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The Lippmann equation is considered as universal relationship between interfacial tension,

double layer charge, and cell potential. Based on the framework of continuum thermo-

electrodynamics, we provide some crucial new insights to this relation. For general interfaces

such that the local curvature radius is large compared to the Debye length, we apply

asymptotic analysis methods to obtain the Lippmann equation. We give precise definitions

of the involved quantities and show that the interfacial tension of the Lippmann equation

is composed of the surface tension of our general model, and contributions arising from the

adjacent space charge layers that can only lower the interfacial tension. Moreover, it turns out

that surface reactions can be consistently incorporated into the Lippmann equation, provided

that there is no charge transfer from one side of the interface to the other. We apply the

model to curved liquid metal electrodes and compare our model to experimental data of

several mercury–electrolyte interfaces. We obtain qualitative and quantitative agreement in

the 2 V potential range for various salt concentrations.
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1 Introduction

The interfacial phenomena of electrocapillarity, discovered by Lippmann a century ago

[32, 33], is a key feature for investigations of the electric double layer which forms at the

interface between two charged phases. Intensive experimental studies on mercury–aqueous

electrolyte interfaces carried out by Gouy [22–25], Frumkin [18], Grahame [27], and others,

lead to the fundamental perceptions of the double layer by Grahame [27]. Experimentally

well and reproducible observed is the parabola shaped relationship between the interfacial

tension γ and some applied voltage U, cf. Figure 1a. Moreover, the slope of the surface

tension with respect to the applied voltage is given by the double layer charge density Q.

This relation is known as the Lippmann equation [3, 8, 37]:

d

dU
γ = −Q . (1.1)

The thermodynamical basis of this relation is the Gibbs adsorption equation, and a

derivation can be found in [27,37]. For experimental verification of the Lippmann equation
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the Young–Laplace equation is used, which relates the pressure difference p+−p− between

the mercury electrode and the electrolyte to the interfacial tension and the mean curvature

of the mercury surface kM , viz.

p+ − p− = 2 kM γ . (1.2)

If the mean curvature does not change – which seems to be well satisfied in Lippmann’s

electrocapillarity experiments [32] – than the interfacial tension is proportional to the

pressure difference. Therefore, the electrocapillarity experiments allow to measure the

interfacial tension as a function of the applied voltage. By the use of a second experiment,

e.g., the dropping mercury electrode, it is possible to measure directly the double layer

charge as a function of the applied voltage. These both independent experiments allow

an experimental verification of the Lippmann equation. It is shown that the Lippmann

equation is satisfied by various mercury–electrolyte systems [18, 27].

However, in the context of non-equilibrium (electro-) thermodynamics [2, 6, 14, 34, 35]

there are no corresponding relations to the Lippmann equation (1.1) and the Young–

Laplace equation (1.2) in the case of non-zero electromagnetic field. The reason for

this seemingly contradictory statement to the derivation of Grahame is that the Gibbs

adsorption equation only holds in systems where the bulk phases are homogeneous,

whereas in the non-equilibrium thermodynamic setting there are pronounced double layer

with strong electric fields and charge accumulation in the vicinity of the surface. Therefore,

a derivation of Lippmann and Young–Laplace equations in the context of non-equilibrium

electro- thermodynamics is desirable because it incorporates more spatial structure of the

double layer into the definition of the interfacial tension and double layer charge density

and thereby can lead to a better understanding of the double layer phenomena.

Already in the works of Defay and Sanfeld [13] and Hurwitz and d’Alkaine [29] one

can find first attempts to derive a Young–Laplace equation in the framework of non-

equilibrium thermodynamics with non-zero electric fields. They figure out the existence

of an electric field contributing to the surface tension. Due to the missing framework

of non-equilibrium thermodynamics of surfaces, which is firstly introduced several years

later by Albano and Bedeaux [2, 6], they had to use Gibbs equation for their surface

theory and there was no way to derive the Lippmann equation on their framework.

In this work, we discuss the equilibrium relations resulting from non-equilibrium ther-

modynamics for interfaces between two adjacent charged phases. By using matched

asymptotic analysis, we are able to show that the Young–Laplace equation and the

Lippmann equation result from quite general thermodynamic relations, which are inde-

pendent of the considered material. Further on, we are able to give precise definitions of

the quantities which appear in the Lippmann and Young–Laplace equation. It turns out

that the measurable interfacial tension γ actually consists of three contributions, i.e., the

surface tension γ
s

of the material surface S , and two boundary layer contributions γ̃± of

the respective phase. These contributions are structurally very different since they arise

from volume and surface thermodynamics. Accordingly, the double layer charge density

Q is composed of a surface part q
s

and a contribution q̃ from one of the adjacent layers.

Knowledge of these structural decompositions is crucial for a model based understanding
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Figure 1. Comparison between measured data of electrocapillarity curves and our simulations.

(a) Electrocapillarity curves for various salts according to Figure 1 from [27] (reprinted with

permission). (b) Computed interfacial tension as described in Section 8.

of the phenomena of electrocapillarity and especially of the electrochemical interfaces

itself.

Upon choosing appropriate free energy functions to describe specific material depend-

ent properties of a liquid metal–electrolyte interface, we obtain representations of the

interfacial contributions. For example, we get for the electrolytic boundary layer contri-

bution

γ̃− = γEBL =

∫ UE

0

√
2ε0(1 + χ)(p(U′) − pE)dU′ , (1.3)

where pE denotes the bulk pressure far away from the interface in the electrolyte, and p(U′)

denotes the material pressure at a point in the double layer with a potential difference of

U′ to the bulk electrolyte potential.

For several mercury–aqueous electrolytes we provide numerical computations of the

interfacial tension as a function of the applied potential. Figure 1 shows the results

in comparison to the well-known measurements by Gouy and Grahame. Moreover, by

varying model parameters like the adsorption energies, we can identify mechanisms

leading to the deviations of the electrocapillarity curves in Figure 1 for the various salts.

Thus, our model allows for a quantitative and qualitative model based understanding of

electrocapillarity curves.

1.1 Outline

In the next section, we briefly state the complete thermodynamic equilibrium model of

two electrochemical systems separated by a curved surface in a material independent

form. There is no Lippmann equation at this level but this model is the basis for the

following derivation based on asymptotic analysis. Then, we motivate the appearance

of additional terms in the Young–Laplace equation in the presence of an electric field
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in in Section 3. In Section 4, we summarize the reduced models for the thin double

layer limit and the Lippmann equation with a precise definition of the terms appear-

ing therein. The mathematical derivation of these models and results is then given in

Section 5 and Section 6. Still these results are presented on a material independent

level. Next, we validate our model by applying it to various mercury|aqueous electrolyte

interfaces. Therefore, we state in Section 7 the material dependent properties that are

encoded in the free energy densities. Thereby, we get to a closed system of equations

that can be solved. In Section 8, we discuss in detail several aspects of our model which

lead to the corresponding parameters used to predict the electrocapillarity curves in

Figure 1.

2 Thermodynamical consistent model for the equilibrium state

In this section, we summarize the underlying thermodynamical consistent complete con-

tinuum model that spatially resolves boundary layers, without giving a detailed derivation

of the model here. This model is the basis from which we can derive reduced models

which provide the Lippmann equation. Our modelling is based on the framework of non-

equilibrium thermodynamics [9, 14, 34] and its extensions to surfaces and the connection

to electrodynamics [6, 35]. A quite general model containing all relevant ingredients for

planar surface is provided in [16], the case of curved surfaces can be found in [28]. The

notation is summarized in Table 1.

2.1 Setup

We consider a surface S dividing a domain Ω ⊆ �3 into the subdomains Ω+ and Ω−. The

normal ν to the surface S always points from Ω− to Ω+. For quantities defined in Ω+ or

Ω−, there will often be corresponding quantities on S . As a convention the same letters

are used for these quantities but the surface variables are indicated by a subscript s.

2.2 Jumps at surfaces

We introduce the boundary values and the jump of a generic function u(x) in Ω± at the

surface S as

u|±S = lim
x∈Ω±→S

u(x) and [[u]] = u|+S − u|−S . (2.1)

In the case the function u is not defined in either Ω+ or in Ω−, we set the corresponding

value in (2.1) to zero.

