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SIMPLICITY OF REDUCED AMALGAMATED PRODUCTS 
OF C-ALGEBRAS 

KEVIN McCLANAHAN 

ABSTRACT. We give sufficient conditions for the simplicity of reduced amalga­
mated products of C*-algebras. We show that in some situations a minimal projection 
in a unital C* -algebra A is minimal in a free product A *c B. We show that in certain 
situations if a minimal projection in A were minimal in a particular reduced free product 
of A and B then the reduced free product would be a simple C* -algebra which has finite 
and infinite projections. 

1. Introduction. Let A and B be unital C*-algebras which have a common unital 
C*-subalgebra C with 1̂  = \B = lc- Let A *c B denote the amalgamated product of A 
and B over C [Br]. If <j> and ip are conditional expectations from A and B onto C then one 
can form the reduced amalgamated product of A and B over C relative to </> and i/j [Voi]. 
This product will be denoted 7r<^(A *c B). 

If G and S are discrete groups with a common subgroup / / and <f>, if; are the natural 
conditional expectations from C*(G) and C*(S) onto C*(//), then 

*w{C*(G) *0(fl) C"(S)) = Cr*ed(G *„ 5). 

If// is the trivial group and G, 5 are nontrivial, then C*ed(G*//S) is simple unless G = S = 
Z2 [PS]. One method of producing a simple C*-algebra with a specified property is to 
find groups G and S such that C*(G *{6j S) has the desired property and then try to show 
that C*&d(G *|e | S) has the same property. Because of the correspondence between the 
representations of C*(G) and the unitary representations of G it is often easier to verify a 
given property for the full group C*-algebra than for the reduced group C*-algebra. For 
example, consider the case of the free group on two generators F2 = Z *{ey Z. It is not 
hard to see that C*(F2) is projectionless ([Con], see also [Ch2]) but considerably more 
difficult to see that C*ed(F2) is projectionless ([PV], see also [Cul], [Con]). Similarly it is 
more difficult to compute the ̂ f-groups of C*ed(F„) ([PV], see also [Cu 1 ]) than to compute 
the /^-groups of C*(F„) [Cu5]. 

In the case of amalgamated products of C*-algebras over the complex numbers C 
Avitzour showed that 7r^(A*c#) is simple provided <j> and ip are faithful traces and A and 
B have unitaries satisfying particular properties related to the traces [Av, Proposition 3.1 
and Corollary]. We show that along with these unitary assumptions it is enough to assume 
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that 0 and ift are faithful states. We extend these results to give sufficient conditions for 
reduced amalgamated products (not necessarily over C) to be simple. 

We also discuss how the simplicity results may eventually be used to solve certain 
open problems concerning simple C*-algebras. For example, in Section 2 it is shown 
that in many cases the minimal projections in A and B are minimal in A *c B and in 
certain reduced products 7r^(A *C B). Examples will be given where the minimality in 
7r^(A * c B) of a minimal projection/? in A would make 7r^(A *C B) the first known 
example of a simple C*-algebra which has both finite and infinite projections. It would 
also follow thatpir^iA *cB)p is a simple C*-algebra which is finite but not stably finite. 

2. Minimal projections in free products. Roughly speaking, the amalgamated 
product of two C*-algebras A and B over C is the C*-algebra generated by monomials 
with letters alternating between elements of A and B. The elements of C can be identified 
as elements of A or B and can be combined with the surrounding letters. For a precise 
definition see [Br]. We will use the following universal property of the amalgamated 
product as our definition. A*ç B contains copies of A and B and for every pair of rep­
resentations a and f3 of A and B into a C*-algebra E which agree on C there is a unique 
homomorphism a * (3 of A * c B into E which restricts to a on A and (3 on B. The repre­
sentation is given on the monomials mentioned above by applying a to the letters in A 
and (3 to the letters in B. If C is the complex numbers C then we call the amalgamated 
product the (unital) free product of A and B. 

Given a full or reduced amalgamated product, A * c # or 7r^(A * C # ) respectively, one 
may ask if a projection which is minimal in A or B is minimal in A * c B or ^ ^ ( A *c B). 
The relation between the reduced case and certain open problems concerning simple C*-
algebras will be discussed in Section 4. For now we will consider the case of full products 
with C — CI where 1 is the common unit of A and B. It is not the case that any minimal 
projection in A is minimal in A *c B for any B. To see this, let A be any projectionless 
unital C*-algebra, let B be any unital C*-algebra which is not projectionless. Then \A is 
minimal inA, 1# is not minimal in B, and hence p = lA = \B is not minimal in A*çB. The 
following propositions and examples show that in many cases the minimal projections 
in A and B are minimal in A * c B. We first consider free products of the form Mn *c A 
where Mn denotes the n by n matrices with complex entries. C is embedded unitally into 
Mn and A. For any unital C*-algebra E which unitally contains an isomorphic copy of 
Mn the map x (g) y \—> xy is an isomorphism of Mn ® Mc

n and E. Mc
n denotes the relative 

commutant of Mn. Since the matrix unit e\\ corresponds to e\ \ <g> 1 under the isomorphism 
Mn *c A = Mn (g) Mc

n it follows that the cutdown of Mn *c A by e\\ is isomorphic to Mc
n. 

Thus the minimality of the projection e\ \ in Mn *CA is equivalent to the projectionlessness 
ofMc

n. 
Part (1) of the following proposition is due to J. Cuntz and is proven in [McC 1 ]. The 

proof is repeated here because the same ideas are used in the proof of (2). 

