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Introduction

A large number of results are available on the lattice of subvarieties of the
variety of metabelian groups. When considering metabelian p-groups (for odd p),
the immediate division is between groups of nilpotency class less than p, and those
of class at least p. The first case was dealt with in some detailin [1], and this paper
extends the results to the next interesting cases, classes p and p-+1. The main re-
sults are stated in Theorems 2 and 4, which give the basis laws for certain varieties,
and 3 and 5, which assert the existence of specific generating groups for these
varieties, and hence their non-trivial existence. The notation, and the essential
parts of the logic, are as in [1]; for the purposes of this paper, the following modi-
fication of Lemma 1.1 of [1], and also the ring-of-integer operations used in its
proof, are together dubbed the ‘Stirling manipulation’:

‘Let B be a variety of p-groups, with the law [[i-oW, = 1, n < p, where the
W, are distinct commuting words. If there is a set of valid transformations {¢,},
A= 1,2, - n+1 such that ¢,(W,) = W, then W, = 1 is a law in B for each
k:k=0,1,2,---n’

Certain other modifications can be made in the manner in which the properties
of the Stirling numbers can be exploited, and they are ’obvious’ when the ap-
propriate arrays are written down. Consequently, these details will not be given in
the proofs.

1. Laws in metabelian p-groups of “large class”

Results obtained by N. D. Gupta and M. F. Newman [2] (on laws with re-
peated entries in commutator words) can be extended to the more general results
below. These include some of the results of H. Meier-Wunderli [3], but the de-
monstration of the inclusion is left.

THEOREM 1. Let G be a metabelian p-group of class ¢ = p+m where m = 0,
and let the exponent of v.(G) be p*, where a_ is minimal. Then no law of the form

(x1,n;%,, ("1—1)x1 s N3 Xy, n:xz)pu =1
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will hold in G, with u < a., the t variables being distinct, Y -, n, = ¢, and all
n;>0,withtz3 whenm=0,t=m+2 when m # 0.

(The proof is almost the same as that for the more special Lemma 2 of [1],
the restriction on ¢ being sufficient to allow use of the Stirling manipulation, so
the details are not given.) By extending the methods of 2.1 of [1], it is possible to
obtain:

LeMMA 1.1. Let G be a metabelian p-group of classc; if G has thelaw inn £ s+2
variables:
(x, my, v, 05, .. 0 =1, m<p+l, m+l+c=¢c, 520

(where none of the v; is x or y, but the v; need not be distinct) then G also has the
law in n+1 variables: (x,y, (m—1)z, v, - -, v,)™ V" =1, and in particular, if
p does not divide (m+1), the law: (x, y, (m—1)z, vy, -+, v,)P" = 1.

One further lemma is useful:

LemMA 1.2. Let G be a metabelian p-group of class ¢ £ p+1. Then if G has
the law

(e (e=Dy)y” =1
it follows that every two-generator group H in Var (G) has y.(H) of exponent at
most p*.

Proor. Substitute xy for y in the given law, and use the given law itself, to
obtain

:]'jl(xa Vs (k_l)y’ (c—l_k)x)(i:l " =1

Apply the Stirling manipulation using the substitution of y* for y as the ‘valid
transformation’. Since ¢ < p+1, then immediately

(x, ky, (c—1—k)x)™ =1, k=1,2,c¢c—1.

The immediate consequences of the above results for a metabelian p-group

G are then:

(i) If G is of class p, then (x, (p—1)yY?" = 1 implies (x, (p—2)y, z2\*"" = 1 which

implies y,(G) is of exponent at most p***.

(i) If G is of class p+1, then (x, pyY* = 1 implies (x, (p—1)y, z)"" = 1 which
implies y,.1(G) is of exponent at most p".

Using (i) and (il) together with Theorem 1 and Lemma 1.1

(iii) If G/y,+1(G) has both the laws (xy, x5, * x,)F'*= 1 and (x,(p— 1910 Al
=1, a, and a,—1 being minimal, then G|y,,,(G) has the law (xy, x,," -
x Y =1 forr=p+l.
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Unfortunately, it appears that the minimal number of variables, f, needed
to ensure that:
’any c-weight commutator law

(egsmaxa, (n=1)xy,n3%5, ", nrxr)p“ =1 in Gfy.4,

implies that y.(G) has exponent p*’
might well be given by Theorem 1 and some easy extensions on special word-
forms. No attempt will be made to settle the question here.

