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A COMPARISON OF MEAN CONCENTRATIONS IN A
DIFFUSION PROBLEM
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1. Introduction

In some biological problems, a parasite-host system is immersed in a toxic solution in
order to kill off the parasite while leaving the host as little affected as possible. A
problem of this type was considered by Clements and Edelstein (2), who treated both
the host and the parasite as cylindrical in shape. In a separate paper Clements (1)
considered the corresponding problem where the parasite is spherical and the host
cylindrical. In both cases, the concentration of the toxic solution at the boundary is
taken as having a constant value, c, and the penetration of the poison into the host and
parasite is treated as a linear diffusion problem with an appropriate diffusion coeffi-
cient. It is assumed also that the host and the parasite are free of the toxic substance
initially. The process is terminated when the average concentration in the parasite
reaches a lethal level, T, and the problem is to see how M, the average concentration in
the host, is affected by the choice of c (for a given value of T).

The effect of the size of the organisms and of their diffusion coefficients can be
concentrated into a single parameter, p, and Clements and Edelstein obtained a
number of results for the way in which M varies with c, for different values of p. For
the cylinder-sphere comparison, Clements obtained some simular results and made a
general conjecture about the way in which M varies. The present paper extends these
results, particularly in the case where c is large compared with T, and shows that
Clements' conjecture has to be modified.

Section 2 gives the basic equations for diffusion into a cylindrical organism and for
the cylinder-cylinder comparison. It is convenient to write M in terms of p and a
time-like variable, t, with t —> 0 as C/T —> °°. A Laplace transform approach is used to
obtain M as a power series in t1/2, for t small (Section 3) and the way in which M varies
with p and t is discussed in detail in Section 4. In Section 5, similar results to those in
Sections 2 and 3 are obtained for diffusion into a spherical organism and in Sections 6
to 8 detailed results are developed for the cylinder-sphere comparison, i.e. where the
host organism is cylindrical and the parasite spherical. In Section 9, a brief statement is
made of the results for the case where the host organism is spherical and the parasite is
cylindrical.

2. Diffusion into cylindrical organism

For an infinitely long cylinder of radius a, the concentration of the toxic material,
C(r, t) at distance r from the axis of the cylinder and for time t > 0 is taken as satisfying
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154 A. BROWN

the diffusion equation

and the boundary conditions

C(r,0) = 0, C(a,t) = c. (2.2)

The diffusion coefficient, fc, is taken as constant. Solving by separation of variables and
averaging over r gives the average concentration as

cG1(f1), (2.3)

where
h = ktla2 (2.4)

and

G1(t1) = l - 4 £ (l/ApFexpf-Afr). (2.5)
p-i

The constants Ap are the positive zeros of the Bessel function J0(x), with 0 < At < A2 <
A3 < . . . . The function Gt(f t) can be thought of as a standardised solution of the
problem, valid for the special case where a = 1, fc = 1, and c = 1. The ratio tjt = k/a2 is
the time scale factor required to relate the given problem to the standardised solution.
(The notation here is not exactly the same as in the paper by Clements and Edelstein
but it is useful later to have G^fj) in this standardised form.) From the physics of the
problem, Gi must be a monotonic increasing function of tu with G^O) = 0 and G1 -»• 1
as tx -*• oo. If we write Gi(fi) = H-^t-i), then H ^ ) is the average rate at which the toxic
substance is crossing the boundary into the organism (in the standardised problem),
since it is this diffusion across the boundary which produces the increase in Gt. As the
diffusion rate is proportional to the radial gradient of the concentration, we can expect
Hl to be unbounded initially because of the discontinuity in the concentration at the
boundary of the cylinder. From equation (2.5).

Afo), (2.6)
P=i

for t1^t0>0. Clearly, Hx is monotonic decreasing, with Ht —> 0 as (j —*°°.
For a cylinder of radius a^ and diffusion coefficient fc^ we can use the same

standardised solution and write

C-Sf) = average concentration at time t = cG^) (2.7)

where

t2 = k1t/(a1)
2. (2.8)

The ratio
P = h/t2 = (klk1)(aja)2 (2.9)

relates the time scales appropriate to each organism. If Ct = T when t2 = T2, then the
corresponding value for C is cGx{pT2), since tx = pt2. Thus if we take C\ as the average
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concentration of the toxic in the parasite and C as the average concentration in the
host,

M = value of C when C\ reaches value T

= CG 1 ( P T 2 ) = TG 1 (PT 2 ) /G 1 (T 2 ) , (2.10)

since

= CG1(T2) . (2.11)

The value of T2 depends on the choice of c, in the sense that the larger c becomes
the less time is required to raise Cj to the level T. AS C -*•«, T2 must tend to zero and
as C - ^ T from above, T2 will tend to infinity. Clements and Edelstein treat M as a
function of c, with p as a parameter, but for the detailed discussion below it was found
easier to work with M in terms of T2. Since dT2/dc is negative, it is easy to change
results concerning the sign of dMldT2 to results in terms of the sign of dM/dc.