PROPOSITION 2.1. Let A be a unital C* -algebra. Suppose that either (1) or (2) holds. 
(1) A is projectionless. 
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(2) There is a unital *-homomorphism from A onto C.IfQ is a projection in A and 
for all I < k < n — 1, there is a projection Pk £ A so that In 0 (Q^k) 0 0(n_/c)) is path 
connected to ln 0 P{

k
n) by a path of projections in Mni(A), then Q — 0. (Here In denotes 

the nby n identity matrix and^ denotes the direct sum ofj copies ofX.) 
Then the relative commutant Mc

n ofMn in Mn *c A is projectionless. 

PROOF. Let wt G Zl(Mn 0 M„) be a continuous path of unitaries from VVQ = h 0 h 
to a unitary w\ such that wi (JC 0 y)w\ = y 0 x for all JC, y G Mn. Let 

<j>t: Mn *c A —> Mn 0 (Af„ *c A) 

be defined by 

<Mz) = wr(̂ /i ^ z W zeMn 

4>t(a) = In®a a G A. 

Then </>O(JC) = /« 0 JC for all x E Mn*c A. Also, </>i (JC) G M„ 0 A for all JC G Mn *c A. If 
x G M£, then (f>i(x) commutes with <j>\(Mn) = Mn 0 1 and so <f>\(x) G 7n 0 A. Hence if 
P G Proj(M^), then </>f(P) is a norm-continuous path of projections from <f>o(P) = /„ 0 P 
to (/>i(P) = 4 0 0 for some g G Proj(A). If (1) holds, then Q = 0 or Q = 1 and so 
P = 0 or P = 1. Suppose (2) holds. Let u: A —> C be a unital *-homomorphism. For 
1 < A: < n - 1 let 

cfy/. Mn *c A —> M„ 0 A 

be defined by 

a*(z) = z 0 U zeMn 

ak{a) = a w 0 o;(a)(,,-*) a G A. 

Since o;(0 G Proj(C) = {0,1}, we can assume UJ{Q) = 0 by replacing P with 1 — P 
if necessary. Since P G Mc

n, ak(P) commutes with ock(Mn) = M„ 0 1̂  and so a^(^) = 
4 0 Pk — P{

k
n) f° r s o m e Pk £ ProJW)- Because /„ 0 P is path connected to 7n 0 Q in 

Afn ®M„*CA we have that (IdMw ®ak)(In 0 P) is path connected to (IdM„ <S>ak)(In 0 0 . 
In other words, In®P{n) is path connected to In®(Q(k) ®0(n~k)) inM„2(A). By (2) Q = 0. 
Hence P = 0. • 

EXAMPLE 2.2. Let £/JJc be the universal C*-algebra generated by elements Uy, 1 < i, 
j < n, subject to the relations making the matrix [uy] a unitary matrix [Br]. U%c is iso­
morphic to the relative commutant of Mn in the free product Mn *c C(T) where T denotes 
the unit circle (see [McCl, Proposition 2.2] for a proof). Since C(T) is projectionless, 
U^c is projectionless by Proposition 2.1 (1). This was originally shown in [McCl]. 

EXAMPLE 2.3. Let G"c be the universal C*-algebra generated by a multiplicative 
identity and elements py, 1 < i,j < n, subject to the relations making the matrix [py] 
a projection [Br]. GJ)C is isomorphic to the relative commutant of Mn in the free product 
Mn *c C2. We claim that C2 satisfies property (2) of Proposition 2.1. The existence of 
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the homomorphism onto C is obvious. Suppose Q is a projection in C2 satisfying the 

hypothesis of the second statement in property (2). Letting k = 1 we have that in KQ(C2), 

n[Q]o = n2[P]o for some projection P in C2. Since the Â'o-classes of projections in C2 

correspond to (0,0), (0,1), (1,0), (1,1) under the isomorphism K0(C
2) — ^ 2 we must 

have [g]o = (0,0) and thus Q = (0,0). Hence (2) holds and so G"c is projectionless. 

In certain cases the AT-theory of amalgamated products can be computed. If retractions 

from A and B onto C exist then one has an exact sequence relating the A^-groups of A *c B 

to those of A, #, and C [Cu5]. In the case B — Mn and C — C one has a similar exact 

sequence if A has a *-homomorphism onto C and in fact Mn * c A is ATAf-equivalent to 

A [McC3]. The existence of a similar exact sequence for other free products including 

Mnx * c Mn2 has recently been proved in [McC4]. In the above cases it follows that if r is 

a trace on Mn * c A then 

(2.1) n(K0(A * c Bj) C (j\A)*(K0(AJ) + (T\B)*(K0(B)) 

(see [McC3]).Thus it would be desirable to know when traces on A and B can be extended 

to A *c B. Avitzour showed that any pair of states </>, i/> on A, B can be extended to a state 

< / > * 0 o n A * c # i n such a way that if <j> * 1/; is a trace if and only if <j> and i/; are traces 

[Av, Proposition 1.4]. The problem is that 0 * i/> is almost never faithful on A * c #. 

Since the range of a faithful trace on the A^-group of a C*-algebra gives information on 

the minimality of projections it would be advantageous to know whether or not faithful 

states and traces on A and B could be extended to faithful states and traces on A * c B. We 

will consider this question in the case where A and B are finite dimensional and C = C. 

A C*-algebra is called residually finite dimensional if it has a separating family of 

finite dimensional representations. We will need the following result of Exel and Loring. 

PROPOSITION 2.4 [EL, THEOREM 3.2]. Let A and B be unital C*-algebas. ThenA^^B 

is residually finite dimensional if and only if A and B are re sidually finite dimensional 

We remark that if A is a separable residually finite dimensional C* -algebra then the 

family of separating finite dimensional representations can be taken to be a countable 

family. 