2. The lattice of varieties of class p

The inductive steps to prove that certain laws form part of a ’basis’, used to
prove Theorem 3 of [1], are valid for class p, as long as we allow for the possibility
of (x,(p—1)yy”™ =1 and (x,,x,," -, x,)"" = 1 both being true, with a,
being minimal.

The exponent of the variety has a bearing on the existence of the two-variable
law. Although results from another article [4] are used to establish the lemma
below, the lemma itself properly occurs in this context.

LemMA 2.1. Let G be a metabelian p-group of class p and exponent p". Then
every two-generator group H in Var(G) has y,(H) of exponent at most p"~*.

PrOOF. H/HP is of exponent p, and hence has (x, (p—1)y) = 1 as a law, ([3],
[41), and so (x, (p—1)y) € H? for all x, y € H. But H” has exponent p"~! at most,
by the elementary result that (@™, 5”°) = S¥°, S € y,({a, b)), in any metabelian
p-group of class less than 2p, and elementary calculation.

The strategy to establish a basis for the laws of a variety of class p is as fol-
lows; we note first that (from its proof) the inductive lemma 5 of [1] applies to the
free group generating the variety, thus allowing certain laws in commutator words
of weight < p to be elements of a basis, so our concern here is with p-weight com-
mutator laws. If (x, (p— 1)y)**” = 1but (x, (p—1)y)* " # 1, we have no trouble,
because exactly the same technique applies as for the small-class case. The real
concern then lies with the situation where

(x, (p=1p)* =1 and (x, (p—2), 2" =1,

both indices being minimal, and «, = p+ 1. Since the first law implies the second,
we need to show that any p-weight commutator law follows from (x, (p—1)y)*" =1,
irrespective of the number of distinct variables. Lemma 4 of [1] (which was ade-
quate for the small-class case) is clearly insufficient, since it is part of an induction
assuming that 4 & «.. The result we need is provided in the following three lemmas:

LEMMA 2.2. Let G be a metabelian p-group of class p, in which the law &£ :
(%, (p—1)y)* = 1 holds. Then any law in G of the form [[; L; = 1, where the L;
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are commutator words of weight p, each of which contains no more than three distinct
variables, is a consequence of the law Z.

Lemma 2.3. Let a,, a,, - * *, a, be a partition of p, such that each a; > 0, and
a,+ - +a, =p. Let G be a metabelian p-group of class p in which the law
& (x,(p— 1)y = 1 holds. Then one of the consequences of £ in G is a law in n
distinct variables x, x5, * - *, x,,, of the form:

n—1
H(xi’ xn’(an_l)xna Ay 1 Xp—1>"° 'a(ai_l)xi’ Y alxl)ﬁip“ =1
i=1

in which no B, is divisible by p, and further, p does not divide ZZ} B;.

LEMMA 2.4. Let G be a metabelian p-group of class p, in which
Li(x, (p=1p)P =1

is a law. Then any law in G in p-weight commutator words, in n = 3 variables, can
be derived from £ .
The last Lemma follows from the previous two, which are proved as follows:

PRroOF OF 2.2. We assume the non-trivial case o, = p+ 1. In the law H L =1,
select any three variables, say x, y, z, and set the rest to 1. The resulting law can be
written in ‘basic’ commutator form, according to the ordering x = y = z, and then
re-collected into the form [[2Z3 W, = 1, where W, is a product each of whose
factors has precisely k entries of z. By applying the Stirling manipulation, we obtain
each W, = 1. Wy, = 1 and W,_, = 1 are each consequences of Z, by 1.2 and
by the proof of 1.2 of [1]. Taking any W,, = 1, m # 0, m # p—1, we can write it
in the form [[?Z§ V., = 1, where each V,, , is a product of commutators with
m entries of z and k entries of x; the Stirling manipulation then gives each
Vmr=1lasalaw, V, o = 1 and ¥V, ,_, = 1 being consequences of &. We can
rewrite each remaining case in the form

Via = (x, 2, y, (a=1)x, (b=1)y, (m—1)2)’s(y, z, x, (a—1)x, (b—1)y, (m—1)z)"
=1
with a # 0, b £ 0, m # 0, and where ¢ is the partition a, b, m of p. By putting
x for z, we obtain p*|y, by the minimality of y, and similarly p*|8,. If p** 1|y, then
p* 1B, and V,, , =1 is an immediate consequence of . The only case left to con-
sider is when y, = yp*, B, = Bp", v # 0, B # 0 (mod p). By substituting yz for y, xz
for x, expanding, and using the Stirling manipulation twice we can arrive at the law:

V' i(x, 2, 5, (p=3)2)"""(p, z, x, (p—3)z)"™" = 1.

