A NOTE ON A THEOREM OF H. L. ABBOTT

BY
ROBERT J. DOUGLAS ${ }^{(1)}$
Let I^{n} be the graph of the unit n-dimensional cube. Its 2^{n} vertices are all the n-tuples of zeros and ones, two vertices being adjacent (joined by an edge) if and only if they differ in exactly one coordinate. A path P in I^{n} is a sequence x_{1}, \ldots, x_{m} of distinct vertices in I^{n} where x_{i} is adjacent to x_{i+1} for $1 \leq i \leq m-1 ; P$ is a circuit if it is also true that x_{m} and x_{1} are adjacent. A path is Hamiltonian if it passes through all the vertices of I^{n}. Finally, for vertices x and y in I^{n}, we define $d(x, y)$ to be the graph theorectic distance between x and y, i.e., the number of coordinates in which x and y differ.

A problem studied by H. L. Abbott [1] (also see E. N. Gilbert [2]) is to determine the number $h(n)$ of distinct Hamiltonian circuits in I^{n}. Abbott proved for $n \geq 2$ that

$$
\begin{equation*}
h(n)>c(\sqrt[7]{6})^{2^{n}} \tag{1}
\end{equation*}
$$

where c is a constant. Here, by modifying Abbott's argument, we shall prove for $n \geq 2$ that

$$
\begin{equation*}
h(n)>c(\sqrt[7]{18})^{2^{n}} \tag{2}
\end{equation*}
$$

for some constant c. We also will prove the following result about Hamiltonian paths in I^{n}, which will be useful in establishing (2).

Theorem 1. If $x, y \in I^{n}$, then $d(x, y)$ is odd if and only if there exists a Hamiltonian path from x to y.

Proof. Assume there exists a Hamiltonian path P from x to y. Then the length of P is $2^{n}-1$ which is an odd number, and since $d(x, y)$ must have the same parity as the length of P we are done.

Now we will prove the converse. The proof will be by induction on n. Obviously the theorem holds for $n=2,3$. Assuming the theorem for dimension n, consider $x, y \in I^{n+1}$ where $d(x, y)$ is odd. Pick opposite n-dimensional faces I^{n} and I_{*}^{n} of I^{n+1} so that $x \in I^{n}$ and $y \in I_{*}^{n}$. Then pick any $z \neq x$ where $z \in I^{n}$ and $d(y, z)=2$. Hence $d(x, z)$ is odd. Letting z^{*} be the vertex in I_{*}^{n} opposite z, we have $d\left(z^{*}, y\right)=1$. By the induction hypothesis, there is a Hamiltonian path

$$
x=x_{1}, x_{2}, \ldots, x_{2^{n}}=z
$$

Received by the editors June 27, 1969.
${ }^{(1)}$ Research partially sponsored by the United States Air Force Office of Scientific Research, Office of Aerospace Research, Under Grant AFOSR-68-1406 with the Department of Statistics, University of North Carolina at Chapel Hill.
in I^{n} joining x to z, and a Hamiltonian path

$$
z^{*}=y_{1}, \ldots, y_{2^{n}}=y
$$

in I_{*}^{n} joining z^{*} to y. We then get that

$$
x_{1}, \ldots, x_{2^{n}}, y_{1}, \ldots, y_{2^{n}}
$$

is a Hamiltonian path in I^{n+1} joining x to y, proving the theorem.
From Theorem 1, we immediately get the following well-known fact:
Corollary. I^{n} admits a Hamiltonian circuit for all n.
Proof. Join any two adjacent vertices by a Hamiltonian path and then add the edge joining them.

Define a proper path to be a path that is not a circuit. Let $l(n),\left(l_{p}(n)\right)$ be the number of (proper) Hamiltonian paths in I^{n}, and let $l^{0}(n)\left(l_{p}^{0}(n)\right)$ be the number of (proper) Hamiltonian paths in I^{n} having the origin as the initial or terminal vertex.

For vertices P and Q in I^{n} such that $d(P, Q)$ is odd, let $\sigma(P, Q)$ be the number of distinct Hamiltonian paths from P to Q, and define $M_{n}=\min \left\{\sigma(P, Q): P, Q \in I^{n}\right.$ and $d(P, Q)$ is odd\}. Finally, if $P \in I^{m}$ and $Q \in I^{n}$, let $P+Q$ be the vertex in I^{m+n} whose first m coordinates are those of P and whose last n coordinates are those of Q.

Lemma. For all positive integers $m, n \geq 2$,

$$
\begin{equation*}
h(m+n) \geq 2^{n} M_{n}\left(l^{0}(n)\right)^{2^{m}-1} h(m) \tag{3}
\end{equation*}
$$

Also

$$
\begin{equation*}
l^{0}(n)=2 h(n)+l_{p}^{0}(n)=2 h(n)+\frac{l_{p}(n)}{2^{n-1}} \tag{4}
\end{equation*}
$$