To simplify the notation, we can replace T2 by t in equation (2.10) and write

= rG1(pt)/G1(f). (2.12)

With this notation, the main results obtained by Clements and Edelstein are

(i) M-»T>/p as t ->0, (2.13)

(ii) M'>0 for p<\,t>(l/kl)
2, (2.14)

(iii) M'<0 for p>\,t>(l/k1)
2. (2.15)

They indicate that the restriction on t in (ii) and (iii) is probably not required and this is
confirmed in Sections 3 and 4 below.

3. Approximations to Hlt Gx and M for t small

Equations (2.5) and (2.6) are inconvenient to use when tt is small. To obtain an
alternative form, let

= f (st)} dt = Laplace transform of Hx. (3.1)

Integrating term by term,

Ms) = 4 £ (s + Aj)-1, (3.2)

P=i

a series which converges for Re (s) > 0, since

(3.3)where the "correction terms" e(p) form a monotonic decreasing sequence of positive
quantities, with E(1)<0.0155. Watson (5) gives numerical values for \.x to A40 in Table
VII at the end of his book and he discusses the form of e(p) in more detail in §15.52.
In §15.41, he obtains an infinite series for Jv+l{z)IJv{.z), using Mittag-Leffler's theorem
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(4, §5.10), and the same technique can be used to deduce that for Re(z)>0

f 2z fi(z) (3.4)

where In(z) is the modified Bessel function of order n. (The zeros of I0(z) lie on the
imaginary axis at ±ikp and the essential restriction on z in equation (3.4) is that z does
not coincide with one of these zeros.) If we think of s as real and positive in equation
(3.2), we can make use of equation (3.4) to write

Ms) = {2/VsK/i(Vs)//0(Vs}, (3.5)

an expression which can be expanded in powers of s~xn for s large. This can be done
by using asymptotic expansions for I\{x) and I0(x), as given by Erdelyi et al. (3, p. 86)
or by Watson (5, §7.23). An alternative method is to start from the equation
xy" + y' — xy = 0, which has y = 7o(x) as a solution, and to substitute w = y'/y. The
equation for w can be written as

w' = l -w 2 - (w/x) (3.6)

and it has an asymptotic solution, for x -* °°, of the form

w = l -I (a r /x r ) , (3.7)
r = l

which turns out to be exactly what we want for J1(x)/J0(x). (Note that I'o = /x.) In
practice, it is easier to evaluate a1; a2, a3 , . . . in turn from equations (3.6) and (3.7)
than to write down the expansions for I^x) and J0(x) separately and then use the
binomial theorem to get an expansion for J1(x)/70(x). This gives

a, = 1/2, a2 = a3= 1/8, a4 = 25/128, a5 = 13/32,
a6 = 1073/1024, a7 = 103/32, a8 = 375733/32768.

Thus for s large,

Ms) = (2/Vs)f 1 - t ars-«2)+ O(s-9/2), (3.9)

and correspondingly we can expect the behaviour of Hi(t) for small ( to be given by

Hf(t) = {2Mirt)}- £ b/'-1V2 + O(t712) (3.10)

where

br = 2or/r{(r + l)/2}. " (3.11)

Integrating this expression from zero to f gives a corresponding approximation to Gt(f)
for t small, i.e.

•Gf(t) = 4{V(r/7r)}- £ cr&
+1)/2+ O(t9'2), (3.12)
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Table 1. Comparison of G,(f), H,(r) and K(t) with power series approxima-
tions for t small.

t

0.02
0.04
0.06
0.08
0.10

G,(r)

0.2986
0.4096
0.4894
0.5529
0.6058

Gf(t)

0.2986
0.4096
0.4894
0.5529
0.6059

Ht(r)

6.9329
4.5722
3.5157
2.8780
2.4356

H*(t)

6.9329
4.5722
3.5159
2.8787
2.4376

K(t)

0.4644
0.4465
0.4310
0.4164
0.4020

K*(t)

0.4644
0.4465
0.4310
0.4165
0.4023

where

cr = 2br/(r +1) == 2a,./r{(r+ 3)/2}. (3.13)

A numerical check gave the values in Table 1 for Gi(t), G*(t), H^t), H*(t) and for
two related functions K(t) and K*(t) which are required in Section 4. (In fact,
K(t) = tH1(f)/Gi(f) and K*(t) is the corresponding approximation tHf(f)/G?(f).) It will
be seen that the power series approximations give 4-figure accuracy up to about
t = 0.08 and are beginning to diverge at t = 0.1.