2.3 Constituents

In each of the two domains Ω+ and Ω− and on the surface S , we consider a mixture

of several constituents. In Ω±, we denote the constituents by Aα where α is taken from

some index set M+ and M−, respectively. We assume that M+ and M− are disjoint,

i.e., M+ ∩ M− = ∅ and refer to their union as M± = M+ ∪ M−. The index set for

the constituents on S is denoted by MS . For each constituent Aα ∈ M± in one of the
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Table 1. Summary of notations

kB [J/K] Boltzmann constant e0 [C] Elementary charge

ε0 [C/(V m)] Electric constant χ Susceptibility

ν Nnormal vector kM [1/m] Mean curvature

siα Stoichiometric coef. s
s

i
α Stoichiometric coef.

bulk reactions surface reactions

zα Charge number

mα [kg] Mass

T [K] Bulk temperature T
s

[K] Surface temperature

nα [m−3] Bulk number density n
s
α [m−2] Surface number density

E [V/m] Electric field

ϕ [V] Electrostatic potential ϕ
s

[V] Electrostatic surface potential

nF [C/m3] (Free) charge density n
s

F [C/m2] Surface (free) charge density

ρψ [J/m3] Free energy density ρ
s

ψ
s

[J/m2] Surface free energy density

μα [J] Chemical potential μ
s
α [J] Surface chemical potential

p [N/m2] Material pressure γ
s

[N/m] Surface tension

ρb [C] Force density gravitation ρ
s

b
s

[C] Surface force density gravitation

Σ [N/m2] Total stress tensor

Q [C/m2] Double layer charge density q̃ [C/m2] Boundary layer charge density

γ [N/m] Interfacial tension γ̃ [N/m] Boundary layer tension

subdomains Ω±, we assume there is a corresponding constituent present on the surface

S , but in addition there may be some constituents that are exclusively present on S due

to chemical reaction, i.e., MS ⊇ M±. A constituent Aα has the (atomic) mass mα and

may be carrier of the charge zαe0, where zα is the charge number and e0 is the elementary

charge.

2.4 Chemical reactions

Among the constituents, we may have chemical reactions, of which we only consider

linearly independent ones. There are M reactions in each bulk phase and in addition there

may be MS surface reactions of the general form∑
α∈M±

aiαAα �
∑

α∈M±

biαAα for i ∈ {1, · · · ,M}, (2.2a)

∑
α∈MS

a
s

i
αAα �

∑
α∈MS

b
s

i
αAα for i ∈ {1, · · · ,MS}. (2.2b)

The constants aiα, b
i
α are positive integers and siα = biα − aiα denote the stoichiometric

coefficients of the reactions. Since charge and mass have to be conserved by every single
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reaction in the bulk and on the surface, we have∑
α∈M±

zαs
i
α = 0 and

∑
α∈MS

zαs
s

i
α = 0 , (2.3a)

∑
α∈M±

mαs
i
α = 0 and

∑
α∈MS

mαs
s

i
α = 0 . (2.3b)

2.5 Thermodynamic state

In equilibrium, the thermodynamic state in each point x ∈ Ω± is described by the

number densities nα of the constituents, the temperature T and the electric field E . The

thermodynamic state of the surface S is characterized by the number densities n
s
α of the

surface constituents and the interfacial temperature T
s
.

In equilibrium, the temperature T in both domains is constant and continuous at the

surface S , i.e., T
s

= T |±S ; hence, the temperature can be considered as a parameter here.

In equilibrium, the electric field can be expressed in terms of the electrostatic potential

by E = −∇ϕ. We assume that the electrostatic potential is continuous at the surface S

such that the Maxwell equation [[∇ϕ× ν]] = 0 is satisfied,

ϕ
s

= ϕ|−S = ϕ|+S . (2.4)

The new quantity ϕ
s

is called the electrostatic surface potential.

2.6 General constitutive assumptions

We assume that the susceptibility χ is constant in each sub-domain, i.e., χ = χ± in Ω±. To

cover a wide range of materials we assume free energy densities in Ω± and on S of the

form

ρψ = ρψ̂(T , n0, . . . , nN) − χ
ε0

2
|∇ϕ|2 , ρ

s
ψ
s

= ρ
s
ψ̂
s
(T
s
, n
s
0, . . . , n

s
NS

) , (2.5)

where ρψ̂ and ρ
s
ψ̂
s

are assumed to be convex C2 functions. The chemical potentials are

defined by

μα =
∂ρψ̂

∂nα
, μ

s
α =

∂ρ
s
ψ̂
s

∂n
s
α

. (2.6)

We introduce the material pressure and the surface tension as

p = −ρψ̂ +
∑

α∈M±

nαμα , γ
s
= ρ

s
ψ̂
s
−

∑
α∈MS

n
s
αμ
s
α , (2.7)

and further on refer to these equations as Gibbs–Duhem relations of the bulk and the

surface, respectively.
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2.7 Model equations and boundary conditions

In equilibrium, the mass balances, momentum balance and Maxwell’s equations in Ω±

reduce to [16, 31]

∇(μα + zαe0ϕ) = b for α ∈ M± , (2.8a)

−(1 + χ)ε0Δϕ = nF , (2.8b)

where nF = e0
∑

α∈M± zαnα denotes the free charge density in Ω±. A direct calculation

shows that the momentum balance results from the equation system above and the

Gibbs–Duhem relation (2.7)left

− div(Σ) = ρb , (2.8c)

where ρb is the force densities due to gravitation and Σ is the total stress tensor consisting

of a material and an electromagnetic contribution called Maxwell stress,

Σ = −p1 + (1 + χ)ε0(∇ϕ⊗∇ϕ− 1
2
|∇ϕ|21) . (2.8d )

Due to the chemical reactions in the bulk the chemical potentials of the involved species

is restricted by the law of mass action∑
α∈M±

siαμα = 0 , for i ∈ {1, . . . ,M} . (2.9)

The boundary conditions at S , which follow from surface balance equations, are [28,35]

μα|±S = μ
s
α for α ∈ M± , (2.10a)

−[[Σ · ν]] = 2kM γ
s
ν + ρ

s
b
s
+ ∇

s
γ
s
, (2.10b)

[[∇ϕ · ν]] = n
s

F , (2.10c)

where ∇
s

denotes the tangential gradient on S and n
s

F = e0
∑

α∈MS
zαn

s
α is the surface

free charge density. The number densities of the surface constituents are restricted by the

reaction constraints ∑
α∈MS

s
s

i
αμ
s
α = 0 , for i ∈ {1, . . . ,MS} . (2.11)

2.8 Conditions related to experimental setup

For unique solvability of the equilibrium system, more conditions are needed in addition

to (2.8)–(2.11). These conditions depend on the systems properties far away from the

surface, and we do not want to detail them here. Instead we motivate conditions that

are sufficient in the context of the Lippmann equation. In a typical experiment, the

electrostatic potential is only measured at certain points far away from the surface, e.g.,
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Figure 2. Sketch of double layer at a curved surface S with local radial symmetry.

with reference electrodes. Moreover, if the domains are sufficiently large, the experiments

do not show an influence of the electrostatic potential on the number densities far away

from the surface. Thus, we assume in each domain Ω± the existence of a point x±

sufficiently far away from the surface S, where the number densities nα and the potential

ϕ can be prescribed independently, as long as this choice is consistent with (2.9).

3 Motivation

Within the above model, we cannot establish a relation like the Lippmann equation.

There even is no well-defined potential difference in this model that could be used for this

purpose. A sharp definition of the quantities in the Lippmann equation (1.1) is not that

obvious as it might seem. While the Young–Laplace equation (1.2) might appear as an

appropriate definition of the interfacial tension, in general such a relation does not exist in

electro-thermodynamics. Only in the case of vanishing electric field, i.e., E = 0, and under

some restriction on the surface and bulk stress tensor the surface momentum balance

equations simplifies to (1.2). By the use of a simplified example, we want to motivate that

also in the case of a non-zero electric field a variant of the Young–Laplace equation (1.2)

can be derived.