We can combine this with one of the consequences of & (see, for example, the
proof of 2.1 of [1]) to show (x, z, y, (p—3)z)*#~*"" = 1 and hence bf—ay = 0
(mod p) by Theorem 1. Now another of the consequences of & (see [1]) is the set
of laws
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(. 2 3 (p=2= Ry (k= 1)z * (0, 20 x, (p=2= )y (k=1)2) CF " = 1,

for k=0,1,---p—2. If we select p—2—k = b—1, and raise to the power ¢,
where t(p ;1) = 1 mod p, substitute xz for z, and apply the Stirling manipulation,
we obtain, as a consequence of &,

(x, 2, y, (a—1)x, (b—1)y, (m—1)z2)""(y, z, x, (a—)x, (b— 1)y, (m—1)z)""* = 1

where

Sl R B ey R Gy [

and

B p——b—2) (p—b—2) B (p—b—l)
N_( a—1 b+ a—1 b=1b a—1 ]
—b—1 iy

Since (pa_l ) # 0 mod p, we have now

(x, z, y, (@a—Dx, (b=1)y, (m—1)2)""*(y, z, x, (a—1)x, (b—1)y, (m—1)2)?" = 1

as a consequence of -£. Since, however, f/y = a/b (mod p), the law V,, , = 1
can be derived from this. We have now, in fact, shown that the original word
[TL:is a product of words each of which is 1 as a consequence of Z.

PROOF OF 2.3. (2, = pu+1). The case n = 3 being true by the last part of the
proof in the previous Lemma, take as inductive assumption the truth of 2.3 for
n—1 variables, n > 3: we have that .% implies a law

s .
n (xi’ Xns (an—l +an_1)xn’ an—zxn—z » T,y xl)Yip” = 1
i=1

with no y; divisible by p, and Y ; y; not divisible by p. By putting x,_, x, for x,,
writing r for a,_;+a,—1, expanding, and using the Stirling manipulation, we
arrive at the law in the statement of 2.3, with §; = (’;1) y;fort £isn-2

and B,y = ~(5) ¥ v

The proof of Lemma 2.4 is by induction on »: considering any law of the form
mentioned, we proceed in a manner similar to the proof of 2.2, using the Stirling
manipulation and 2.3 at the appropriate places. The details are tedious but straight-
forward, and are therefore omitted.

We now have all the necessary results to establish a basis for the laws of any
variety of metabelian p-groups nilpotent of class p. The proof is simply a minor
re-wording of the corresponding proof in [1], using 2.4 when discussing commuta-
tor laws of weight p. Hence:
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THEOREM 2. Any variety of metabelian p-groups of class p = 3 and finite
exponent p** has as a basis for its laws, either the set S:

((x’ Y)’ (u’ v)) =1, (xl s X250 xp+1) =1, X = L
S{(x,(i=Dy)=1,i=23,---,p—1
(x,(p—2)y, z)’"" = 1 (which is equivalent to (x;, X5, "+, xp)"“" =1)

or the set S together with the law L:

L: (x@-1)yy""'=1

for some suitable set of indices a;, 00y 2 a, = * -+ = a, > 0, all indices being mini-
mal.

In case a; = o, = -+ = a,, the set S implies the law L.
The actual existence of such varieties is not certain until we have classes of groups
which generate them. For the set S with «; > a,, and without the law L, a two-
generator group which will generate the variety is easily constructed, as in [1], so
each such variety is generated by its reduced-free group of rank two. For oy = «a,,
or for a; > a, with S and L, the existence of the variety is given by Theorem 3
below. With the existence settled, the lattice of such varieties can be described by
the minimal indices in the basis laws, it is distributive, and the lattice of varieties
of metabelian p-groups of class < p can be included in it with the same description
as in [1].