PROPOSITION 2.5. Let A, B be finite dimensional C* -algebras. Let </>, -0 be faithful 

states on A, B respectively. There exists a faithful state ronA^^B extending both <ft and 

ÎJJ. If '(/> and ip are traces, then r can be taken to be a trace. 

PROOF. By the remarks preceeding the statement of the proposition there is a count­

able separating family {iTn} of finite dimensional representations of A * c B. Fix n. We 

can assume that there is an integer N(n) so that 7r„ is unital and has the form 

iTn:A *c#—>MN{n). 

Let on be the unique trace on M^ny Let x\,...,xr (resp. y\,...,ys)be the diagonal matrix 

units in a fixed system of matrix units for A (resp. B). Choose 0 < e < 1 so that 

eo-w(7r„ (*,-)) < </>(*i) I <i <r 

e°n(irn(yj)) < ^(yj) 1 <j < s. 
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Let a: A —> C be the faithful state defined by 

<i>(a) ~ e(TnUn{a)) 
a(a) = ^ '-. 

1 — e 
Let (3: B —* C be the faithful state defined by 

1 — e 

Let (/>: A *c B —-* A 0.6 be defined by 

0(a) = a (g> 1^ a G A 

<j>{b) =lA®b beB. 

Let 

0n: A *c # —> M ^ ) ©.(A 0 £) 

be given by 

Onto = 7rn(*) 0 <t>to xeA*cB. 

Then {#„} is separating for A *c B since {7r„} is separating for A *c 5. Let rn be the state 
on M#(n) 0 (A (g) B) defined by 

T„(*0y) = ean(x) + (1 - e)(a0/3)(y). 

rn is faithful since a and (3 are faithful (and hence a (g) (3 is faithful), a„ is faithful, and 
0 < e < 1. Let r be the state on A *c B defined by 

00 1 

Tto = E^rn(6n(x)). 
n=\ L 

Since {6n} is separating and each rn is faithful it follows that r is faithful. A simple com­
putation shows that r extends both </> and /̂>. It is easy to see that the above construction 
gives a trace if <j> and t/> are traces. • 

EXAMPLE 2.6. Consider again the example GJ)C of Example 2.3. Let <j> be the unique 
trace on Mn and let -0 be the faithful trace on C2 with weights { £, 1 — £ }. In [McC 1 ] it was 
shown that K0(Mn *c C

2) = Z2 with generators [enh and Oi]0 where ei = (1,0) E C2 

and e\\ is a minimal projection in Mn. Thus if r is a faithful tracial extension of <\> and 0 
to M„ *c C

2 we have by (2.1) that the range of 

r,:K0(Mn *CC2)->R 

is ^Z. Since r(en) = £, this gives another proof of the minimality of e\\. This proof, 
however, also gives the additional information that e\ is minimal since r(e\) — -. 
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3. Simplicity of reduced amalgamated products. We will now describe the re­

duced amalgamated product of two C*-algebras over a common subalgebra as defined 

by Voiculescu [Voi]. Let A and B be unital C*-algebras containing a common subalgebra 

C with \A = \B= \c. Let 0 and 0 be conditional expectations of A and B onto C. 

DEFINITION 3.1 [ Vol]. The reduced amalgamated product of A and B over C relative 

to <j> and 0 is a triple (£, O, IT) satisfying the following conditions. E is a C*-algebra with 

C as a subalgebra. O is a conditional expectation of E onto C. TT is a *-homomorphism 

from A*cB into E. Properties (a) through (d) also hold. 

(a) l£ E C, 7r(c) = c for all c G C, 7r is onto. 

(b) If <j>{ak) = ïp(bk) = 0 then 

Q(ir(alMbl)>-ManMbnj)=0 

and similarly for words beginning in B and/or ending in A. 

(c) 

0(7T(Û)) = 0(a) for a G A 

0(TT(/?)) = 0(/?) forbeB 

(d) If x G E satisfies <&(a*x*xa) = 0 for all a G £ then JC = 0. 

The reduced amalgamated product is unique and a construction showing its existence 

can be found in [Voi]. We will denote O by 0 * ip and 7r by TT^. Thus £ = ^ ^ ( A *c#)-

Let 0 * 0 = (0 * -0) o 7r^ ; so that 0 * 0(a) = 0(a) and 0 * 0(b) = ^(^) f ° r # G A and 

If we let 7T(D denote the GNS representation associated with O = 0 * 0 then it follows 

from (d) that 7r<j) is faithful on ir^^iA *c B). Thus since O o TT^^, — 0 * 0 we have 

||^*^W||2 = ||^o(^*û<(-*))| 

f 0(7T^V;(y*)7r^V;U*^)^*vXj)) _ , , # v , 1 

' 0 * i/;(y V x y ) , } 
, „ , , , , : 0 * 0(y y) ^ 0 . 

0 * 0(y*>O J 
sup 

From this it easily follows that ||7r^v,(a)|| > ||7r^(a)|| for a G A and 11^^,(^)11 > 

||7rv,(Z?)|| for b G B. Hence A (resp. B) is faithfully contained in TT^ÇA *C B) if TT0 (resp. 

7r^) is faithful. In fact, if 0 and 0 are faithful, then the algebraic free product A *^g B is 

faithfully contained in 7r^,(A *C £) if C = C [Av, Proposition 2.3]. However, it is not 

enough to assume that ix^ and TT^ are faithful [Av, Example 3.3]. 