We consider a liquid metal located in ΩM in contact with a liquid electrolyte in ΩE

with some applied potential difference across the dividing interface S . In thermodynamic

equilibrium, the electric field and the stress in the double layer is described by the coupled

system of Poisson equation and the momentum balance

div((1 + χ)ε0E) = nF [[(1 + χ)ε0E · ν]] = n
s

F (3.1)

div(Σ) = 0 [[Σ · ν]] = −2kMγ
s
ν −∇

s
γ
s
. (3.2)

The total stress is given by

Σ = −p1 + (1 + χ)ε0
(
E ⊗ E − 1

2
|E|21

)
. (3.3)

Let us assume local spherical symmetry in the neighbourhood of some point on the

surface as illustrated in Figure 2. Using spherical coordinates (r, θ, ψ) with basis vectors

(er, eθ, eψ), the surface S is characterized by r = rS . Let ΩM be such that r < rS for points

located in the metal. Due to the symmetry, we have E = Erer , and the total stress tensor
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reduces to

Σ = Σrrer ⊗ er + Σθθeθ ⊗ eθ + Σψψeψ ⊗ eψ (3.4)

with

Σrr = −p+ 1+χ
2
ε0E

2
r , Σθθ = Σψψ = −p− 1+χ

2
ε0E

2
r . (3.5)

In the considered neighbourhood, the Poisson-momentum equation system reduce to

∂r(r
2(1 + χ)ε0Er) = r2nF , [[(1 + χ)ε0Er]] = n

s

F , (3.6)

∂rΣrr = − 2
r
(1 + χ)ε0E

2
r , [[Σrr]] = − 2

rS
γ
s
. (3.7)

The electric field typically vanishes a few nanometres away from the interface. Let

rM < rS < rE such that Er = 0 for r = rE/M and assume that the mean curvature

kM = −1/rS is small enough such that |r kM | ≈ 1 for r ∈ (rM, rE). Then, we can approximate

the integration of the bulk equations (3.6)1 and (3.7)1 with respect to r by

−(1 + χM/E)ε0
(
Er|Ω

M/E

rS
− Er|rM/E

)
= sgn(rM/E − rS ) q

M/E
BL , (3.8)

−
(
Σrr|Ω

M/E

rS
− Σrr|rM/E

)
= sgn(rM/E − rS ) 2kMγ

M/E
BL . (3.9)

Here, we introduced new quantities in the metal and in the electrolyte phase that we refer

to as boundary layer charge density and boundary layer tension, i.e.,

q
M/E
BL = sgn(rM/E − rS )

∫ rM/E

rS

nFdr , γ
M/E
BL = sgn(rM/E − rS )

∫ rM/E

rS

(1 + χM/E)ε0E
2
r dr . (3.10)

The boundary conditions (3.6)2 and (3.7)2 can be used to connect (3.8) and (3.9) for ΩM

and ΩE. With Σrr|rM/E = −p|rM/E due to Er|rM/E = 0, we conclude

0 = n
s

F + qEBL + qMBL , (3.11)

p|rE − p|rM = 2kM

(
γ
s
− γMBL − γEBL

)
. (3.12)

While the electroneutrality condition of the electrical double layer (3.11) could have been

expected, the second result (3.12) is quite remarkable. It states that the pressure jump

across the entire electrical double layer does not only depend on the thermodynamic

surface tension γ
s
, but also on the boundary layer tension generated by electric field in the

space charge layers. Upon defining the interfacial tension of the electrical double layer as

γ := γ
s
− γMBL − γEBL, (3.13)

the equation (3.12) has the structure of the Young–Laplace equation (1.2). It seems

reasonable to expect that the Lippmann equation relates this interfacial tension γ to the

voltage between r = rM and r = rE and the total charge stored in this double layer in

https://doi.org/10.1017/S0956792517000341 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792517000341


Interfacial tension and the Lippmann equation 717

between. Moreover, we see that charging the boundary layer always causes non-negative

contributions γ
M/E
BL that lower the interfacial tension γ away from the potential of zero

charge. This directly explains the U- or parabola-shaped electrocapillary curves that are

observed in experiments.

4 Reduced models and Lippmann equation

When two electrochemical systems are brought into contact it is well-known that narrow

boundary layers are formed adjacent to the contact surface. The width of the layers is

in the order of the Debye-length, which for liquid electrolytes is usually in the range

of nanometres. If the macroscopic size Lref of the system is in the range of centimetrs,

one can introduce a small dimensionless number λ to represent the Debye length as

λLref . Based on asymptotic analysis of complete thermodynamic model above, we derive

in Section 5 a set of reduced models to describe the limit of thin double layers. These

reduced models are as follows: (i) the leading order bulk model, (ii) the first higher order

bulk model, and (iii) the leading order surface and boundary layer models. The reduced

models then allow to derive a Lippmann equation in a very general form. The derivation

is carried out in Section 6.

In this section, we summarize the reduced models for the thin interface limit and then

state the Lippmann equation. We prefer to apply a different notation for the jumps at the

interface here to highlight the interpretation as jumps over the complete double layer. We

denote the leading order parameterization of the surface S by I and define for a generic

function u(0) on the regions Ω±

u(0)|±I = lim
x→I±

u(0) and [[[u(0)]]] = u(0)|+I − u(0)|−I . (4.1)

The general constitutive assumptions are analogous to (2.5)–(2.7) above with the only

difference that in the bulk phases the leading order free energy density simplifies to

ρψ(0) = ρψ̂(0)(T , n(0)
0 , . . . , n

(0)
N ) . (4.2)

4.1 Constant leading order bulk quantities

In each of the subdomains Ω±, we have local electroneutrality

nF,(0) = 0. (4.3)

We have constant number densities n(0),±
α and hence constant chemical potentials μ(0),±

α

in Ω±. Moreover, the electrostatic potential ϕ(0),± is constant in Ω± and hence, there is a

well-defined electric potential difference over the interface I . Moreover, the leading order

of the surface momentum balance equations

[[[p(0)]]] = 0 at I, (4.4)

implies that in leading order the pressure p(0) is constant in Ω. Thus, gravitation and

surface tension have to be considered as higher order effects. There is no influence of the
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domain geometry on the leading order bulk system at all. Due the bulk reactions, the

number densities are restricted by the mass action law, which reads in the leading order∑
α∈M±

siαμ
(0)
α = 0 , for i ∈ {1, . . . ,M} . (4.5)

The constant electric potential and number densities justify the experimental procedure

to measure the bulk quantities somewhere in the domains Ω±, as long as the measuring

points are sufficiently far away from the surface S . In addition, experimental experience

suggests that the bulk number densities n(0),±
α are independent of the applied potential

ϕ(0,±), as we assumed in Section 2.

4.2 Surface and boundary layer equations of the leading order

Given the input data ϕ(0),± and n(0),±
α from the leading order problem, we can determine

the surface number densities n
s

(0)
α and the surface electrostatic potential ϕ

s

(0) as well as ϕ̃(0),

ñ(0)
α in the boundary layers.

4.2.1 Surface

The number densities n
s

(0)
α and ϕ

s

(0) are determined by

μ(0),±
α + zαe0ϕ

(0),± = μ
s

(0)
α + zαe0ϕ

s

(0) at I for α ∈ M± , (4.6a)

0 = n
s

F,(0) + q̃+ + q̃− at I , (4.6b)

where the boundary layer charge densities are defined as functions of boundary layer

quantities below, viz.,

q̃± = ±
∫ ±∞

0

ñF,(0) dx . (4.7)

The constituents on the surface are restricted by the law of mass action, viz.,∑
α∈MS

s
s

i
αμ
s

(0)
α = 0 , for i ∈ {1, . . . ,MS} . (4.8)

4.2.2 Boundary layer

In the boundary layer, we only have to solve differential equations in one space dimension

which we denote by z, i.e.,

∂z(μ̃
(0)
α + zαe0ϕ̃

(0)) = 0 , for α ∈ M± , (4.9)

−(1 + χ)ε0∂zzϕ̃
(0) = ñF,(0) , (4.10)
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with boundary conditions

lim
z→±∞

ñ(0)
α = n(0),±

α , for α ∈ M± , (4.11)

lim
z→±∞

ϕ̃(0) = ϕ(0),± , and ϕ̃(0)|±z=0 = ϕ
s

(0) . (4.12)

The boundary layer equations and the constant bulk quantities of the leading order imply

that ϕ
s

(0) is independent of the space coordinates and thus there is a well-defined potential

difference between the surface and each of the bulk domains Ω± in leading order.

In the boundary layer, the momentum balance has the representation

∂zp̃
(0) + ñF,(0)∂zϕ̃

(0) = 0 . (4.13)

We define the quantities

γ̃± = ±
∫ ±∞

0

(1 + χ)ε0|∂zϕ̃(0)|2 dx (4.14)

as boundary layer tensions. The meaning of this definition becomes accessible in the

following section.