Proof. Let $\mathscr{P}=\left\{P_{1}, \ldots, P_{2^{m}}\right\}$ be a Hamiltonian circuit in I^{m}, and fix $S_{1}^{1} \in I^{n}$. Pick any Hamiltonian path $\mathscr{S}^{1}=\left\{S_{1}^{1}, S_{2}^{1}, \ldots, S_{s}^{1}\right\}$ in I^{n} having S_{1}^{1} as an end point $\left(s=2^{n}\right)$. Then, for $i=2, \ldots, 2^{m}-1$, pick any Hamiltonian path $\mathscr{S}^{i}=\left\{S_{s}^{i-1}=\right.$ $\left.S_{1}^{i}, S_{2}^{i}, \ldots, S_{s}^{i}\right\}$ in I^{n} having S_{s}^{i-1} as an end point. Finally, pick any Hamiltonian path $\mathscr{S}^{2^{m}}=\left\{S_{s}^{2^{m}-1} S_{1}^{2^{m}},=S_{2}^{2^{m}}, \ldots, S_{s}^{2^{m}}=S_{1}^{1}\right\}$ in I^{n} whose end points are $S_{s}^{2^{m}-1}$ and S_{1}^{1}. The last choice can be made as $d\left(S_{s}^{2^{m}-1}, S_{1}^{1}\right)$ is an odd number (for $d\left(S_{s}^{2^{m}-1}, S_{1}^{1}\right)$ has the same parity as $\sum_{i=1}^{2 m-1} d\left(S_{1}^{i}, S_{s}^{i}\right)$ which is odd because $d\left(S_{1}^{i}, S_{s}^{i}\right) \equiv 2^{n}-1(\bmod$ 2) for $i=1, \ldots, 2^{m}-1$). Thus the following is a Hamiltonian circuit in I^{m+n} :

$$
\begin{aligned}
& P_{1}+S_{1}^{1}, \quad P_{1}+S_{2}^{1}, \quad \ldots, P_{1} \quad+S_{s}^{1} \quad=P_{1} \quad+S_{1}^{2} \\
& P_{2}+S_{1}^{2}, \quad P_{2}+S_{2}^{2}, \quad \ldots, P_{2}+S_{s}^{2} \quad=P_{2} \quad+S_{1}^{3} \\
& P_{3}+S_{1}^{3}, \quad P_{3}+S_{2}^{3}, \quad \ldots, P_{3} \quad+S_{s}^{3} \quad=P_{3} \quad+S_{1}^{4} \\
& P_{2^{m}-1}+S_{1}^{2^{m}-1}, P_{2^{m}-1}+S_{2}^{2^{m}-1}, \ldots, P_{2^{m}-1}+S_{s}^{2^{m}-1}=P_{2^{m}-1}+S_{1}^{2^{m}} \\
& P_{2^{m}}+S_{1}^{2^{m}}, \quad P_{2^{m}}+S_{2}^{2^{m}}, \quad \ldots, P_{2^{m}}+S_{s}^{2^{m}}=P_{2^{m}}+S_{1}^{1} .
\end{aligned}
$$

Now each $\mathscr{S}^{i}, i=1, \ldots, 2^{m}-1$, can be chosen in $l^{0}(n)$ ways, \mathscr{P} can be chosen in $h(m)$ ways, there are 2^{n} possibilities for S_{1}^{1}, and at least $M_{n} \geq 1$ possibilities for $\mathscr{S}^{2^{m}}$. Thus the total number of Hamiltonian circuits that can be chosen in the above fashion is at least

$$
2^{n} \cdot M_{n} \cdot\left(l^{0}(n)\right)^{2^{m}-1} \cdot h(m)
$$

proving (3).
Clearly each Hamiltonian circuit in I^{n} yields two Hamiltonian paths in I^{n} each having the origin as an end point. (Simply omit one or the other of the edges in the circuit that has the origin as end point.) Hence $l^{0}(n)=2 \cdot h(n)+l_{p}^{0}(n)$. But $2^{n} l_{p}^{0}(n) / 2=$ $l_{p}(n)$, which proves (4) and the lemma.

Direct computation shows that $h(3)=6$, and that there are exactly six distinct Hamiltonian paths in I^{3} from $(0,0,0)$ to $(1,1,1)$. (See Abbott [1].) Setting $n=3$, we get $M_{3}=6, l_{p}^{0}(3)=6$, and $l^{\circ}(3)=18$. Hence

$$
h(m+3) \geq \frac{8}{3} 18^{2^{m}} \cdot h(m)
$$

Pick $c>0$ so that $h(n)>c(\sqrt[7]{18})^{2^{n}}$ for $n=2,3,4$. Then for $n \geq 5$,

$$
h(n)=h(n-3+3) \geq \frac{8}{3}(18)^{2^{n-3}} \cdot h(n-3) \geq \frac{8}{3}(18)^{2^{n-3}} \cdot c(\sqrt[7]{18})^{2^{n-3}}>c(\sqrt[7]{18})^{2^{n}}
$$

and we have proved (2).
We note in closing that the following theorem, the statement of which was contained in a written communication from Abbott (and is an improvement on a result of his in [1]), can be proved very similarly to the lemma.

Theorem. $l_{p}(m+n) \geq 2^{n}\left(2 h(n)+l_{p}(n) / 2^{n-1}\right)^{2^{m}} l_{p}(m)$ for all positive integers m, $n \geq 2$; hence $l_{p}(n)>c(\sqrt[7]{18})^{2^{n}}$ for all $n \geq 2$.

Proof. Use the argument in the proof of the lemma, but replace the Hamiltonian circuit \mathscr{P} by a proper Hamiltonian path, and only require $\mathscr{S}^{2^{m}}$ to have $S_{s}^{2^{m-1}}$ as an end point.

References

1. H. L. Abbott, Hamiltonian circuits and paths on the n-cube, Canad. Math. Bull. (5) 9, (1966), 557-562.
2. E. N. Gilbert, Gray codes and paths on the n-cube, Bell Syst. Tech. J. 37 (1958), 815-826.

University of Washington,
Seattle, Washington

