A NOTE ON A THEOREM OF H. L. ABBOTT

BY

ROBERT J. DOUGLAS(1)

Let I^n be the graph of the unit *n*-dimensional cube. Its 2^n vertices are all the *n*-tuples of zeros and ones, two vertices being adjacent (joined by an edge) if and only if they differ in exactly one coordinate. A path P in I^n is a sequence x_1, \ldots, x_m of distinct vertices in I^n where x_i is adjacent to x_{i+1} for $1 \le i \le m-1$; P is a circuit if it is also true that x_m and x_1 are adjacent. A path is *Hamiltonian* if it passes through all the vertices of I^n . Finally, for vertices x and y in I^n , we define d(x, y) to be the graph theorectic distance between x and y, i.e., the number of coordinates in which x and y differ.

A problem studied by H. L. Abbott [1] (also see E. N. Gilbert [2]) is to determine the number h(n) of distinct Hamiltonian circuits in I^n . Abbott proved for $n \ge 2$ that

(1)
$$h(n) > c(\sqrt[7]{6})^2$$

where c is a constant. Here, by modifying Abbott's argument, we shall prove for $n \ge 2$ that

(2)
$$h(n) > c(\sqrt[7]{18})^{2^n}$$

for some constant c. We also will prove the following result about Hamiltonian paths in I^n , which will be useful in establishing (2).

THEOREM 1. If $x, y \in I^n$, then d(x, y) is odd if and only if there exists a Hamiltonian path from x to y.

Proof. Assume there exists a Hamiltonian path P from x to y. Then the length of P is $2^n - 1$ which is an odd number, and since d(x, y) must have the same parity as the length of P we are done.

Now we will prove the converse. The proof will be by induction on *n*. Obviously the theorem holds for n=2, 3. Assuming the theorem for dimension *n*, consider $x, y \in I^{n+1}$ where d(x, y) is odd. Pick opposite *n*-dimensional faces I^n and I_*^n of I^{n+1} so that $x \in I^n$ and $y \in I_*^n$. Then pick any $z \neq x$ where $z \in I^n$ and d(y, z)=2. Hence d(x, z) is odd. Letting z^* be the vertex in I_*^n opposite *z*, we have $d(z^*, y)=1$. By the induction hypothesis, there is a Hamiltonian path

$$x = x_1, x_2, \ldots, x_{2^n} = z$$

Received by the editors June 27, 1969.

(¹)Research partially sponsored by the United States Air Force Office of Scientific Research, Office of Aerospace Research, Under Grant AFOSR-68-1406 with the Department of Statistics, University of North Carolina at Chapel Hill. in I^n joining x to z, and a Hamiltonian path

$$z^* = y_1, \ldots, y_{2^n} = y$$

in I_*^n joining z^* to y. We then get that

$$x_1, \ldots, x_{2^n}, y_1, \ldots, y_{2^n}$$

is a Hamiltonian path in I^{n+1} joining x to y, proving the theorem. From Theorem 1, we immediately get the following well-known fact:

COROLLARY. Iⁿ admits a Hamiltonian circuit for all n.

Proof. Join any two adjacent vertices by a Hamiltonian path and then add the edge joining them.

Define a proper path to be a path that is not a circuit. Let l(n), $(l_p(n))$ be the number of (proper) Hamiltonian paths in I^n , and let $l^0(n)$ $(l_p^0(n))$ be the number of (proper) Hamiltonian paths in I^n having the origin as the initial or terminal vertex.

For vertices P and Q in I^n such that d(P, Q) is odd, let $\sigma(P, Q)$ be the number of distinct Hamiltonian paths from P to Q, and define $M_n = \min \{\sigma(P, Q) : P, Q \in I^n \text{ and } d(P, Q) \text{ is odd} \}$. Finally, if $P \in I^m$ and $Q \in I^n$, let P + Q be the vertex in I^{m+n} whose first m coordinates are those of P and whose last n coordinates are those of Q.

