that the concept of explanation actually plays in
science, especially compared to earlier accounts of scientific explanation (e.g.,
Hempel 1965; Friedman 1974; Kitcher 1985; Salmon 1989).

A similar shift operates with the notion of mechanism. Whereas the new
mechanistic philosophy considers mechanisms to be the most central epistemic tools
for elaborating explanations in much of (molecular) biology (Machamer et al. 2000;
Bechtel and Abrahamsen 2005; Craver 2007; Glennan 2017), our findings indicate that
mechanisms are most often unknown objects: far from providing understanding,
mechanisms require to be understood. This is most notable in molecular and cellular
biology but also in phylogenetics (where there is much discussion of possible
mechanisms of evolution). Our findings also indicate that mechanisms are often used
in connection with specific causal notions, such as effect, role, and function, but not
cause, which, in contrast, turns out to be used more frequently in domains such as
disease and health research (note that in these contexts, the notion of mechanism
tends to be absent, whereas process and evidence are more frequent). Such results
raise questions about possible reasons for what appears to be quite specific usage
patterns of some causal notions being preferable to others in given contexts.

A striking result is the very modest role played by the concept of theory. The
concept is virtually absent from all of biology. This situation should encourage us to
reconsider the importance given to the philosophical accounts of theory in biology,

® Mizrahi measured the percentage of articles in which an epistemic virtue such as simplicity would be
found at least once together with theory, model, or hypothesis within a 10 4+ 10 word window, and for
nine disciplinary subjects provided by the JSTOR Data for Research interface (Mizrahi 2022). In the
present work, we measured the correlation between semantic field cooccurrence frequencies at the
paragraph level.

¢ Overton had noticed that explanation was very often “used with care,” as revealed by markers of
possibility in retrieved groups of five terms containing explain (Overton 2013, 1390). Here, correlation
measures make it possible to systematically identify significant relationships of semantic fields with one
another, notably of explain with possible, probable, or suggest, thereby clarifying the semantic context in
which explanation and other concepts are used.
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possibly reorienting philosophical work to the activity of theorizing (Callebaut 2013)
or simply to the use of models in biology. On the other hand, the notion of theory
clearly plays a role in the article cluster PusLic HEALTH and most notably in social
cognitive research, as shown by text excerpts. The cluster exhibits an average of 1.3
occurrences of the field theory per article compared to about 0.1 for the biological
clusters. This finding is consistent with those of Mizrahi, who found that psychology
was a domain of science in which theory was the most used, second only to physics
(Mizrahi 2022). This relatively high usage of theory also concurs with the findings of
McPhetres and colleagues, who estimated that a large majority of articles in
psychological research refer to theories (McPhetres et al. 2021).” Understanding why
this is so requires further investigations: Are there specific reasons for using the
concept of theory in these disciplines and not elsewhere? Are other disciplines
concerned? Is the concept construed in particular ways? Interestingly, when the
concept is used, correlations with explanation (complemented by text excerpts) show
that it can play an explanatory role. Simply put, theories explain, which seems to
corroborate Hempel’s early intuitions about explanation (Hempel 1965).

Notions of confirmation and support are present more or less everywhere, as
denoted by the ubiquitous presence of related fields. Yet, we highlighted the relative
dominance of weak forms of justification, which consist of claims of possibility,
suggestions, or identification of alternatives. This confers to the bulk of the
scientific discourse a caution that is quite far from categorical assertions, be they
of truth or refutation. Concerning discovery-related concepts, the notion of
observation appears specific to the more biology-oriented domains; it is relatively
absent in clinical and public health research. This is somewhat surprising because
one would be inclined to view these domains as prone to observation (as opposed
to experiment, for instance). As for experiment and test, their usage is relatively
frequent in cellular and molecular biology but also in bioinformatics and methods-
related research. Whether the concepts are used in similar ways or not also needs
further analysis.

Several epistemic concepts are noticeably absent. The results show, for instance,
that analogy, unification, and coherence are little used. It would be interesting to
investigate further how such findings may be reconciled with the numerous
philosophical works that have defended the role of these notions in science (e.g.,
Kitcher 1985; Thagard 2007; Bartha 2019). Similarly, notions of refutation and
reproducibility are also quite rarely discussed, if at all. Note that the relatively low
frequency of these different semantic fields does not necessarily mean that the
corresponding concepts are not important in the practice of science, only that
they are not explicitly mentioned in research articles. Indeed, it is possible that
concepts such as unification, coherence, and reproducibility might be expressed
with various complex sets of terms not easily recognizable as such. It is also

7 According to McPhetres et al. (2021), 53.66% of articles in Psychological Science (2009-2019 mention at
least one of 359 different named theories, whereas 15.33% explicitly claim to test predictions derived
from theories. The authors interpreted the results as suggesting that most research published in this
journal was not driven by theory. In comparison, our findings indicate that theory plays an even smaller
role in other domains of the biological and biomedical sciences but point at domains of psychological
research as exceptions where the notion of theory plays a significant role (note that the two studies do
not share the same corpus; comparisons are only indicative).
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possible that these concepts might be less discussed in research articles but more
in review articles, perspectives, introductions to textbooks, or other scientific
texts in which a certain degree of self-reflexivity can be found.® This is something
that future work should investigate, comparing text-mining analyses depending
on the type of scientific publication. Future work should also include iterative
improvements to the list of epistemic markers we have already identified (see
table 1) because these markers should be of interest to any future corpus-based
approach to epistemic concepts.

Of course, another major and obvious avenue for future work would be to
investigate scientific articles from a different and/or broader range of disciplines
(notably, among the physical sciences), possibly covering other periods. Such
research would offer additional perspectives on the usage of epistemic concepts,
notably outside of the disciplines targeted here. It goes without saying that the
analyses enabled by computational text-mining methods do not, and cannot,
replace the precise and carefully crafted insights of conceptual explication
enabled by close reading and the reconstruction of specific case studies. What
these analyses make possible is to gain a broader quantitative view of the scientific
discourse, depicting in somewhat broad strokes the epistemic landscape that
scientists navigate, thereby providing heuristics for more focused investigations.
They also establish an empirical basis for claims that may otherwise remain
informal. Here, we hope to have shown that the usage of epistemic concepts in at
least some parts of science does not always follow our intuitions but gives rise to a
complex fabric of conceptual interdependencies worth investigating further.

Supplementary Information. A technical appendix with code and data, including table S1 and the
“Data_for_graphs” file, is available on Zenodo.org (https://doi.org/10.5281/zenodo.8066574).
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