In [Av] Avitzour proved the following lemma which lead to results concerning the 

simplicity and uniqueness of traces in certain reduced free products of C*-algebras. 
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LEMMA 3.2 [Av, PROPOSITION 3.1]. Let A and B be C -algebras and 0, 0 states on 

them. Let a be a unitary in the kernel ofcj) and b a unitary in the kernel of\jj so that 0, 

0 are invariant with respect to conjugation by a, b respectively. Let c be a unitary in B 

such that^ic) = ïp(b*c) = 0. Then for all x G ir^iA *c B) 

0 * 0(x) • 1 G œ{u*xu : u G £Z(7r^(A * c #))}» 

where cô(S) denotes the closed convex hull of S and 11(A) denotes the unitary group of 

the C*-algebra A. 

It follows from this lemma that if 0 * 0 is faithful on 7 r ^ ( A *C B) then 7 r^ (A *C B) 

is simple. This is because for every nonzero positive element x in a closed two-sided 

ideal 7 the invertible element 0 * 0(JC) • 1 is in 7. The problem is that it is not known 

whether or not 0 * 0 is faithful even if 0 and 0 are faithful. It is known that if 0 and 0 

are faithful traces then 0 * 0 is a faithful trace [Av]. The following proposition shows 

that 7 r ^ ( A * c B) is simple (under the assumption of the existence of the unitaries as in 

Lemma 3.2) whether or not 0 * 0 is a faithful trace. 

PROPOSITION 3.3. Let A, B, 0, 0, a, b, c be as in Lemma 3.2. Then 7r^ ;(A *C B) is 

simple. 

PROOF. It is enough to show that 7r^,(A * c B) is algebraically simple. Since n^ 

is onto, every two-sided ideal in 7 r^ (A *C B) is of the form 7 r^ (7 ) for some two-sided 

ideal 7 in A * c B- So it is enough to show that if J is a two-sided ideal in A * c 5 then 

n<f>*xl)(J) is either 7 r^ (A *C 5) or 0. Let 7 be a two-sided ideal in A * c B and assume that 

TI>*V>(/) 7̂  fl>*v>(A *c 5). Let x G 7. By Lemma 3.2 it follows that 0 * 0(x) • 1 G 7i>^(7). If 

0 * 0(x) T̂  0 then 0 * 0(;c) • 1 is an invertible element in the closure of the two-sided ideal 

n^iJ). Since the set of invertible elements is open, 71-^(7) would contain an invertible 

element which would be a contradiction. Thus 0 * ijj(x) = 0 holds for all x G J. So if 

x G J and j G A * c 5 , then y*x*xy G 7 and thus 0 * ili(y*x*xy) = 0. So by property (d) 

of the définition of reduced amalgamated products it follows that 7T^(JC) = 0. Hence 

*<l>*rl>(J) = 0. • 

We will now consider the case of reduced amalgamated products over subalgebras 

other than the complex numbers. Our plan of attack in determining sufficient conditions 

for the simplicity of reduced amalgamated products will proceed in two steps. First we 

will determine several properties of 0 * -0(7) for a two-sided ideal 7 of A *c B so that we 

will know in certain cases when 0 * 0(7) (and hence 7r^(7) ) must be zero. Then we will 

try to prove an analog of Lemma 3.2 so that we can conculde that 0 * 0(7) C n<f>*^(J) 

in some of these cases. Notice however that this containment is not enough to conclude 

that 0 * 0(7) T̂  0 implies 7 r^ (7 ) = 7r«^(A * c B) if C ^ C. This is because for* > 0, 

x ^ 0, if 0 * 0(JC) ^ Owe only have that 0 * 0(x) is a nonzero element of C in the 

ideal generated by 7r^(jc) which may not be invertible. We will need the following two 

technical lemmas which are related to [Av, Proposition 1.4]. Let Ao = ker 0, Bo = ker 0, 

and (A *c #)o = ker(0 * 0). A word consisting of one or more letters alternating in Ao 

and BQ is called a reduced word. 
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LEMMA 3.4. Let a G A, a\, a2 G A0. 
( 1) IfaAo C A0, f/ierc a(A * c #)o C (A * c B)0. 
(2) IfAoa C A0, then (A * c 2?)0fl C (A * c £)0. 
(3) 7/tf iA0fl2 C A0, f/œn «i(A * c B)0a2 C (A * c 5)0. 
The analogous results hold for B. 

PROOF. We will prove (3) first. It is enough to show that a\xa2 G (A * c #)o for a 
reduced word* since each element of (A *c#)o can be approximated by a sum of reduced 
words [Av]. 

CASE 1. If x begins and ends in Z?o, then a\xa2 is a reduced word and hence <j> * 
ï[)(a\xa2) — 0 by property (b) of Definition 3.1. 

CASE 2. If x begins with Ao and ends with #o, let x — a$y where ao G A0 and y 
is a reduced word beginning and ending in Bo. Write a\ao as aoo + </> * V^i^o) where 
</> * i/^oo) = 0- So «00^2 and ytf2 are reduced words. Thus 

</> * ij)(a\xa2) = <j> * xl)(a\aoya2) 

= <j> * il>(aooya2) + </> * V>(<£ * ^(«l^o)}7^) 

= 0 + </> * ili(a\ao)(f) * ^iya2) = 0. 

CASE 3. If JC begins in Z?o and ends in Ao let x = yao where v is a reduced word 
beginning and ending in Bo and ao G Ao and proceed as in Case 2. 

CASE 4. If x begins and ends with Ao and is not of length one, let x = a^ya4 where 
«3,^4 G Ao and y is a reduced word beginning and ending in Bo- Write #1^3 as a\ \ + <j> * 
(̂«1*23) where an G Ao and «4^2 as 2̂2 + <t> * ty(a$ai) where «22 £ Ao. Then a 11^22» 

ya22, a\\y, y are all reduced words and are in the kernel of </> * i/\ Hence 

</> * i)(a\xa2) = </> * x[)(a\a3ya4a2) 

= <j> * ^ ( ( « 1 1 + <£ * V ^ l « 3 ) ) v ( a 2 2 + <£ * </>(0402))) 

= </> * i/j(auya22) + </> * V ^ i ^ ) ^ * ^ « 2 2 ) 

+ 0 * ^(a\\y)(j) * ilj(a4a2) + </> * xl)(a\a3)(j) * ̂ (y)4> * ip(a4a2) = 0. 