4.3 Higher order bulk and surface relations

The variables in first order are the electrostatic potential ϕ(1) and the number densities

n(1)
α . They are related to the chemical potentials as μ(1)

α =
∑

β(
∂μα
∂nβ

)(0)n
(1)
β . The governing

equations in Ω± are

∇(μ(1)
α + zαe0ϕ

(1)) = b for α ∈ M± , (4.15a)

0 = nF,(1) . (4.15b)

From these equations and the Gibbs–Duhem equation (2.7)left in the first order, the

momentum balance follows as

∇p(1) = ρ(0)b . (4.16)

Thus, due to gravitation the pressure as well as the electrochemical potentials are not

constant in the first higher order.

The jump condition for the pressure in the first order at the thin double layer interface

I is

[[[p(1)]]] = 2k(0)
M (γ

s

(0) − γ̃+ − γ̃−) , (4.17)

where γ(0) is the surface tension given by the Gibbs–Duhem equation (2.7)right in the

leading order and the boundary layer tensions γ̃± are defined in (4.14).

https://doi.org/10.1017/S0956792517000341 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792517000341


720 W. Dreyer et al.

4.4 Lippmann equation

Within the reduced models above, it is possible to define a potential difference U, a double

layer charge density Q and the interfacial tension γ such that

d

dU
γ = −Q . (4.18)

In particular this Lippmann equation (4.18) holds independent of any specific material

model and for a wide range of admissible surface reactions, provided that the electric

potential in the boundary layers varies in a monotonic way in normal direction.

The definition of the double layer charge density requires some restrictions on the set

MS \ M± of exclusive surface species and the admissible surface reactions. We neglect

exclusive surface species that do not participate in any surface reaction, and we exclude

surface reactions where no bulk species are involved. Therefore, we assume that there are

MS exclusive surface species Aα ∈ MS \M± and each of them can be related to the bulk

species by at least one of the (linear independent) surface reactions.1 We thus consider

MS surface reactions of the form

Aβ �
∑

α∈M±

ναβAα for β ∈ MS \M± . (4.19)

Using the charge neutrality (2.3a) for the surface reactions, the reaction equilibrium

condition (4.8) can be written as

μ
s

(0)
β + zβe0ϕ

s

(0) =
∑

α∈M±

ναβ(μ
s

(0)
α + zαe0ϕ

s

(0)) for β ∈ MS \M± . (4.20)

Then, we define the double layer charge density as

Q := −q̃− −
∑

α∈M−

zαe0n
s

(0)
α −

∑
(α∈M−)

∑
(β∈MS\M±)

ναβzβe0n
s

(0)
β , (4.21)

where in addition to the expected charge contribution from surface and layer, there is

one more term that results from the surface reactions. An experimental verification of

the Lippmann equation is possible, if the surface charge Q can be related to the electric

current into an electrode. In this case, it is obvious that also reactants of the surface

reactions contribute to the current into the electrode and thus to the surface charge.

For the liquid metal–electrolyte interface the current–charge relation (7.17) is derived in

Appendix B.

Because the electric potential in Ω± in leading order is independent of the space

variable, there is a well-defined potential difference

U := ϕ(0),+ − ϕ(0),− . (4.22)

1 By this assumption, we allow for surface reactions like solvation shell stripping and autoproto-

lysis of the solvent. Also, electron transfer reactions are admissible, as far as the reaction products

remain on the surface. Not allowed are charge transfer reactions between the bulk phases.
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Table 2. Substitution in the bulk regions Ω±

x → Lref x mα → mrefmα nα → nref nα

ϕ→ kBT

e0
ϕ b → kBT

mref Lref λb

ρψ → nref kBT ρψ μα → kBTμα Σ → nref kBT Σ p→ nref kBT p

Table 3. Substitution on the surface S

kM → 1
Lref kM n

s
α → n

s

ref n
s
α b

s
→ kBT

mref Lref λb
s

ρ
s

ψ
s

→ kBTn
s

ref ρ
s

ψ
s

μ
s
α → kBTμ

s
α γ

s

→ n
s

ref kBTγ
s

According to (4.4), the pressure in the leading order is continuous across the double

layer. Thus, the first relevant contributions have to be of higher order. In the first order,

the jump of the pressure is given by the Young–Laplace equation (4.17), where the

interfacial tension γ of the reduced model is composed of the thermodynamic surface

tension γ
s

(0) and two electromagnetic contributions γ̃±, viz.,

γ := γ
s

(0) − γ̃+ − γ̃− . (4.23)

5 Mathematical derivation of the reduced models

We use the method of formal asymptotic analysis to derive for a curved interface from

the complete model of Section 2 the reduced models of Section 4. Formal asymptotic

analysis has been applied to electrochemical systems, e.g., by [4,5,11,17,26,36,40,42], and

we refer to [16] for a detailed description of our approach in the planar case.

5.1 Summary of model equations in dimensionless form

We introduce scaling constants Lref , nref , and mref that are related to characteristic

length, particle density and molecular weight in the system and introduce a characteristic

surface particle density n
s

ref on the surface S . For the non-dimensionalization of the model

equations, we substitute the variables according to Tables 2 and 3.

This scaling generates the dimensionless numbers

λ =

√
ε0kBT

e20n
ref (Lref )2

, λδ =
n
s

ref

nrefLref
. (5.1)

Then, the dimensionless version of the model equations reads

∇(μα + zαϕ) = λb for α ∈ M± , (5.2a)

−λ2(1 + χ)Δϕ = nF. (5.2b)
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The dimensionless jump conditions on the surface S are represented by(
μα + zαϕ

)
|±S =

(
μ
s
α + zαϕ

s

)
for α ∈ M± , (5.3a)

[[pν − (1 + χ)λ2(∂νϕ∇ϕ− 1
2
|∂νϕ|2ν)]] = λδ(2kM γ

s
ν + λρ

s
b
s
+ ∇

s
γ
s
) , (5.3b)

−[[λ(1 + χ)∂νϕ]] = δn
s

F . (5.3c)

Pressure and surface tension are given by

p = −ρψ +
∑

α∈M±

nαμα , γ
s
= ρ

s
ψ
s
−

∑
α∈MS

n
s
αμ
s
α . (5.4)

and the momentum balance can be recovered from (5.2a) and (5.4), i.e.,

∇p+ nF∇ϕ = λρb . (5.5)

5.1.1 Discussion of the dimensionless numbers

We choose as characteristic number densities in the bulk and on the surface

nref = 6.022 · 1025 m−3 , n
s

ref = 7.3 · 1018 m−2 , (5.6)

which corresponds to a 0.1 molar aqueous solution and a typical spacing of the crystal

lattice of a metal. As room temperature and a characteristic mass, we choose

T = 298.15K , mref = 1.66 · 10−27 kg . (5.7)

Given a characteristic length of the macroscopic system of

Lref = 10−2m (5.8)

and with the standard gravity of Earth g = 9.81ms−2, we get the dimensionless numbers

λ ≈ 1.54 · 10−8 , λδ ≈ 1.21 · 10−5 , λ|b| ≈ 2.38 · 10−8 . (5.9)

Then, we can use λ as a single smallness parameter in the system, whereas δ and b are

considered as quantities of moderate size.

5.2 Formal asymptotic expansions

Since the solution of the above complete model (5.2)–(5.4) depends on the parameter λ

relating the different length scales in the system, we add in the following an upper index λ

to all these functions. Let uλ be a generic function from our list of state variables in Ω±.

We assume λ � 1 and approximate uλ in the bulk by an outer expansion with respect to

the small parameter

uλ = u(0) + λ u(1) + λ2 u(2) + . . . (5.10)
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where the newly introduced functions u(0), u(1), u(2), . . . still need to be determined. For a

function F of uλ, the expansion is given by a Taylor series

F(uλ) = F(u(0)) + λF ′(u(0))u(1) + O(λ2) . (5.11)

We use the abbreviations F (0) = F(u(0)) and F (1) = F ′(u(0))u(1) for the leading and higher

order terms. In analogous way, we introduce expansions of the state variables on surface

and for functions thereof.

If λ � 1, the boundary layer constitutes only a small portion of the domains Ω± and

the outer expansion does not necessarily have to be accurate inside the layers. Therefore,

we introduce an additional inner expansion inside the layer, which is based on space

coordinates that are re-scaled by λ in the normal direction. To distinguish between the

two expansions in the bulk and in the boundary layer, we denote the inner expansion by

ũλ and write

ũλ = ũ(0) + λ ũ(1) + λ2 ũ(2) + . . . (5.12)

The two approximations have to be related by so called matching conditions which are

detailed in Section 5.5 below. While the variables in the inner expansion have to satisfy

the boundary conditions at S , for the outer expansion the role of the boundary conditions

is taken by the matching conditions.