LEMMA. For all positive integers $m, n \ge 2$,

(3)
$$h(m+n) \ge 2^n M_n (l^0(n))^{2^m-1} h(m).$$

Also

(4)
$$l^{0}(n) = 2h(n) + l_{p}^{0}(n) = 2h(n) + \frac{l_{p}(n)}{2^{n-1}}.$$

Proof. Let $\mathscr{P} = \{P_1, \ldots, P_{2^m}\}$ be a Hamiltonian circuit in I^m , and fix $S_1^1 \in I^n$. Pick any Hamiltonian path $\mathscr{S}^1 = \{S_1^1, S_2^1, \ldots, S_s^1\}$ in I^n having S_1^1 as an end point $(s=2^n)$. Then, for $i=2, \ldots, 2^m-1$, pick any Hamiltonian path $\mathscr{S}^i = \{S_s^{i-1} = S_1^i, S_2^i, \ldots, S_s^i\}$ in I^n having S_s^{i-1} as an end point. Finally, pick any Hamiltonian path $\mathscr{S}^{2^m} = \{S_s^{2^m-1}S_1^{2^m}, S_2^{2^m}, \ldots, S_s^{2^m} = S_1^1\}$ in I^n whose end points are $S_s^{2^m-1}$ and S_1^1 . The last choice can be made as $d(S_s^{2^m-1}, S_1^1)$ is an odd number (for $d(S_s^{2^m-1}, S_1^1)$ has the same parity as $\sum_{i=1}^{2^m-1} d(S_i^i, S_s^i)$ which is odd because $d(S_1^i, S_s^i) \equiv 2^n - 1$ (mod 2) for $i=1, \ldots, 2^m-1$). Thus the following is a Hamiltonian circuit in I^{m+n} :

80

[March

Now each \mathscr{S}^i , $i=1,\ldots,2^m-1$, can be chosen in $l^0(n)$ ways, \mathscr{P} can be chosen in h(m) ways, there are 2^n possibilities for S_1^1 , and at least $M_n \ge 1$ possibilities for \mathscr{S}^{2^m} . Thus the total number of Hamiltonian circuits that can be chosen in the above fashion is at least

$$2^n \cdot M_n \cdot (l^0(n))^{2^m - 1} \cdot h(m),$$

proving (3).

Clearly each Hamiltonian circuit in I^n yields two Hamiltonian paths in I^n each having the origin as an end point. (Simply omit one or the other of the edges in the circuit that has the origin as end point.) Hence $l^0(n) = 2 \cdot h(n) + l_p^0(n)$. But $2^n l_p^0(n)/2 = l_p(n)$, which proves (4) and the lemma.

Direct computation shows that h(3)=6, and that there are exactly six distinct Hamiltonian paths in I^3 from (0, 0, 0) to (1, 1, 1). (See Abbott [1].) Setting n=3, we get $M_3=6$, $l_p^0(3)=6$, and $l^0(3)=18$. Hence

$$h(m+3) \geq \frac{8}{3} \cdot 18^{2^m} \cdot h(m).$$

Pick c > 0 so that $h(n) > c(\sqrt[7]{18})^{2^n}$ for n = 2, 3, 4. Then for $n \ge 5$,

$$h(n) = h(n-3+3) \ge \frac{8}{3} (18)^{2^{n-3}} \cdot h(n-3) \ge \frac{8}{3} (18)^{2^{n-3}} \cdot c(\sqrt[7]{18})^{2^{n-3}} > c(\sqrt[7]{18})^{2^n},$$

and we have proved (2).

We note in closing that the following theorem, the statement of which was contained in a written communication from Abbott (and is an improvement on a result of his in [1]), can be proved very similarly to the lemma.

THEOREM. $l_p(m+n) \ge 2^n (2h(n) + l_p(n)/2^{n-1})^{2^m} l_p(m))$ for all positive integers m, $n \ge 2$; hence $l_p(n) > c(\sqrt[7]{18})^{2^n}$ for all $n \ge 2$.

Proof. Use the argument in the proof of the lemma, but replace the Hamiltonian circuit \mathscr{P} by a proper Hamiltonian path, and only require \mathscr{S}^{2^m} to have $S_s^{2^m-1}$ as an end point.

REFERENCES

1. H. L. Abbott, Hamiltonian circuits and paths on the n-cube, Canad. Math. Bull. (5) 9, (1966), 557-562.

2. E. N. Gilbert, Gray codes and paths on the n-cube, Bell Syst. Tech. J. 37 (1958), 815-826.

UNIVERSITY OF WASHINGTON, SEATTLE, WASHINGTON