CASE 5. If JC G A0 then «1x^2 G Ao C (A *c #)o-
This concludes the proof of (3). If we add the additional hypothesis to (1) that a G Ao 

then (1) could be proven with the same techniques as in (3) except that there would 
be fewer cases to consider. So assume (1) holds under the additional hypothesis that 
a G Ao. Let a G A and suppose aAo C Ao. Then a = ao + <j> * V^) where «0 £ Ao-
We have </> * i/j(a)Ao C Ao since </> * ^(#) G C and CAo C Ao. Thus aoAo C Ao and so 
ao(A *c#)o C (A *c#)o. We also have <j> * i/j(a)(A *c#)o C (A *c#)o and hence it follows 
that a(A * c B)o C (A * c #)o- The proof of (2) is similar to the proof of (1 ). • 

PROPOSITION 3.5. Let a G A, au a2 G A0. 

(7) IfaAo C Ao, aC C C, f/zerc </> * V^*) = #</>* ip(x)for allx G A *c #• 
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(2) IfAoa C Ao, Ca C C, then <j> * ̂ (xa) = <j> * ̂ (x)a for all x eA*cB. 
(Jj Ifa\Aoci2 C Ao, ^iC«2 C C, f/ien (/> * ip(a\xci2) = a\(f>* ip(x)ci2 for all x £ A*cB. 
77ze analogous results hold for B. 

PROOF. Write x G A *c 5 as XQ + </> * I/;(JC) where </> * V>(*o) — 0- In case (1) we have 
</> * ip(axo) — 0 by Proposition 3.3. Since <j> * t/> fixes C and ac/> * i^W G aC C C it 
follows that <f> * T/>(tf</> * V>(*)) = a<j)* T/;(JC). Thus (1) holds. Case (2) is similar. In case 
(3), (j) * i/^i-Xo^) = 0 by Proposition 3.3. Also <j> * ^{a\<j> * ^(Xte) = «i</> * ^(x)a2 
since a i</> * ip(x)a2 G «i C#2 C C and </> * t/> fixes C. Thus (3) holds. • 

DEFINITION 3.6. Let 5/ be the set of elements in A satifying the hypothesis of (i) of 
Proposition 3.5 for / = 1,2. Let S3 be the set of pairs (a\, ai) of elements of A satisfying 
the hypothesis of (3) of Proposition 3.5. Let T\9T2, T3 be defined analogously for B. 

COROLLARY 3.7. If J is a two-sided ideal in A *c B, then <j> * x/j(J) is a two-sided 
ideal in C which is invariant under left multiplication by S\ and T\> right multiplication 
by S2 and T2, and left-right multiplication by pairs in S3 and T3. 

PROOF. The fact that <j> * ijj(J) is a two-sided ideal in C follows from the fact that 
(j) * %() is a conditional expectation onto C. The invariance follows immediately from 
Proposition 3.5. • 

Next we will establish an analog of Lemma 3.2 for amalgamated products. A few tech­
nicalities occur in the amalgamated product case which do not occur in the free product 
case. First of all the condition <j>(a*xa) — <f>(x) for all x G A for a fixed unitary a G AQ is 
too restrictive. This condition on a unitary a G Ao will be replaced by the weaker condi­
tion that a*Aoa C Ao. In the case where C = C these two conditions are equivalent. This 
follows easily by observing that x = xo + <f>(x) • 1 with x$ G Ao- In the case where C ^ C 
we do not know that <j>(a* <j>{x)a\ = <j>(x) since <j>{x) may not commute with a. The fol­
lowing example shows that the two notions are not equivalent. Let </> be the conditional 
expectation from M2 onto C2 given by 

<t>(lyij]) = (yiuyn)-

The unitaries in the kernel of <j> are exactly the 2 x 2 matrices with zeros on the diagonal 
and scalars of modulus one off the diagonal. Conjugation of a matrix \ytj] by one of these 
results in a matrix in which y\\ and V22 are switched. Thus there are no unitaries a in the 
kernel of <j> for which <j)(a*ya) = <j>(y) holds for all y G M2. However </>(y) — 0 if and only 
if v has zeros on the diagonal and this property is preserved after the diagonal entries are 
switched. Thus a* ker <j>a C ker <f> holds for all unitaries a G ker <f>. 

LEMMA 3.8 [Av, PROPOSITION 3.1]. Suppose there are unitaries a G A0, b G B0, 
such that aAoa* C Ao and bBob* C #o- Suppose there is a unitary c G BQ so that 
b*c G #o- Let Vjg — 7Tfa^\(ba)kcac(aby). Ifx is a reduced word of length less thanj then 
for any integers 1 <m\ < m2 < • • • < m#, 

(3.2) 
N 

V7 E VmtjKwWKk iy k=\ 
< 

2\\x\\ 

Nl2 
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Consequently, 

0 G co{w7r0n,(x)w* : u G UiS)} for all x G (A *c#)o, 

where S is the group generated by ir^^a), ir^ib), and ir^^c). 