THEOREM 3. Given a set of indices ay Z oy =+ Za, >0, p = 3, there
exists a metabelian p-group G of precise class p which has, as a basis for its laws,
the set S of Theorem 2, together with the law

(x, (p=1)yy* " =1,

all indices being minimal. G is on 3 generators.

PRrOOF. By construction; the recipe follows. Take 2(p—1) cyclic groups {B;>,
{C>, 1 2igp—1, of orders p*** for 1 £ i< p—1,and p® ' for i = p~1.
Take (g) cyclic groups {Q;;> withi = 1,j =1, i+j = p, {(Q;;» of order p**/
for i+j < p, {Q;;> of order p**~! for i+j = p. Take ((p—1)/2)* cyclic groups
M, 1 £i2(p—1)2, 1 £j = (p—1)/2 of orders p**/*'. Take the direct
product of all these cyclic groups, and name it G'. Then extend G’ by the cyclic
group <{a) of order p* by using the automorphism

B? = Bi’ C:‘ = Ci’ ij = MU

p—1

-2 . . .. . .
Qf; = Q;; M;;” unless either i or j is > , in which case Q; = Q,;.
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Then extend the group {a, G') by a cyclic group {(b> of order p** by using the

automorphism
a® = aB,, B} = B;B;y, for 1 <i<p—1,B' =B, ,
- -1 -
C’ = C,M[" for i=1,2,---1’7, ct =, fori>pTl

M} = MMy, ; for i< p%l’ M} = M;; for i = p%l

Q?j = Q;;0Q;+,,; for i+j < p, Q?j =Q;; for i+j = p.

Then extend the group <a, b, G') by a cyclic group {c) of order p* by using the
automorphism

a““=a [, b°=bQ,,,

B = B,M,, forlgiép——;l,Bf=B,- for i > 2=
Cf = Cici+1 fOI‘ 1 é l < p"‘l, C;—l - Cp—'l

c - p_]-
Mi; = MM ;44 for1<j< T, .?,(p—1)/2 = M; p-1y2

Qi; = Qi;Qi, j+1 for i+j < p, Qi; = Q;; for i+j = p.
The resulting group is {a, b, ¢, G'), and in fact is {a, b, ¢}, the derived group being
the direct product named G'. If a, = a5, this group will do for G; if oy > a,,
take the direct product of this group with a cyclic group {z)> of order p*, and take

G as the subgroup {az, b, ¢). The verification that the group so constructed does
have the required properties is straightforward.

3. The lattice of varieties of class p+1

Nearly all the inductive steps needed to prove that a certain set of laws forms
a ‘basis’ are valid for class (p+1) as well as for class p or less, as can be seen from
their proofs. We need, however, a supplement to Lemma 5 of [1], to allow the
particular step from laws in class < p to laws in class p+ 1. This is provided by:

LemMA 3.1. Let the variety B of metabelian p-groups coniain the reduced-free
group F. Thenif (x, (p— 1)y)P'1 = land (x, (p—2)y, z)*" = larelawsin F|y,.(F),
so also are they laws in F|y,,(F).

We note (by Theorem 1 and Lemma 1.1) that (x, py)*” = 1 implies (x,, X,

“+X,+1)" = 1, so that the divisibility arguments of Lemma 5 of [1] will apply;
Lemma 4 of [1] will allow induction on the number of variables in deriveable laws,
as long as we provide the starting point by Lemma 3.2 below. (That Lemma 4 of
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[1] is valid for ¢ = p+1 can be established by using the Stirling manipulation
instead of the argument about the non-singularity of a certain matrix in its proof.)
The starting point is:

LemMa 3.2. Let B be a variety of metabelian p-groups of class p+ 1, with the
law (x, pyY”" = 1, p minimal. If there is any law of the form

kljl(x, ky, (p—k)x)Pe = 1

in B, then (x,ky, (p—k)x)f* =1, k = 1,2, p, are all laws in B, each P, is
divisible by p*, each of these laws is a consequence of (x, py)*" = 1, and further, any
law of the form (x, ky, (p—k)x)* = 1 implies (x, py)* = 1.

Lemma 4 of [1] then implies that all (p+1)-weight commutator laws in 8
follow from (x, py)™ = 1.