5.3 Bulk equations

5.3.1 Leading order

From (5.2), we can directly read off the leading order bulk equation in Ω±

∇(μ(0)
α + zαϕ

(0)) = 0 for α ∈ M± , (5.13a)

0 = nF,(0) . (5.13b)

Without loss of generality we assume zN �= 0 in Ω−. Then, we deduce from (5.13a)

∇(μ(0)
α − zα

zN
μ

(0)
N ) = 0 for α ∈ M± \ {N}, (5.14)

Multiplication with ∇n(0)
α and summation yields

N−1∑
α=0

N−1∑
β=0

(∂μ(0)
α

∂n(0)
β

− zβ

zN

∂μ(0)
α

∂n(0)
N

− zα

zN

∂μ(0)
N

∂n(0)
β

+
zα

zN

zβ

zN

∂μ(0)
N

∂n(0)
N

)
∇n(0)

β ∇n(0)
α = 0 , (5.15)

where n(0)
N has been eliminated by (5.13b). Since by assumption ρψ̂ is convex, the matrix(

∂μ(0)
α

∂n
(0)
β

)
α,β

is symmetric and positive definite. Multiplying this matrix from left and right by

the vector
(
∇n(0)

0 , · · · ,∇n
(0)
N−1,−

∑N−1
β=0

zβ
zN
∇n(0)

β

)
, yields (5.15). Therefore (5.15) and (5.13b)

imply ∇n(0)
α = 0 for α ∈ M±. And, from (5.13a), we conclude ∇ϕ(0) = 0. As a consequence,

we see that ϕ(0) and all n(0)
α are constant in Ω−. By analogy the same holds true also in

Ω+.
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In the leading order of the momentum balance (5.5), the force densities due to gravitation

does not contribute, and since nF,(0) = 0, the momentum balance simplifies to

∇p(0) = 0 . (5.16)

Thus, also the pressure is constant in each of the sub-domains Ω±.

5.3.2 Higher order

The bulk equations in the order O(λ) are

∇(μ(1)
α + zαϕ

(1)) = b , (5.17a)

0 = nF,(1) . (5.17b)

and the momentum balance in higher order can be recovered as

∇p(1) = ρ(0)b . (5.18)

5.4 Expansion of surface and boundary layers

Locally, points on the surface S can be represented as r(s1, s2). The partial derivatives

∂1r and ∂2r define the tangential vectors τ1 and τ2, respectively, which we assume to be

orthogonal. In a neighbourhood U of a smooth surface S , the distance function is well

defined. Each point x ∈ U has a representation x = r + zν , where z is the distance to S .

For a generic variable u defined on U , we introduce re-scaled inner variable ũ by defining

ũ(s1, s2, z) = u(r(s1, s2) + λzν) . (5.19)

ũ = ũ(0) + λ ũ(1) + O(λ2) . (5.20)

Moreover, we assume that the parameterization and the normal can be expanded as

r(s1, s2) = r(0)(s1, s2) + λr(1)(s1, s2) + O(λ2) , (5.21a)

ν(s1, s2) = ν(0)(s1, s2) + λν(1)(s1, s2) + O(λ2) , (5.21b)

5.4.1 Transformation of derivatives

The re-scaling in normal direction leads to the following relations for the derivatives,

cf. [15]:

∇u = λ−1∂zũ ν + |τ1|−2∂1ũ τ1 + |τ2|−2∂2ũ τ2 + O(λ) , (5.22a)

div(u) = λ−1∂z ũ · ν + divτ (ũ) + O(λ) , (5.22b)

−Δu = −λ−2∂zzũ+ λ−12kM∂zũ+ O(1) , (5.22c)

where divτ denotes the surface divergence. If S does not depend on λ, the O(λ) terms in

(5.22a) and (5.22b) vanish.
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5.4.2 Equations in inner variables

The model equations in inner variables read

(∂zμ̃α + zα ∂zϕ̃) + O(λ2) = 0 , (5.23a)

(∂1,2μ̃α + zα ∂1,2ϕ̃) + O(λ) = 0 , (5.23b)

−(1 + χ)(∂zzϕ̃− λ 2kM∂zϕ̃) + O(λ2) = ñF . (5.23c)

The dimensionless jump conditions on the surface S are represented by(
μ̃α + zαϕ̃

)
|±S =

(
μ
s
α + zαϕ

s

)
, (5.24a)

[[p̃− 1+χ
2
|∂zϕ̃|2]] = λ δ 2kM γ

s
+ O(λ2) , (5.24b)

−[[(1 + χ)∂zϕ̃∂1,2ϕ̃]] = δ∂1,2γ
s
+ O(λ) , (5.24c)

−[[λ(1 + χ)∂zϕ̃]] = δλn
s

F + O(λ2) . (5.24d )

Also in the layers, we can recover the momentum balance from (5.23) and the Gibbs–

Duhem relation

(∂zp̃+ ñF ∂zϕ̃) + O(λ2) = 0 , (5.25)

(∂1,2p̃+ ñF ∂1,2ϕ̃) + O(λ) = 0 , (5.26)

5.4.3 Leading order system

After solving the inner and the outer problem, it turns out that the inner tangential

equations (5.23b), (5.26) and the surface equations (5.24c) do not contribute any additional

independent information. Thus, they are omitted here. The remaining inner equations in

leading order read

∂z(μ̃
(0)
α + zα ϕ̃

(0)) = 0 , (5.27a)

∂zp̃
(0) + ñF,(0)∂zϕ̃

(0) = 0 , (5.27b)

−(1 + χ)∂zzϕ̃
(0) = ñF,(0) . (5.27c)

In particular, the inner electrochemical potentials are constant in leading order. The jump

conditions in leading order are(
μ̃(0)
α + zαϕ̃

(0)
)
|±z=0 = μ

s

(0)
α + zαϕ

s

(0) , (5.28a)

[[p̃(0) − 1+χ
2
|∂zϕ̃(0)|2]] = 0 , (5.28b)

−[[(1 + χ)∂zϕ̃
(0)]] = δn

s

F,(0) . (5.28c)
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5.4.4 Higher order

As in the leading order, the inner tangential equations and the surface equations can be

omitted. The remaining first order of the equation system (5.23) is

∂z(μ̃
(1)
α + zα ϕ̃

(1)) = 0 , (5.29a)

∂zp̃
(1) + ñF,(0)∂zϕ̃

(1) + ñF,(1)∂zϕ̃
(0) = 0 , (5.29b)

−(1 + χ)
(

∂zzϕ̃
(1) − 2k(0)

M ∂zϕ̃
(0)

)
= ñF,(1). (5.29c)

We see that the electrochemical potentials in the layers are also constant in the first order.

The higher order jump conditions for the chemical potentials and the pressure are(
μ̃(1)
α + zαϕ̃

(1)
)
|±z=0 =

(
μ
s

(1)
α + zαϕ

s

(1)
)

(5.30a)

[[p̃(1) − (1 + χ)∂zϕ̃
(0)∂zϕ̃

(1)]] = δ 2k(0)
M γ

s

(0) . (5.30b)

5.5 Matching of inner and outer expansions

Inner and outer expansions are related by so called matching conditions. In [10, 39], the

matching conditions are formally achieved by inserting the corresponding expansions into

the left and right hand sides of (5.21) and subsequent comparison of powers of λ. The

result is, cf. [15]:

ũ(0)(z) − u(0),±(r(0)) = o(1/|z|) , (5.31a)

∂zũ
(0)(z) = o(1/|z|) , (5.31b)

and for the terms in higher order we get

ũ(1)(z) − z ∂νu
(0),±(r(0)) − u(1),±(r(0)) = o(1/|z|) , (5.32a)

∂zũ
(1)(z) − ∂νu

(0),±(r(0)) = o(1/|z|) , (5.32b)

Whenever a variable is constant inside the layer, we get by the matching conditions a

relation of the boundary values from the outer expansion to the boundary values of the

inner variables at S .