If we write G*(t) in the form

Gf(f) = 4{V(f/7r)}(l —djM —d2u
2 —d3w

3 —.. . . ) , (3.14)

where u=Jt and the coefficients d, are all positive, then an expansion in series as far as
u4 terms gives

M* = approximation to M(t) for t small

= TGf(pO/G?(0 = TGf(o-2
l

- a - a -*) + d\(l - a)}u3

+{d4(l - a4) + d1d3{l - a3) + (d\ + d2d2)(l - a2)

2+d1d3 + d4Xl-CT)KJ, (3.15)

where cr = y/p. From equation (3.15), Aijc->TN/p as f-»0, in agreement with equation
(2.13), and also M? approaches the limit from above for 0 < p < l and from below for

The result above is an example of a more general property which will be useful later.
If we have

with

(3.16)

(3.17)
A ' (0>B ' (0>0 for OSf^r0,
A(0) = 0, B(0) = 0, A0 0 )<1 ,

then F(t) is monotonic decreasing for 0 ^ t % f0- O n e way of seeing that this statement is
true is to re-write equation (3.16) in the form

(3.18)
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From equation (3.17), {A(t) — B(t)} is positive and monotonic increasing for
and also {1 -B(t)} is positive and monotonic decreasing for 0< f ̂  t0. Hence 1 -F(t) is
monotonic increasing and from this F < 0 for 0<f^fo. It is easy to check that
F(0) = B'(0)-A'(0)<0 a n d SO complete the requirement that F < 0 for 0§f^fo.

In particular, we shall want to use this result in cases where

with a, > ft ^ 0.

4. Additional results for cylinder-cylinder comparison

If we replace M(f) by Mt(p, t) in equation (2.12), to show the dependence on p, then
it is easy to check that

0 = T2. (4.1)

For p > 1, we have 0<p1<l, where pt = l/p, so if M^p, t) decreases with t for t > 0,
then Miipx, T) increases with T for T = pt>0. From this, if we can show that M '<0
for t > 0 and p > 1, then it follows that M' > 0 for f > 0 and 0 < p < 1. Thus it is enough
to discuss the case where p > 1.

By a similar argument, we can reduce the range of p that need be considered to an
interval 1 < p ̂  p0. For a larger value of p, say p = p2, we can write p2 = ps, where
l < p 3 ^ p 0 and N is an integer greater than 1. Then

(4.2)
r=O

where Tr = p$'~r~1f. If M^p^i) is monotonic decreasing for f>0, then each factor
Mj(p3, Tr) is monotonic decreasing for t >0 and consequently M%(p2, t) is monotonic
decreasing. Because of this, we need not worry about the possibility that pt is large
even although t is small; by taking po= 1.05, say, we can ensure that pt and t are both
small when t is small.

From equation (2.12),

M'(0 = T{pH1(pt)G1(r)-H1(r)G1(Pr)}/{G1(r)}
2 (4.3)

= (l/t)M(t){K(pt)-K(t)}, (4.4)

where

(4.5)

From equation (4.4), if we can show that K(t) decreases with t, then K(pt)<K(t) for
p > l and M'(r)<0 for p > l . We have

K'(t) = [{(H, + tH'1)G1 - mVGl] (4.6)
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and this function is certainly negative if Hi + tH\ is negative. Using equation (2.6),

= 4 £ (1 -tkl) exp(-k2
pt). (4.7)

Each of the factors I-tkl >s negative for t>to= l/k2, while for t = f0 the first term in
the summation is zero and all the others are negative. Hence Ht + tH\ <0 for t^t0 and
consequently K'(t)<0 for t§r0. (This is the argument used by Clements and Edelstein
in obtaining the inequalities (2.14) and (2.15).)

For t small, we can use K*(t) = tHf(t)/G*(t) as an approximation to K(t). If we put
u = yjt and write

. . . ] , (4.8)

G*(t) = (4ulJir)[l-d1u-d2u
2-d3u

3-...], (4.9)

then the coefficients d, and e, are all positive, with

er = (r + I K ={T(l/2yT[(r + D/2M- (4-10>
Since e, > d, > 0 for all r, we can use the result at the end of Section 3 to deduce that
K*(t) is monotonic decreasing for t small. As t —> 0, K*(t) —• 1/2 from below, a result
which agrees with the numerical values in Table 1.

If we accept that these results for K*(t) give the behaviour of K(t) satisfactorily for
0<fg0.08 and that K'(t)<0 for tSto= l/Af = 0.173, we still have a gap between
t = 0.08 and t = 0.173. One way of bridging the gap is to note (from equation (4.6)) that
the sign of K'(t) is the same as that of L(t), where

L(t) = (H1 + tH'1)G1-tH
2

1. (4.11)

We know that for t>0

Gt is positive and monotonic increasing,

Hx is positive and monotonic decreasing,

and since

^ r ) (4.12)
P=i

we can add that H\ is negative and monotonic increasing. From these properties, if
S ( ^ t 1 , then

y(fi,t2), (4.13)

where

h, t2) = hGtitJH'M + GMHM - t2[H,{h)f. (4.14)