PROOF. Avitzour proved this theorem for C = C. He showed that the inequality 
above holds if m^ = k for each k. It follows from his proof that any sequence (m\,..., m^) 
will do. In Avitzour's version he assumed the conjugation invariance of <f> with respect 
to a and the conjugation invariance of xj; with respect to b. An inspection of his proof 
shows that the weaker conditions aAç>a* C Ao and bBob* C #o suffice for the case of an 
arbitrary C • 

REMARK. Avitzour showed that (j> * I[J(X) • 1 is in the closed convex hull mentioned 
in the statement of the lemma for all x, not just in the case x G (A *c B)Q. This follows in 
the case C — C by writing* = XQ + </> * I/;(JC) • 1 with </> * i/^o) = 0 and using the fact that 

1 i:M^*v«-iK N£=i 
</> * i/>(.x) • 1 • 

This may not be true if C ^ C since </> * t/̂ W may not commute with the unitaries Vmkj. 
This is the reason why a sequence (mi,.. . , ran) was used instead of (1,.. . ,N). As we 
shall see later in an example it may be possible for <j> * %fj(x) to commute with a sequence 
of Vy's but not all of them. 

COROLLARY 3.9. Suppose that for every cç> G C, j G N, r/zere /s « sequence of 
integers 0 < m\ < ni2 < • • • so that ir^^co) commutes with Vmkjfor all k. Then 

<t> * ïp(x) G cô{w*7r#V;(*)w : u G U(n^(A * cB))} . 

PROOF. Let x G A * c B. Write x = x0 + <j> * -0W for some JC0 G (A * c #)o- We will 
identify n^fa * V>(*)) with </> * ^W- Let e > 0. Sincexo can be approximated by a sum 
of reduced words it follows from (3.2) that we can choosey, N G N so that 

1 N 
^ E VmkJ^<l>*rp(Xo)V^ 

k=\ 
mkj 

<e 

for any sequence m\ < • • • < m^. Choose the sequence m, as in the hypothesis with 
respect to c — <j> * %p(x) and the chosen j . Then 

</> * i/>(;c) • 
1 N 

W fc=l 

1 tf 

' * V>(*) - T; E ^ J 7 ^ * ^ ) ^ 

1 ^ 

1 E W>*vw; 
TV *=i 

</> * l/j(x) • 

N 
• </> * ijj(x) 

k=\ 
< e . 
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PROPOSITION 3.10. Let J be a two-sided ideal in A *c B. Suppose A and B have 
unitaries as in Lemma 3.8 and the hypothesis on C in Corollary 3.9 is satisfied. Then 
4> * ip(J) ̂  K^iJ). Moreover, if C contains no proper two-sided ideals invariant under 
left (resp. right) multiplication by elements ofS\ and T\ (resp. S2 and T2) and left-right 
multiplication by pairs of elements of S3 and T3, then 7r^n;(A *c B) is simple. 

PROOF. The containment <j> * i/j(J) c TT^^J) follows from Corollary 3.9. By Corol­
lary 3.7 4>*IIJ(J) must be either 0 or C. By (3.1) we have 4>*tp(J) = 0 implies ir^(J) — 0. 
Since 1 G C and </> * \j)(J) C 7^,(7), </> * ^(J) = C implies TT^^J) = ii^(A * c B). 
Since every two-sided ideal in 7r^(A *C B) is of the form 7r^(7) for some two-sided 
ideal J in A *c # it follows that 7r^(i4 * c 5) is simple. • 

COROLLARY 3.11. Suppose A and B have unitaries a, b, and c as in Lemma 3.8. 
Suppose C is simple and commutes with a, b, and c. Then ix^(A *c B) is simple. 

EXAMPLE 3.12. Consider the amalgamated product Mm+n *c2 M2. A pair (a, (3) G C2 

is identified with the diagonal matrix in Mm+n having m copies of a and n copies of (3 and 
with the diagonal matrix in M2 having diagonal entries a and (3. It was shown in [McC2] 
that the relative commutant of Mm+n in this product is isomorphic to the C*-algebra U^ n). 
This C*-algebra is the rectangular version of U^c = £/^w) and a generalization of the 
Cuntz algebra On = U^\jny Namely, Uf^n) *s m e universal C*-algebra generated by ele­
ments utj, 1 < / < m, 1 <j < n, subject to the relations making the m x n matrix [uy] a 
unitary matrix. Let </> be the conditional expectation from Mm+n onto C2 given by 

1 1 ( 1 111 • iu-rn 

mk=\ nl=m+\ J 

Let X/J be the conditional expectation from M2 onto C2 given by 

i^ibij]) = (yiuynY 

Let E = TT^iMm+n *C2 M2), with m > 1 and n > 1. We will show that E is simple. 

We do not consider the cases m = 1 and n — 1 since Mm+\ *c2 M2 Mt m+\ On 

and M\+n *C2 M2 = M[+n (g) On [Br] which implies that E is simple in these cases. Let 
Xn = e^. Let un and vn denote the following n x n unitary matrices. 

1 
A, 

A' n-\ 

Vn = 

0 1 

1 

Let a — vi, b — um ® un, c = vm ® vn. The matrices a, b, and c are unitaries with a in 
the kernel of ip and /?, c, b*c are in the kernel of <j>. We have ijj{a*ya) = 0 if i[)(y) — 0 
for y G M2 and (j){b*xb) = (f)(x) for x G Mm+n. We now will show that the condition 
on C in Corollary 3.9 holds. Let c0 = (a, (3) E C2. Then /? and c commute with CQ 
under the identification of C2 with a sublagebra of Mm+n. Since a*co« = (/3, a) we do 
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not have that CQ commutes with a. However CQ commutes with even powers of a. Since 
Vkj = (ba)kcac(aby it follows that c0 commutes with Vkj if k + j is odd (since there 
are k +j + 1 occurrences of a in V -̂). So for a fixed j we can choose (mi, . . . , m^) to 
be (2,4, . . . , 2A0 if y is odd and (1 ,3 , . . . , IN + 1) if j is even. Note that a*Ca C C and 
so (a*, a) G T3. The only two proper ideals of C2 are C 0 0 and 0 0 C and neither 
of these is invariant under conjugation by a. Thus there are no proper two sided ideals 
of C2 which are invariant under left-right multiplication by T3. So by Proposition 3.10, 
n^(Mm+n *C2 M2) is simple. 