5.5.1 Leading order

Since the inner electrochemical potentials are constant according to (5.27a), the matching

conditions can be used to relate the electrochemical potentials of the outer expansion to

the boundary values of (5.28a), viz.,

μ(0)
α |±I + zαϕ

(0)|±I = μ
s

(0)
α + zαϕ

s

(0) . (5.33)
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Using the momentum balance equation (5.27b) and the Poisson equation (5.27c), we can

re-write the jump condition (5.28b) into

p(0)|+I = p(0)|−I . (5.34)

5.5.2 Higher order bulk

The definitions of the boundary layer charge density in (4.7) and of the boundary layer

tension in (4.14) read in dimensionless form

q̃± = ±
∫ ±∞

0

ñF,(0) dz , γ̃± = ±
∫ ±∞

0

(1 + χ±)(∂zϕ̃
(0))2 dz . (5.35)

Integration of (5.27c) and the matching condition for ∂zϕ̃
(0) show that the jump condition

(5.28c) can be written in the form

0 = δn
s

F,(0) + q̃+ + q̃− . (5.36)

From Poisson equations (5.27c) and (5.29c) at leading and higher order, we get

ñF,(0)∂zϕ̃
(1) + ñF,(1)∂zϕ̃

(0)

= −(1 + χ)∂z
(
∂zϕ̃

(0)∂zϕ̃
(1)

)
+ 2k(0)

M (1 + χ)(∂zϕ̃
(0))2 . (5.37)

Thus, the momentum balance (5.29b) can be re-written as

∂zp̃
(1) − (1 + χ)∂z

(
∂zϕ̃

(0)∂zϕ̃
(1)

)
= −2k(0)

M (1 + χ)(∂zϕ̃
(0))2 . (5.38)

Integration from z = 0 to ±∞ yields

p(1)|±I −
(
p̃(1) − (1 + χ)∂zϕ̃

(0)∂zϕ̃
(1)

)∣∣∣±
z=0

= ∓2k(0)
M γ̃

± , (5.39)

where we have used the matching conditions (5.31b), (5.32a) and the bulk equation (5.16).

Now, we can write the jump condition (5.30b) as

p(1)|+I − p(1)|−I = 2k(0)
M (δγ

s

(0) − γ̃+ − γ̃−) . (5.40)

Finally, due to the constancy of the inner electrochemical potentials, we can relate the

electrochemical potentials of the outer expansion to the boundary values at S by

μ(1)
α |±I + zαϕ

(1)|±I = μ
s

(1)
α + zαϕ

s

(1) . (5.41)

6 Mathematical derivation of the Lippmann equation

In the following derivation of the Lippmann equation only leading order variables are

involved. Thus, to simplify the notation, we omit the labelling of the leading order terms
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by the index (0). Recall that within the leading order bulk system the electric potential is

constant, and thus the potential difference U = ϕ+−ϕ− according to (4.22) is well defined.

Moreover, the number densities n±α and hence μ±α are constant in Ω± and independent of

U, i.e.,

d

dU
μ±α = 0 . (6.1)

Finally, the pressure is constant in Ω and we denote pref = p.

The derivation of the Lippmann equation consists of a straightforward calculation of

the derivative with respect to U of the interfacial tension γ = γ
s
− γ̃+ − γ̃− as defined in

(4.23). We start with the term related to the surface stress γ
s
.

6.1 Surface contribution

From the Gibbs–Duhem relation (2.7)right and the global electroneutrality (4.6b), we infer

d

dU
γ
s
= −

∑
α∈MS

n
s
α

d

dU
μ
s
α = −

∑
α∈MS

n
s
α

d

dU
(μ
s
α + zαe0ϕ

s
) − (q̃+ + q̃−)

d

dU
ϕ
s
. (6.2)

First, we consider all contributions to the sum in (6.2) with α ∈ M± ⊆ MS . We replace

the surface electrochemical potentials by the corresponding bulk quantities according to

(4.6a) and use (4.22) and the global electroneutrality (4.6b).

−
∑

α∈M±

n
s
α

d

dU
(μ
s
α + zαe0ϕ

s
)

= −
∑

α∈M−

zαe0n
s
α

d

dU
ϕ− −

∑
α∈M+

zαe0n
s
α

d

dU
ϕ+ (6.3a)

= −
∑

α∈M−

zαe0n
s
α

d

dU
ϕ−

+

⎛⎝ ∑
α∈M−

zαe0n
s
α +

∑
α∈MS\M±

zαe0n
s
α + q̃+ + q̃−

⎞⎠ d

dU
ϕ+ (6.3b)

=
∑

α∈M−

zαe0n
s
α +

(
q̃+ + q̃−

) d

dU
ϕ+ +

∑
α∈MS\M±

zαe0n
s
α

d

dU
ϕ+ . (6.3c)

Next, we consider the remaining terms in (6.2) from the exclusive surface species. We

apply (4.20), reformulate in terms of bulk quantities due to (4.6a) and use (6.1) to get

−
∑

α∈MS\M±

n
s
α

d

dU
(μ
s
α + zαe0ϕ

s
)

= −
∑

α∈MS\M±

n
s
α

⎛⎝ ∑
β∈M−

νβαzβe0
d

dU
ϕ− +

∑
β∈M+

νβαzβe0
d

dU
ϕ+

⎞⎠ . (6.4)
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Since −ϕ− = U − ϕ+ and hence

−
∑

β∈M−

νβαzβe0
d

dU
ϕ− =

∑
β∈M−

νβαzβe0 −
∑

β∈M−

νβαzβe0
d

dU
ϕ+ , (6.5)

and using (2.3a) we get from (6.4)

−
∑

α∈MS\M±

n
s
α

d

dU
(μ
s
α + zαe0ϕ

s
)

=
∑

α∈MS\M±

n
s
α

⎛⎝ ∑
β∈M−

νβαzβe0 −
∑

β∈M±

νβαzβe0
d

dU
ϕ+

⎞⎠
=

∑
α∈MS\M±

⎛⎝ ∑
β∈M−

νβαzβe0n
s
α − zαe0n

s
α

d

dU
ϕ+

⎞⎠ . (6.6)

Combining (6.2), (6.3c), and (6.6), we conclude that the leading order charge contribution

of the surface is

d

dU
γ
s
=

∑
α∈M−

zαe0n
s
α +

∑
α∈MS\M±

∑
β∈M−

νβαzβe0n
s
α + (q̃+ + q̃−)

d

dU
(ϕ+ − ϕ

s
) . (6.7)

6.2 Boundary layer contributions

The leading order electrochemical potentials are constant in the layers due to (4.9) and

equal to the surface electrochemical potentials due to (4.6a). Therefore in the boundary

layers we have

μ̃α = μ±α − zαe0(ϕ̃− ϕ±) . (6.8)

From this expression, we conclude that the leading order number densities ñα in the

boundary layers can be expressed as a functions of the potential differences ϕ̃− ϕ+ and

ϕ̃−ϕ−, respectively. Further, we conclude from the momentum balance (4.13) and Poisson

equation (4.10)

p̃− pref = (1 + χ±)ε0(∂zϕ̃)2 . (6.9)

From the Gibbs–Duhem relation (2.7)left in leading order we conclude that also the

pressure p̃ is a function of the potential differences ϕ̃− ϕ±. Assuming monotonicity of ϕ̃

in the boundary layers, we get a differential equation for ϕ̃ of the form

(1 + χ±)ε0∂zϕ̃ = F±(ϕ̃− ϕ±) , (6.10)
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where the functions F± are defined as F± := ± sgn(ϕ±−ϕ)
√

(1 + χ±)ε0(p̃− pref ) . Then,

we can re-write the boundary layer tension γ̃± as

γ̃± = ±
∫ ±∞

0

(1 + χ±)ε0(∂zϕ̃)2 dz = ±
∫ ϕ̃(±∞)

ϕ̃(0)

F(ϕ̃− ϕ±) dϕ̃ = ±
∫ ϕ±

ϕ
s

F±(ϕ̃− ϕ±) dϕ̃

(6.11)

We define U± := ϕ± − ϕ
s

and differentiate (6.11) with respect to U± to get

d

dU± γ̃
± = ± d

dU±

∫ 0

−U±
F±(ϕ̃) dϕ̃ = ±F±(−U±) = ±(1 + χ±)ε0∂zϕ̃(0) . (6.12)

We use the Poisson equation (4.10) for the leading order to conclude

±(1 + χ±)ε0∂zϕ̃(0) = ∓
∫ ±∞

0

(1 + χ±)ε0∂zzϕ̃ dz = ±
∫ ±∞

0

ñF dz = q̃± . (6.13)

Since U = U+ −U−, we have dU−

dU
= dU+

dU
− 1 and deduce

d

dU
(γ̃+ + γ̃−) =

dU+

dU

d

dU+
γ̃+ +

dU−

dU

d

dU− γ̃
−

=
dU+

dU
q̃+ +

(dU+

dU
− 1

)
q̃−

= −q̃− + (q̃+ + q̃−)
dU+

dU
. (6.14)

Putting (6.7) and (6.14) together, we finally conclude

d

dU
(γ
s
− γ̃+ − γ̃−) = q̃− +

∑
α∈M−

zαe0n
s
α +

∑
α∈MS\M±

∑
β∈M−

νβαzβe0n
s
α . (6.15)

With the definition (4.21) of the double layer charge density, we thus get the Lippmann

equation (4.18).