Hence if Y(rx, (2)<0, then L(r)<0 for I2 = ' = 'i and consequently K'(t)<0 over this
interval. This provides a straightforward way of extending the range of validity, at the
expense of some trial-and-error arithmetic in choosing suitable values for t, and t2.
Table 2 shows values of Glt Hl and H\ for different values of t and corresponding
values of Y for consecutive intervals. They verify that Y^^, tn)<0 for each interval
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Table

n

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

2. Values

0.173
0.16
0.15
0.14
0.13
0.12
0.11
0.105
0.1
0.095
0.09
0.085
0.08
0.076
0.072
0.068

A

of Gu Hu

GA)

0.7449
0.7248
0.7081
0.6904
0.6714
0.6511
0.6293
0.6175
0.6058
0.5934
0.5805
0.5670
0.5529

. 0.5412
0.5290
0.5164

. BROWN

H\ and Y

Hi(O

1.4921
1.6162
1.7215
1.8363
1.9624
2.1021
2.2584
2.3441
2.4356
2.5337
2.6393
2.7536
2.8780
2.9857
3.1020
3.2280

Hift.)

-9.1384
-10.1021
-10.9815
-12.0138
-13.2456
-14.7415
-16.5925
-17.6904
-18.9308
-20.3408
-21.9538
-23.8121
-25.9701
-27.9590
-30.2308
-32.8441

-0.2122
-0.2144
-0.1759
-0.1321
-0.0857
-0.0361
-0.1363
-0.1172
-0.0958
-0.0742
-0.0518
-0.0281
-0.0468
-0.0280
-0.0081

and consequently K'(t)<0 for 0 .068^ t ^ t o , thus bridging the gap mentioned above.
Once it has been established that K'(t)<0 for t >0 , it follows that M'(f)<0 for p > 1

and M'(f)>0 for 0 < p < l . (For p = l, M(t) = r and M*(f) = 0.)

5. Diffusion into spherical organism

For a spherical organism of radius b and diffusion coefficient q, we can take the
concentration of the toxic material at time t and distance r from the centre as C2(r, t),
where

with

dC2 (d2C2 2dC2\

Bt -q\dr2+r dr)'

C2(r, 0) = 0, C2(b,t) = c.

(5.1)

(5.2)

As in Section 2, if we solve by separation of variables and average over r, the average
concentration is

where t3 = qt/b2 and

G 2 ( r 3 ) = l - 6

(5.3)

(5.4)
P = i

In this case, the eigenvalues are jXp = pir and G2(t3) is a standardised solution for a
sphere with q = 1, b = 1 and c = 1. As before, G2 is a monotonic increasing function of
t3, with G2(0) = 0 and G2 —> 1 as f3 -» «>. The ratio t3/t = q/b2 is again the time scale
factor required to relate the given problem to the standardised solution. From equation
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(5.4),

H2(t3) = G2(f3) = 6 £ exp (-»%) (5.5)
p=i

and H2(t3) is monotonic decreasing, with H2 -» 0 as t3 -*• «.
To obtain approximations to G2 and H2 for t3 small, we can use the same procedure

as in Section 3. If h2(s) is the Laplace transform of H2, then instead of equation (3.2)
we get

Ms) = 6 I (s + ̂ r 1 = 6 I (s + pV2)"1. (5.6)
P=i P=i

Using the summation,

^ 2z cosh z 1
(5.7)

p=! z2 + p27T2 sinh z z'

we can write

Ms) = (3A/s)cothVs-(3/s), (5.8)

for Re(s)>0. For s large and positive, and any positive integer n,

coth Js = {1 + exp (-2VS)}/{1 -exp (-2Vs)} = 1 + o(s~n),

so for s large we get

M*) = (3A/s)-(3/s) + o(s~n). (5.9)

Hence we can expect the behaviour of H2(t), for t small, to be given approximately by

H*(0 = 3/V(7rt)-3, (5.10)

with

G*(t) = 6j(t/Tr)-3t, (5.11)

as the corresponding approximation to G2(0- Similarly, we can use Kf(f) =
tH%{t)/G*(t) as an approximation to

K2(t) = tH2(t)/G2(t). (5.12)

Table 3 shows numerical values for G2(f), G*(t), H2(t), Hf (t), K2(t) and Kf (t). In this

Table 3. Comparison of G2(i), H2(t) and K2(t) with power series approxima-
tions for ( small.

t

0.02
0.04
0.06
0.08
0.10
0.12

G2(t)

0.4187
0.5570
0.6492
0.7175
0.7705
0.8127

G*(t)

0.4187
0.5570
0.6492
0.7175
0.7705
0.8126

H2(0

8.9683
5.4628
3.9099
2.9842
2.3529
1.8884

H*(t)

8.9683
5.4628
3.9099
2.9841
2.3524
1.8860

K2(t)

0.4284
0.3923
0.3614
0.3327
0.3054
0.2788

0.4284
0.3923
0.3614
0.3327
0.3053
0.2785
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case, the power series approximations give 4-figure accuracy up to about t = 0.10 and
are beginning to diverge at t = 0.12. Comparing Table 3 and Table 1, G2 increases
more rapidly than Gu for small values of f, while H2 and K2 fall off more rapidly than
Hx and K.