4. Relations to open problems concerning simple C*-algebras. We now discuss 
the possibilities of certain simple reduced amalgamated products being the solutions to 
open problems in the theory of simple C*-algebras. We begin by recalling some rele­
vant properties of C*-algebras. Two projections p and q in a C*-algebra A are said to be 
(Murray-von Neumann) equivalent if there is an element x G A such that x*x — p and 
xx* = q. A projection p is said to be infinite if it is equivalent to a proper subprojection 
of itself. Otherwise p is said to be finite. If all of the nonzero projections in a simple 
C*-algebra A are infinite then A is said to be purely infinite [Cu2]. If all projections in A 
are finite (equivalently 1̂  is finite if A is unital) then A is said to be finite. If Mn(A) is 
finite for all n then A is said to be stably finite. If the invertible elements of A are dense 
in A then A is said to have topological stable rank one (tsr(A) = 1) [Rf]. It is known that 
tsr(A) = 1 implies that A is stably finite [Rf, Proposition 3.1, Theorem 3.3]. Obviously 
if A is stably finite then A is finite. The reverse implication is false in general. There is 
no known example of a simple C*-algebra which is known to be neither of topological 
stable rank one nor purely infinite. Consequently there is no known example of a simple 
C*-algebra which has both finite and infinite nonzero projections. It also follows that 
there is no known example of a simple finite C* -algebra which is not stably finite. In the 
case of tsr(A) = 1 for a simple C*-algebra it is known that the map 

(4.1) Zl(A)/Zh(A)^K{(A) 

is an isomorphism [Rf, Corollary 4.10, Theorem 10.10]. In the above map Zl(A) denotes 
the unitary group of A and ^ ( A ) denotes the connected component of the identity in 
11(A). This is also known for purely infinite C*-algebras [Cu2, Theorem 1.9]. It follows 
from this and the previous remarks that there is no known example of a simple C*-algebra 
for which the above map is known not to be an isomorphism. 

EXAMPLE 4.1. Consider the free product Mn *c C(T) and the relative commutant 
jjnc ̂  ^ c di scus secj m Example 2.2. Let </> denote the unique trace on Mn and ip denote 
the canonical faithful trace on C(T) given by 

Equivalently, i[) is the trace on C*(Z) = C(T) given by xl)(n) = 6no. Then by Propo­
sition 3.3, 7T(/>*<$(Mn *c C(T)) is simple. Let UnTQd™ denote the relative commutant of 
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7T^(M„) in this reduced free product. Then since Mn ® £/n>red
nc = K^(Mn *c C(T)) 

it follows that f/nrednc is simple. The map in (4.1) is not onto for A = U^c. To see this 

we will use the fact that Kx (C(S3)) ^ Z with a generator v in ZL(M2(C(S3))) [CI]. The 

topological fact that every continuous function from S3 into T is homotopic to a con­
stant map [Sp, 7.2.12] can be restated by saying that the unitary group of C(S3) is path 
connected. Let 

1 

e u(Mn(c(S3) 

Then the map which takes Uy onto the (/J)-th element of V induces a homomorphism 
a: Ulc —• C{S3). Since Kx(Ulc) ^ Z [Ph, Lemmas 4.1,4.3] with [[u^h as a generator, 
the map 

(j*:K{{Ulc)->K{(C{S3)) 

is an isomorphism. If w G 1Z((7J}C), then a(w) G £Z(S3) is connected to the identity by a 
path of unitaries. Thus a*[w]\ — 0 and so [w]\ = 0. Hence the map in (4.1) is the zero 
map. It was shown in [McC3] that the natural map 

T T ^ : Mn *c C(T) —• T T ^ (Mn *c C(T)) 

induces an isomorphism of ^-theory from the full to the reduced free product. It follows 
from a more recent result of the author that T T ^ is a KK-equivalence [McC4]. Hence 
7 r ^ induces a ^^-equivalence of U^c and £/n>red

nc • It would seem reasonable that the 
map in (4.1) is zero if A is the simple C*-algebra Un^^c. 

EXAMPLE 4.2. Let C*(S) denote the universal C*-algebra generated by a nonunitary 
isometry S [Co]. Since S*S = 1 and SS* ^ 1 it follows that 1 is equivalent to a proper 
subprojection and hence 1 is an infinite projection in C*(S). Consider the free product 
A = Mn *c (C*(5) © C*(S)) for n > 1. Let x/j denote the unique trace on Mn. Since C*(5) 
is separable it has a faithful state c/>o. Let </> denote the faithful state on C*(S)®C*(S) given 
by <f)(a 0 Z?) = \ (</>o(tf) + ̂ o(^))- Unitaries b,c £ Mn as in Lemma 2.2 can be found and 
« G ^(C*(S) 0 C*(S)) can be taken to be 10 - 1 . Thus the reduced free product 7r^(A) 
is simple by Proposition 3.3. Since C*(S) 0 C*(5) is faithfully contained in 7r^(A) by 
the remarks following Definition 3.1 it follows that 1 is an infinite projection in 7r^(A). 
If 7r^(ei i) were minimal in 7r^(A), then TT^^A) would be a simple C*-algebra having 
finite and infinite projections. If this were the case then since 7r^(Mn)

c is isomorphic to 
the cutdown of 7r^(A) by ir^ien) it would follow that ir^iMnY is projectionless and 
hence finite. However Mn <g> ir^iMnf = 7r^(A) is infinite as was pointed out above. 
Thus ir^iMnY is not stably finite. So 7r^(M„)c would be an example of a simple finite 
C*-algebra which is not stably finite. 