7 Material model for the metal–electrolyte interface

Next, we want to apply the general Lippmann equation resulting from the asymptotic

analysis to various metal|aqueous electrolyte interfaces. For this reason, we have to specify

a material model for the metal-electrolyte interface. In particular, we have to specify the

chemical potentials for both bulk phases as well as for the surface and the considered

reactions in the electrolyte bulk and on the surface. We apply the material model that is

derived and analyzed in detail in [31]. It is briefly summarized below together with some

useful representation formulas for the surface mole fractions, the interfacial tension and

electric charge as function of potential difference between metal and electrolyte.
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The model equations and simplified notation

To study the electrocapilarity curves it is only necessary to consider the leading order

equations of boundary layer and the surface equations (4.6)–(4.14). Thus, we can omit the

labelling of the leading order terms with (0) for simplicity of notation. The bulk quantities

in the leading order are constant and serve only as boundary values for the boundary

layer model. We highlight the bulk quantities by the index M and E for the metal and the

electrolyte, respectively. Due to this notation a labelling of the boundary layer quantities

with tilde is not necessary anymore. Also, the indication of the boundary layer charge

density and the boundary layer tension by tilde is omitted and replaced by Q
M,E
BL = q̃±

and γM,EBL = γ̃±, respectively. By convention, we let the metal occupy the domain Ω+ = ΩM

and accordingly, the electrolyte occupies the domain Ω− = ΩE. Further, we denote the

potential difference in the leading order between metal-surface and electrolyte-surface as

UM = ϕM − ϕ
s

and UE = ϕ
s
− ϕE . (7.1)

7.1 Specific material model

7.1.1 Metal

The metal is modelled as a binary mixture of metal ions M and valence electrons e−, i.e.,

the index set for the metal is ME = {M, e−}. The respective mole densities are denoted

by nM and ne. We assume the metal to be incompressible and consider the electrons to be

point charges, leading to the incompressibility constraint nMv
ref
M = 1, where vrefM denotes

the partial volume of the metal ion. For the chemical potentials, we have

μM = ψ
ref
M + v

ref
M pM and μe =

(
3

8π

)2/3
h2

2me
n2/3
e , (7.2)

where μe is equal to the Fermi level of the considered metal. Note that pM in (7.2) is the

metal ion partial pressure that is related to the total material pressure p via

p = pe + pM and pe =
2

5

(
3

8π

)2/3
h2

2me
n5/3
e . (7.3)

7.1.2 Electrolyte

We consider the electrolyte as incompressible liquid mixture of a solvent, undissociated

species and ionic species. The ionic species are considered as solvated ions, i.e., they are

composed of a centre ion and a surrounding shell of several bounded solvent molecules, cf.

Figure 3. The index set of the electrolytic species is denoted by ME. For each constituent,

vrefα is the specific volume, and κα is the solvation shell number. Since we consider a

mixture of solvated ions, the partial volumes of the ionic species are much larger than
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Figure 3. Sketch of the mixture constituents in the volume and on the surface. Anions and cations

consists of a centre ion and a surrounding solvation shell of bounded and oriented solvent molecules.

In addition, there may be free solvent molecules and unoccupied sites on the surface.

the partial volume of the solvent. The mole fractions yα of the constituents are defined as

yα =
nα

n
with n =

∑
β∈ME

nβ . (7.4)

The incompressibility of the electrolyte states the condition

n
∑
α∈ME

vrefα yα = 1 . (7.5)

The chemical potentials of the electrolytic constituents in the incompressible limit are

μα = gref
α + vrefα (p− pref ) + kBT ln(yα) , α ∈ ME , (7.6)

with reference Gibbs free energy gref
α = ψref

α + vrefα pref . In contrast to the standard

literature, cf. [3, 8, 37], the chemical potentials contain a pressure dependent contribu-

tion that is of crucial importance inside the boundary layers [31]. It is possible to

reformulate (7.6) in such a way that the pressure contribution yields an activity coef-

ficient different from unity in the logarithmic term, as proposed in [21] for numerical

purpose.

7.1.3 Surface

The surface S is considered as mixture of the surface metal ions, surface electrons,

electrolytic adsorbates and surface reaction products, with respective surface number

densities n
s
α. Note that we consider on the surface also a solvation effect, whereby each

adsorbed ion binds κα solvent molecules. The index set of surface constituents is denoted

by MS ⊇ ME,M, where ME,M = ME ∪MM.

Analogously to the metal volume, we have an incompressibility constraint on the surface

stating aref
M n

s
M = 1, where aref

M is the partial area of surface metal ions. On the electrolyte

side, we have to account for adsorption from the volume. Each surface metal ion offers
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ωM adsorption sites. Thus, the number density of possible adsorption sides is

n
s
= ωMn

s
M . (7.7)

Since the surface does not need to be completely covered with adsorbates, we introduce

a mole density of surface vacancies via

n
s
V = ωMn

s
M −

∑
α∈MS\MM

ωαn
s
α . (7.8)

Here, ωα denotes the adsorption sites occupied by each species of the adsorbates. The

specific areas of vacancies and adsorbates are given by the adsorption sites, i.e.,

a
ref
V = 1

ωM
a

ref
M and aref

α = ωα
ωM
a

ref
M . (7.9)

We introduce the surface fraction of vacancies and of adsorbates as

y
s
V =

n
s
V

n
s

and y
s
α =

n
s
α

n
s

. (7.10)

The chemical potentials of the adsorbates are

μ
s
α = ψ

s

ref
α + kBT ln y

s
α − ωαkBT ln y

s
V . (7.11a)

The chemical potential of the metal ions is

μ
s
M = ψ

s

ref
M + ωMkBT ln y

s
V − a

ref
M γ

s
(7.11b)

For the electrons we assume a constant surface chemical potential, i.e.,

μ
s
e = μ

s

M
e . (7.11c)

We are not aware of a comparable surface model in the standard literature.

7.1.4 Chemical reactions

In order to describe a wide range of metal–electrolyte–interfaces, we consider several

chemical reactions in the volume and on the surface.

In the electrolyte several volume reactions may occur, which account for the dissociation

of acids, the dissolution of salts, also the self-ionization of the solvent. Each volume

reaction can easily be taken into account because under the given equilibrium conditions

the reaction impose a restriction on the bulk values of the chemical potentials of the

electrolyte species.

In general, all electrolytic constituents can adsorb on the surface. The adsorption of

the ionic species is usually followed by a reorganization of the solvation shell. This

process can be described as a reaction in which where the adsorbates loose a part of

their solvation shell. Moreover, the adsorbates can be involved in further surface reactions
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where electrons and the metal ions are involved. We assume that the reaction products

are exclusive surface constituents, such that there is no charge transfer between the two

bulk phases. Also these surface reactions can be accompanied by further changes of the

solvation shell of the charge species. All those surface reactions can be represented in the

form (4.19).

7.2 Implications of the material model

7.2.1 Constant potential difference UM

The potential drop UM in the metal is determined by the adsorption equilibrium of the

electrons (4.6a) on the metal surface as

UM =
1

e0

(
μMe − μ

s

M
e

)
. (7.12)

Due to the constitutive model for the metal and the properties of the leading order

quantities in the bulk the chemical potentials μMe as well as μ
s

M
e are constant. Therefore,

the potential difference UM is independent of the applied potential difference U across

the complete double layer, and depends only on the constant material parameters μMe
and μ

s

M
e .