Clearly, K2(t) is analogous to K(t) and in fact the two functions have very similar
properties. Writing

M - 3r}

= (l/2)-(l/4)WM}/{l-(l/2V(irt)}, (5.13)

it is evident that K% -* (1/2) as t -*• 0 and also that K? decreases monotonically with t
for 0 < t ^ 0 . 1 2 . Also, the same argument as for K(t) gives

K2(t)<0 for t g

Combining the results in the same way as for K(t) leads to the conclusion that K2(t) is
monotonic decreasing for t > 0 . Once this has been established the results for a
sphere-sphere comparison, where the parasite and host are both taken as spherical,
would go through in the same way as for the cylinder-cylinder comparison, with p = 1
as the critical value for p.

6. Cylinder-sphere comparison: preliminary discussion

Following Clements (2), we take the host organism as cylindrical. For radius a and
diffusion coefficient k, the average concentration at time t is given by equations (2.3) to
(2.5). For the parasite, we can apply the results for a sphere of radius b and diffusion
coefficient q in Section 5. If we set

p = fl/f3 = (fc/q)(b/a)
2, (6.1)

then p is again the ratio of the time scales appropriate to the two organisms and we
have

C2 = average concentration in parasite = cG2(t3), (6.2)

C = average concentration in host = cG^pt^). (6.3)

Hence

M = value of C when C2 reaches value T

= cG1(pT3) = TG1(pT3)/G2(T3), (6.4)

where cG2(T3) = r, i.e. t3 = T3 when C2 = T. AS before, T3 -»• 0 as c -»• °° and T3 -» °° as
c —* T from above, with T3 decreasing as c increases. It is again easier to treat M as a
function of T3 and to work with

M(f) = TG1(pf)/G2(t). (6.5)

With this notation the main results given by Clements are

(i) M - * ( 2 T / 3 ) V P as t ->0 ,

(ii) M ' > 0 for 0 < p < l and t>To,

(iii) M ' < 0 for p > p * > l and t>T0,
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where

p* = WA 1 ) 2 = 1.707, T0 = fln(n?/pA?)}/G*f-pA?). &6)

Clements conjectured that M ' > 0 for p < l and that M ' < 0 for p > l , for all positive
values of t. The results below indicate that M ' > 0 for 0 < p ^ p * and that M'<0 for
p § 4 , for r>0. For the intermediate values of p, i.e. for p * < p < 4 , it appears that
M' > 0 for small values of t but the sign of M' changes at some stage and M' is negative
for sufficiently large values of r.

One of our critical values for p comes from the behaviour of M(t) when t is small.
For small values of t and pt, we can use the power series approximations to Gx and G2

to obtain a corresponding approximation to M For convenience, let u=y/t and a = Vp.
Then

Mf = TG*(pt)/G*(t) = approximation to M for t and pt small

= (2ar /3) ( l -d 1 au-d 2 a 2 M 2 - . . . ) /{ l - ( l /2Wir}, (6.7)

where the coefficients d1; d2 , . . . are defined by equations (3.8) and (4.10). More
conveniently,

d2 = (8/5)d4 = (1120/1073)d6= 1/12. (6.8)

All the coefficients a\ are positive and for p > 4 the result at the end of Section 3 can be
used to deduce that Mf decreases with t, for t small. More generally, if we expand f
in powers of u and write

+ . . . ) , (6.9)

then
B, = (l/4)(2 - aVir, B2 = (w/8)(2 - a) - (cr2/12),

3,. . .) . (6.10)

This form for Mf confirms that M - > ( 2 T / 3 ) V P as f-*0 but it also shows that the
approach to the limiting value is from below for a ^ 2 , i.e. for p § 4 , and from above
for p<4 . Thus the conjecture that M '<0 for p > l for all values of t has to be
abandoned, since we have M'>0 for small values of t when K p < 4 . Indeed, this
conjecture is not consistent with the limiting values when p lies between 1 and 9/4. For
these values of p the limiting value as f —» 0 is less than T and the limiting value as
(—> oo is equal to T so M must increase at some stage as t goes from zero to infinity.