Thus, by the same logic as in the proof of Theorem 3 of {1] and Theorem 2
of this, we have:

THEOREM 4. Any variety of metabelian p-groups of class p + 1 and finite exponent
p™ has as a basis for its laws either the set S:

(e y), (U, 0)) = 1, (%1, X2, 07" Xpy2) = 1, xP =1
(x,(i-Dy)i=1,i=23,--p—1,p+1
(x,(p—2)y, z)”"» = 1 (equivalent to (x, , X5, "+ *, x,)*" = 1)

(x, ) =1
or the set S together with the law L:

L:  (x(p=1)py” " =1
for some suitable set of indices a;, oy = oty = - = a,4q > 0, all indices being
minimal.

In the case that L is present, a,,, < o,—1, and in the case that a; = oy = - -~
= a,, L is present.

Again the question of the existence of such varieties must be considered, but
in this case the construction has already been done: for S without L (and hence
%, < oy ) the construction of a two-generator generating group as in [1] proceeds
even with the restriction eased to ¢ < p+1 rather than ¢ < p, and for S with L
(including oy = «,) the construction for Theorem 3 extends easily to a class p+1
group by adjoining two more cyclic groups {B,» and {C,» of orders p*** (2, ,
< u,) in the direct product to give G’, and extending the automorphisms in the
obvious manner. Thus:

THEOREM 5. For each possible variety mentioned in Theorem 4, there is a single
group which generates it; the group is on 2 or 3 generators, depending on the ab-
sence or presence of L.
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Again, the lattice of such varieties is given simply by considering the minimal
indices in the basis laws; it is distributive, and in it can be included the lattice of all
varieties of finite-exponent metabelian p-groups of class < p+ 1. The varieties are

simply named as [0y, ¢y, " a,, g, 0y ], With oy Z 0, = Z €, 2 9 2 2,4,
2 0, witha, 2 ¢ = a,—1, and the restrictions that ¢ = a,—1 whenever a; = «,.
Ifa,,; = 0, we interpret the variety as of class p;if a4y = 2,15 = -+ = a, = 0,

we interpret the variety as of class c:
[al PR q5 ap+1] V[a; P q’, a;;+l]

= [max (a, @), ' - -, max(q, q'), max (&, 1, tps;)]

7NN A VN ISR Iy
= [min (a,, «;), - -+, min (g, q"), min (&, 41, %y 1)].

It remains to establish Lemmas 3.1 and 3.2.

PROOF OF 3.1. Take first the law (x, (p—1)y)*" = 1 in F/y,, ((F). If this is not
a law in F/y,,,(F), there must be some relation

(91, (p—1)g.)" =TI C.

amongst a subset {g,, g,, - '} of the free generators of F, where the C, are com-
mutator words in g4, g,, * - -, of weight at least p + 2. This relation leads to a law
in F, hence a law in F/y, ,(F), by reading x for g,, y for g,, z for g3, - - -. Setting
every variable, except x and y, equal to 1, we then have a law

p

(x, (p—1y)”" = LGy Ge= 1)y, (p—R)x)™

in F/y,+2(F). (We note that then (x, (p—1)y, z)"l = 1, so the exponent of
Vp+1(F/7,+2(F)) is at most p*.) By writing the law in the form []f-, W, = 1,
where W, = (x, (p—1)p)"7(x, (p— 1)y, xf>, but Wy = (x,3, (k—1)y,
(p—k)x) for k # p—1, and by applying the Stirling manipulation, we derive
WP =1and W' W5 = 1, where S is a Stirling number divisible by p. Thus
Wyp-1 = lisalawin F/y,,,(F). Applying the Stirling manipulation again, (this
time, on the number of x-entries), we have the required result. The result for the
law (x, (p—2)y, z)*" = 1 is obtained similarly, but requires extra collection steps
for the three variables involved.

PRrOOF OF 3.2. That each factor in the given law is identically 1 is a simple
consequence of the Stirling manipulation, and the involvement of Stirling numbers
divisible by p. This gives p*|B, by the minimality of u. That ‘each of these laws is
a consequence of (x, py)* = 1 is simply Lemma 1.2, That ‘(x, ky, (p—k)x)* = 1
implies (x,py)" = 1’ is a simple application of the Stirling manipulation after
substitution of xy for y.
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