EXAMPLE 4.3. Consider the product Mm+n *c2 M2 of Example 3.12 with m < n. 
Let U^ n) red denote the relative commutant of 7r^(Mm+n) in ir^^Mm+n *c2 M2). Then 
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k?m«)red *s simple because Mm+n 0 £/^n)?red is isomorphic to the simple C*-algebra 
TT^iMm+n *C2 Mi). The m x m matrix x = [«#], 1 < /, j < m, satisfies x*x = Im 

and xx* ^ 7m since m < n. Thus ^fm(^ r t ) r ed) *s not finite and hence U^^n)red is not 
stably finite. So if T T ^ O H ) G 7r^^(Mm+n) were minimal, then 7r0^,(Mm+„)c = ^ ,„) , r e d 

would be projectionless. Thus U1^ n) red would be simple, finite, and not stably finite. Also 
Mm 0 U^ n) red would be simple with a finite projection e\ \ (g) 1 and an infinite projection 

/m® 1. 

REFERENCES 

[Av] D. Avitzour, Free products ofC* -algebras, Trans. Amer. Math. Soc. 271(1982), 423-465. 
[Bll] B. Blackadar, K-theoryfor operator algebras, Springer-Verlag, New York, Berlin, Heidelberg, London, 

Paris, Tokyo, 1987. 
[BI2] , Comparison theory in simple C*-algebras. In: Operator algebras and applications Volume 1: 

Structure theory; AT-theory, geometry and topology, London Mathematical Society Lecture Notes Series 
135, Cambridge University Press, Cambridge, New York, New Rochelle, Melbourne, Sydney, 1988, 2 1 -
54. 

[Br] L. Brown, Ext of certain free product C* -algebras, J. Operator Theory 6(1981), 135-141. 
[Chi] M. Choi, A simple C* -algebra generated by two finite order unitaries, Canad. J. Math. 31(1979), 867-

880. 
[Ch2] , The full C*-algebra of the free group on two generators, Pacific J. Math. 87(1980), 41-48. 
[CI] N. P. Clarke, A finite but not stably finite C*-algebra, Proc. Amer. Math. Soc. 96(1986), 85-88. 
[Co] L. Coburn, The C* -algebra generated by an isometry I, Bull. Amer. Math. Soc. 13(1967), 722-726. 
[Coh] J. Cohen, C*-algebras without idempotents, J. Funct. Anal. 33(1979), 211-216. 
[Con] A. Connes, Non-commutative differential topology, Inst. Hautes Études Sci. Publ. Math. 62( 1985), 257-

360. 
[Cul] J. Cuntz, K-theoretic amenability for discrete groups, Crelles J. 344(1983), 181-195. 
[Cu2] , K-theoryfor certain C*-algebras, Ann. of Math. 113(1981), 181-197. 
[Cu3] , Simple C* -algebras generated by isometries, Comm. Math. Phys. 57(1977), 173-185. 
[Cu4] , The internal structure of simple C* -algebras, Proc. Symp. Pure Math. 38(1982), 85-115. 
[Cu5] , The K-groups for free products of C*-algebras. In: Proceedings of Symposia in Pure Mathe­

matics, Vol. 38, Part 1, Amer. Math. Soc, Providence, Rhode Island, 1982, 81-84. 
[EL] R. Exel andT. Loring, Finite-dimensional representations of free product C* -algebras, preprint. 
[L] E. C. Lance, K-theoryfor certain group C*-algebras, Acta Math. 151(1983), 209-230. 
[McCl] K. McClanahan, C* -algebras generated by elements of a unitary matrix, J. Funct. Anal., to appear. 
[McC2] , K-theory and Ext-theory for rectangular unitary C* -algebras, Rocky Mountain J. Math, to 

appear. 
[McC3] , K-theoryfor certain reduced free products of C*-algebras, preprint. 
[McC4] , KK-groups of crossed products by grouplike sets acting on trees, preprint. 
[PS] W. L. Paschke and N. Salinas, C* -algebras associated with free products of groups, Pacific J. Math. 

82(1979), 211-221. 
[Ph] N. C. Phillips, Classifying algebras for the K-theory of a-C-algebras, Canad. J. Math. 41(1989), 1021 — 

1089. 
[PV] M. Pimsner and D. Voiculescu, K-groups of reduced crossed products by free groups, J. Operator Theory 

8(1982), 131-156. 
[Rf] M. A. Rieffel, Dimension and stable rank in the K-theory of C*-algebras, Proc. London Math. Soc. 

46(1983), 301-333. 
[R0] M. R0rdam, On the structure of simple C*-algebras tensored with a UHF-algebra, J. Funct. Anal. 100 

(1991), 1-17. 

https://doi.org/10.4153/CJM-1994-045-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-045-2


AMALGAMATED PRODUCTS OF C*-ALGEBRAS 807 

[Sp] E. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966. 
[Voi] D. Voiculescu, Symmetries of some reduced free product C* -algebras, Operator Algebras and Their Con­

nections with Topology and Ergodic Theory, Lecture Notes in Math. 1132, Springer, Berlin, New York, 
1985,556-588. 

Department of Mathematics 
University of Mississippi 
University, Mississippi 38677 
U.S.A. 

https://doi.org/10.4153/CJM-1994-045-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-045-2