The behaviour of M? as f —* 0 shows why p = 4 has to be considered as one of the
critical values for p. The other critical value, p = p*, comes in from the behaviour of M
as t -» oo but some preliminary results are needed before we discuss the critical values in
detail. From equation (6.5),

y M'{t) = TN(t)/{G2(t)}
2 = (llt)M(t){K(pt)-K2(t)}, (6.11)

where

N(t) = pG^HM) ~ HtWGrlpt) (6.12)

and K(t) and K2(t) are the functions already defined in equations (4.5) and (5.12). Thus
for r>0

sgn M'(r) = sgn N(t) = sgn {K(pt) - K2(t)}. (6.13)
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From Section 4, K'(t)<0 for t>0 and hence if K(p0t)<K2(t) for r > 0 for a specified
value p = p0 then we can assert that for p>p0

K(pt)<K(p0t)<K2(t) for r>0. (6.14)

This means that if M'(f) < 0 for t > 0 and p = p0, then M'(f) < 0 for f > 0 and p > p0. In
particular, we want to use this argument with p0 = 4.

A similar argument shows that if M'(t)>0 for f>0 and p = po, then M'(t)>0 for
r > 0 and 0 < p < p o . We want to use this idea with po = p*. Note that for p = p* and
p = 4 we can take t and pt as being of the same order of magnitude and, for example,
we can use equations (6.7) and (6.9) when u is small.

7. Cylinder-sphere comparison for p>p*

In considering the behaviour of Hx and H2 for large values of t it is worth noting that
to two decimal places

A? = 5.78, Af = 30.47, A| = 74.89, . . . .

/x? = 9.87, /xl = 39.48, ptf = 88.83, . . . .

so that even for t = 1 the later terms in the series are small compared with exp (-Aft)
and exp (—/x2f). This implies that for p > 1 and I S 1 the dominant terms in H^pt) and
H2(0 are 4exp(-pA?r) and 6exp(-(x2t), respectively. Since 4 exp (-A-?) = 0.0123 and
6 exp (—fi\) = 3.1 x 10~4, the dominant terms are small compared with unity and we can
take Gxipt) and G2(t) as approximately 1 in considering the expressions which occur in
N(t). Thus we can take U = 4p exp (-pA2t) as the dominant term in pG2(t)H1(pt), with
V = 6 exp (-/biff) as the dominant term in H2(t)Gx(pi). If pA2>/x2, then as t increases
U— V will eventually become negative and we can expect N(t) and M'(t) to become
negative. This means that for p>p* we should have M '<0 for t sufficiently large. On
the other hand, if pA?<p-i, U—V will be positive eventually and we should have
M'>0 for t sufficiently large.

For p>p*, we can make this argument more precise by comparing pH^pt) with
H2(t) and G^pt) with G2(t). If we can show that for t ̂  T*

0 < G2(t) < Gi(pO < 1 and 0 < pH^pt) <H2{t),

then it follows that N(f)<0 for t^T* and hence M'{t)<0 for t^T*. A useful
preliminary result is that IJL1/X.1> ytJX^ for n = 2, 3 , . . . . This follows from equation
(3.3) and the properties of e(n) mentioned at that point, since

>7T2[(0.23)n-0.25]>0. (7.1)

Indeed, it can be checked that {iidX^} is a monotonic decreasing sequence, with limit 1
as n —» oo, although this result is not required in the discussion below.

If we write vn = nJK, and Z^ =pA2
l-/i

2., then we can use the inequality above to
deduce that, for n = 2, 3, , Zn>Z1>0 for p>p*. Note that

>A 2 (p-vf ) -A 2 (p-v 2 )>0 , (7.2)
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since v*<v? = p* and An>A1>0. If we put

then

This ratio increases with t and for p = 2 , 3 , . . .

Xp/Yp > (3/2v?) exp {Zxt} = XJ Yx. (7.5)

From equation (7.4), with p = 1, X1 = Y1 for t = T1; where

T1 = (l/Z1)ln(2p*/3) (7.6)

and X 1 >Y 1 for t>Tt. From equation (7.5), it follows that X,,>YP for f S T l , for
p = 2 , 3 , . . . , and hence

oo oo

1-G2(t)= I X,> £ Yp = l-G1(pr).
P=I P=i

Thus, for t ̂  TU

0<G2(r)<G1(pt)<l . (7.7)

In similar fashion, we can put

Qp = 6 exp (—/XpO, i?p = 4p exp (—pApf)> (7.8)

and write

As before, this ratio increases with t and for p = 2,3,

QPIRP>QJR1^1 for t^r2, (7.10)

where

T2 = (l/Zx)ln(2p/3). (7.11)

Hence for t ^ r 2

H2U)= Z QP> E «P = pH1(p0>0. (7.12)
P=I p=i

Since p>p*, T 2 >T X and the inequalities (7.7) and (7.12) are both valid for ( § T 2 . It
follows that N(t) < 0 for t S T2 and consequently

M'(f)<0, for p > p * and t ^ r 2 . (7.13)

This result is similar to one given by Clements and cited as result (iii) in Section 6. The
only difference is that To and T2 are not the same. From equation (6.6), we can re-write
To as

T0 = (llZ1)ln(p/p*) (7.14)

and compare it with T2. The two expressions have a similar structure, with p* in To
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replaced by 3/2 in r2. Since p*>3/2, we have 0 < T O < T 2 , which makes Clements'
result valid for a wider range of t. The difference becomes most conspicuous as p —* p*
from above, for in this limiting case To -* (1/TT)2 whereas T2 ->°°. It will be shown later
than N(t) > 0 for f > 0 when p = p*, a result which is difficult to reconcile with the finite
limit for To as p -* p*.

For p = 4 , we get T2 = {In (8/3)}/(4A?-ii\) = 0.074 and thus have M'(t)<0 for f£
0.074. For small values of t, we can use equation (6.7) with a = 1. In practice, the
approximation used was

){J;= (4T/3)-(4T/3){J; (2u)u}/{l-U/2Wir}, (7.15)

which is clearly a monotonic decreasing function of u (and hence of t) for u > 0. This
approximation was compared with exact values of M(t) for 0.01SfS0.06 and at the
lower end of the range the results agreed to five decimal places. For t = 0.05, 0.055 and
0.06, the corresponding values were 1.289, 1.282 and 1.274 for (1 /T)M and 1.290,
1.284 and 1.277 for ( 1 /T )M? .

If we take the result for small f as valid up to f = 0.05, there is again a gap which can
be bridged by the use of inequalities, as in Section 4. Since K and K2 are both
monotonic decreasing functions of t, if we consider an interval 0<t1^t^t2 and let

-X2(f2), (7.16)

then over this interval

X(t2, t1)SK-(pr)-JiC2(t)gX(r1, t2). (7.17)

Thus if X(tut2)<0, then K(pt)-K2{t)<0 for t^t^t2 and this implies that M'<0
throughout the interval (using equation (6.13)). For p = 4, this technique was used in
turn for the intervals [0.04, 0.0.045], [0.045,0.05], [0.05, 0.06], and [0.06,0.08] and
the corresponding values for X(tu t2) were -0.0275, -0.0358, -0.0373, and -0.0424.
Thus the bridging technique gives M '<0 for 0.04^t^0.08.

Combining this with the earlier results, we get M '<0 for t > 0 when p = 4 and the
argument near the end of Section 6 allows this result to be extended to p>4 .

8. Cylinder-sphere comparison for p =

For p = p*, there is a break-down in the argument used in Section 7 when comparing
with H2(f), since Zx = 0 for p = p* and hence QJR-i = 3/(2p*) < 1 for all t. For

n S 2 , Zn is still positive and it can be shown that QJRn > 1 for t>T3, where
T3 = (1/Za)In(2p*/3) = 0.0103. For t = T3, Q2 = R2 and Qn>Rn for n>2. (The details
follow in the same way as in Section 7.) Thus although equation (7.12) is no longer
valid, we still have

p=2 p=2

for ( 1 T 3 . However, for large values of t the first term in Hx and H2 is dominant and we
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can expect to have

i.e. M'>0 for t large.
To put this on a more rigorous basis, we need bounds on the contribution made by

the later terms to H^t), H2{t), Gi(p*f) and G2(0- If we start with H2(t), a typical
term is

Qp = 6 exp ( -^ f ) = 6 exp ( - P
2 TT 2 0 = 6E"2,

where E = exp (--n2t). Since we are thinking of what happens when t is large, we can
put a lower bound on t, say t s0 .1 , and we then have 0 < E g 0.373 < 1. We can write

H2 = 6E(1 + E3 + Es + ...) = 6E(1 + qj, (8.2)

where

] (8.3)
p=3 J

Now for p = 3

p 2 - 4 = (p-2)2+4(p-2)>4(p-2) (8.4)

and hence

. . .} = E3/(1-E4). (8.5)

If we write F = E3/(1 —E4), then F decreases as t increases and F ^ 0.0528 for
tSO.l. Thus we can say that 0<q 1 <u 1 = 0.055 for tSO.l.

For Hj(p*f) it is possible to make use of an inequality similar to (8.4) or alternatively
we can use equation (8.1) and say that for t S T 3

0<p*H1(p*r)-4p*E< X Q^bEq^bEF. (8.6)
p=2

Hence

p*H](p*0 = 4p*E(l + <h), (8.7)

with 0<q2<(6/4p*)F. For tgO.l, this gives 0<q2<v2 = 0.050.
In the same way, we have

l-G2(0-(6E/H?)= I {Qplnl}<(l/nl) t QP
p=2 p=2

and hence

l-G2(r) = (6E/nf)(l + q3), (8-8)

with

For t^O.l, this gives 0<<j3<u3 = 0.015.
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Finally we can write

, (8.9)

where

4Eq4M
2 = t (l/p*)tfV^)<U/p*AD £ Rv=4Eq2/kl

p=2 p=2

Hence 0<q4<(A1/A2)2q2 = 0.1898q2, and for t g o . l we can write 0<q 4 <u 4 = 0.01.
Putting these results into equation (6.12),

N(t) = 4p*E(l + q2){l - (6E/p,2)(l + q3)} - 6E(1 + q J d - (4E/Af)(l + q4)}

= aE + fcE2, (8.10)

where

a = 4 P * ( l + q2)-6(l + q1)> (8.11)

b = (24/A2)(q! + q4 + q1q4 - q2 - q3 - q2q3). (8.12)

For fSO.l,

a > 4p* - 6(1 + 1)0 = 0.4964,
b > (24/A2)(-u2 - «3 - u2u3) = -0.2729, (8.13)

N > 0.4964E - 0.2729E2 > 0,

since 0<ES0 .373 . Thus we conclude that M'>0 for p = p* and t§0 .1 .
For small values of t, we can approximate to M by the series Mj , as given by

equations (6.9) and (6.10). Inserting p = p* and <r = <T* = yJp*, the approximation used
was M j = (0 .8709T)P(U) , with u = Vf and

P(u)= 1 + 0 .3074U + 0 . 1 3 0 2 U 2 - 0 . 0 0 8 1 U 3 - 0 . 1 5 8 9 U 4 - 0 . 3 6 9 1 U 5 . (8.14)

Numerically, the approximation gives agreement with the exact values of M to about
0 . 0 0 0 5 T at r = 0.07 and to 0 . 0 0 0 3 T at t = 0.06. Although the polynomial P(u) has
negative coefficients for the u3, u4 and u5 terms, it is easy to show that P'(u) is positive
and indeed monotonic increasing for 0^uS0 .25 , corresponding to OS t^0.0625. We
can take this as evidence that M ' > 0 for small values of t, say for 0<f^0 .05 .

Equations (7.16) and (7.17) were used to bridge the gap between t = 0.05 and t = 0.1.
In this case, if we can show that 0<X(t2,t1), where 0 < f 1 S f S t 2 and X(t2,t1) =
K(p*t2)-K2(ti), then we can deduce that M'>0 for t^tSf2. In practice, it was more
convenient to use X*(r3, rx) = K(t3)-K2(h) as a criterion, with t3>p*t2. Because K is
monotonic decreasing, K(t3)<K(p*t2) and hence X*(t3, tl)<X(t2, fO, so K(t3) > K2(ti)
is a sufficient condition to ensure that M' > 0 for rx g f ̂  t2. Table 4 shows the numerical
values used for tt, t2 and f3 and the corresponding values of K2(tt) and K(t3).
Combining these results gives M > 0 for 0.03Sf SO. 12, which bridges the gap success-
fully.

This completes the discussion of the case p = p*. Since M ' > 0 for r>0 when p = p*,
it follows that M > 0 for t>0 when 0 < p < p * also.
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Table 4. Values of t,, t2, t3, K2(tt) and K(t3).

0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

«2

0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.12

P %

0.0683
0.0853
0.1024
0.1195
0.1365
0.1536
0.1707
0.2048

h

0.07
0.09
0.11
0.12
0.14
0.16
0.18
0.21

K2(»i)

0.4093
0.3923
0.3764
0.3614
0.3469
0.3328
0.3189
0.3054

K(tl)

0.4236
0.4092
0.3948
0.3874
0.3724
0.3568
0.3406
0.3156

9. Sphere-cylinder comparison

If the host organism is taken as spherical and the parasite as cylindrical, then
corresponding results are readily obtainable. We can take the host organism as a sphere
of radius b and diffusion coefficient q, as before. Then from Section 5,

C2(0 = average concentration in host at time t = cG2(t3), (9.1)

with t3 = qt/b2 and G2 defined as in equation (5.4). Similarly, for a cylinder of radius a
and diffusion coefficient k, the average concentration in the parasite at time t is given
by equations (2.3), (2.4) and (2.5). If the process terminates when C reaches a specified
value T4 and if this occurs when tj = T4, then T4 = cGj(T4) and the average concentra-
tion in the host is M3, say, where

M3 = cG2(PlT4) = uG2(PlTdlG1(T^, (9.2)

with

P l = (qa2)/(kb2) = l/p. (9.2)

If we replace T4 by pv and write M3 as a function of v, then

M3(v) = T4G2(u)/G1(pu) = T4T/M(U), (9.4)

where M(u) is defined by equation (6.5). Since M3(u)M(v) = TT4 = constant, it follows
that

sgn M3 = -sgn M'. (9.5)

Note that T4 and v increase together and that T4 -» 0 as v —> 0. Using the properties of
M, we can say that

(i) as c —* oo and T4 —» 0, M3 tends to a limit I, where

I = T4T/{(2/3 Wp} = (3/2)T4VP! ; (9.6)

(ii) M3>0 for u>0 (or T4>0) when pg4, i.e. when

0<P l=il/4; (9.7)

(iii) M3<0 for v>0 when 0<p^p*, i.e. when

(9.8)
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