7.2.2 Decomposition of interfacial tension

The constitutive function (7.11b) for the metal ions and the adsorption equilibrium (4.6a)

imply

a
ref
M γ

s
= ψ

s

ref
M + ωMkBT ln y

s
V − μMM − zMe0U

M . (7.13)

As a direct consequence of the constant potential difference UM according to (7.12), only

the term containing y
s
V can depend on UE and all constant terms in (7.13) are related to

the metal. This motivates the splitting of the surface tension as

γ
s
= γ

s

M − γ
s

E (7.14a)

with

γ
s

M := 1

a
ref
M

(
ψ
s

ref
M − μMM − zMe0U

M
)

and γ
s

E := −ωM
a

ref
M

kBT ln y
s
V . (7.14b)

By this definition γ
s

M is constant and and γ
s

E is always non-negative and vanishes in the

case of of a clean surface, implying γ
s
= γ

s

M for y
s
V = 1. With the boundary layer tensions

γEBL and γMBL, we introduce the metallic and electrolytic interfacial tension as

γM := γ
s

M − γMBL and γE := γ
s

E + γEBL . (7.15)
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Then, we can split the interfacial tension in a similar fashion to (7.14a) as

γ = γM − γE . (7.16)

By definition the boundary layer tensions γEBL and γMBL are non-negative and γMBL is

independent of UE as a direct consequence of the constant potential difference UM. Thus,

metallic interfacial tension γM also is constant and the electrolytic interfacial tension γE

is non-negative. We conclude, that the electrolytic interfacial tension always lowers the

interfacial tension due to adsorption and charge accumulation in the electrolytic boundary

layer.

7.2.3 Current–Charge relation

From a mathematical point of view, the system (4.6)–(4.14) is identical to the one

dimensional system of [31] for a planar metal–electrolyte interface, and we also apply the

same material model here. Moreover, we see that the double layer charge density (4.21) is

exactly the same electric charge density Q, which we have already deduced in [31] in the

context of the charge–current relation

I =
dQ

dt
, (7.17)

where I is the current per surface area which flows into the double layer from the

metal side. Thus, it is possible to establish the same current–charge relation here, the

derivation is given in the Appendix B. The current–charge relation allows to measure

the double layer charge by an experiment independent from the Lippmann equation, for

instance the classical dropping mercury electrode [18] and thereby enables an experimental

confirmation of the Lippmann equation.

7.3 Representation formulas for the metal–electrolyte interface

Several useful representation formulas for the metal–electrolyte interface can be derived

in the same way like in [31]. They are summarized here because the computations of

Section 8 are based on them.

7.3.1 Pressure p as function of potential

The definitions of the mole fractions requires in the electrolyte boundary layer the side

condition 1 =
∑

α∈ME
yα. Thus, the boundary layer equations (4.9) imply the algebraic

equation between the pressure and the electrostatic potential

∑
α∈ME

yEα exp
(
− zαe0

kBT
(ϕ− ϕE) − vrefα

kBT

(
p− pE

))
= 1 . (7.18)

In particular, the pressure p in electrolytic boundary layer can be expressed as a function

of the potential difference ϕ− ϕE, i.e. p = p(ϕ− ϕE).
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7.3.2 Boundary layer tension γEBL

Further, we have a representation of the electrolytic boundary layer tension

γEBL =

UE∫
0

√
2ε0(1 + χ)(p(u) − pE)du, (7.19)

where p(u) is the material pressure according to (7.18) with ϕ = ϕE + u.

7.3.3 Surface mole fractions y
s
α

The surface mole fraction y
s
V of the vacancies can be expressed as a function of the

electrolytic surface tension,

y
s
V = exp

(
− a

ref
V

kBT
γ
s

E
)
. (7.20)

The mole fraction y
s
α for the electrolytic adsorbates, i.e., α ∈ ME, we have the representa-

tions

y
s
α = yEα exp

(
− Δg̃α

kBT
− e0

kBT
zαU

E − aref
α

kBT
γ
s

E
)
, (7.21a)

with the corresponding Gibbs energies defined by

Δg̃α = ψ
s

ref
α − (ψref

α + vrefα pE) . (7.21b)

For the surface reaction products, i.e., Aβ with β ∈ MS \ME,M, we obtain from the general

equilibrium conditions (4.20) and (4.6a) of the net reactions (4.19) the representation

y
s
β =

∏
α∈ME

(yEα )
ναβ exp

(
− Δg̃β

kBT
− e0

kBT

( ∑
δ∈ME

νδβzδ
)
UE −

a
ref
β

kBT
γ
s

E
)
, (7.22a)

where we again define Gibbs energies as

Δg̃β = ψ
s

ref
β −

∑
α∈MM

ναβ(μ
M
α + e0zαU

M) −
∑
α∈MM

ναβ(ψ
ref
α + vrefα pE) . (7.22b)

From these representation formulas, we conclude that the Gibbs energies control the

amount of adsorbates and reaction products on the surface. In case of charged species,

the Gibbs energies refer to the whole solvated ion, which includes the Gibbs energy of the

centre ion as well as the Gibbs energy of the solvent molecules. To separate the different

contributions, we introduce the decomposition

Δg̃β = Δgβ + κβΔg0 . (7.23)
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The index 0 refers to the solvent with the adsorption energy Δg0 according to (7.21b).

Now, Δgβ corresponds to the adsorption energy of a single molecule, and can be expected

in the order of 1eV.

7.3.4 Relation between γ
s

E and UE

The above representations and the definition (7.10) of the surface mole fractions yield an

algebraic equation which determines γ
s

E as a function of UE, viz.,

y
s
V +

∑
α∈MS\MM

y
s
α = 1 . (7.24)

7.3.5 Electrolytic boundary layer charge density QE
BL

It is remarkable that it is possible to determine the boundary layer charge density QE
BL

without needing to spatially resolve the boundary layer equations (4.9)–(4.13), i.e.,

QE
BL = sgn(UE)

√
2ε0(1 + χ)(p(UE) − pE) . (7.25)

where p(UE) is the material pressure according to (7.18).

7.3.6 Surface charge density

Once all surface mole fractions are determined according to (7.20)–(7.22), we get for the

surface charge density

Q
s

E = −

∑
(α∈ME)

zαe0y
s
α +

∑
(α∈ME)

∑
(β∈MS\ME,M)

ναβzαe0y
s
β

a
ref
V y

s
V +

∑
(α∈MS\MM)

a
ref
α y

s
α

. (7.26)

Thus, the surface charge density itself is a function of the potential difference UE and the

surface tension γ
s
.

8 Electrocapillarity of the Hg|aqueous electrolyte interface

In this section, we relate our model to experimental data for several representative

examples of the Hg|aqueous electrolyte interface like the ones given in Figure 1a. In order

to compute the electrocapillarity curves, we determine for each given UE:

• γEBL by numerically integrating (7.19), where in the integrand p(u) is the iterative

numerical solution of (7.18),

• γ
s

E by iterative numerical solution of (7.24), where y
s
V and y

s
α for α ∈ MS \MM are given

by (7.20), (7.21), and (7.22).
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The behaviour of the electrocapillarity curves is determined by several parameters of the

thermodynamic model. The bulk parameters,

bulk particle densities nEα , bulk pressure pE , temperature T ,

can be adjusted in the experimental setup. In Section 8.1, we discuss briefly the material

parameters of the Hg surface and the solvent H2O, i.e.,

metal interfacial tension γM, adsorption site per surface metal ion ωM,

adsorption energy ΔgH2O.

Subsequently, we discuss the dependency of the electrocapillarity curve on the material

parameters of the ionic constituents. In Section 8.2, we examine the influence of the

remaining material parameters:

charge numbers zα, dielectric susceptibility χ,

solvation number κα, adsorption energy Δgα,

specific volumes vrefα , specific areas aref
α .

Although our model allows general ionic species, we restrict our considerations on

monovalent salts in order to avoid subtle discussion of questions related to the dissociation

degree and the specific volume of a multivalent ion. In the following, the bulk salt

concentrations nEα are set in such a way that the electrolytes represents a 0.1 M solution,

if not stated otherwise, and we fix

pE = 105Pa and T = 298K . (8.1)

In the standard experimental three electrode setup, the potential difference between

the metal and some reference electrode R is measured. Therefore, we have to express the

the potential difference U = UM + UE between the metal and electrolyte as a function

of the measured cell potential E between metal and reference electrode. If we assume for

the reference electrode the same material model like for the metal, then we have according

to Appendix A that

E = UE +UR , (8.2)

where UR denotes a (constant) reference voltage. For simplicity, we set

UR = 0 . (8.3)
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8.1 Parameters of solvent and metal surface

8.1.1 Specific volume and area of H2O and Hg

The specific volume of the solvent H2O and of the metal Hg can be determined from the

mass densities of the pure substances as

v
ref
H2O

= 1
55.5

L
mol

and v
ref
Hg = 1

67.52
L

mol
. (8.4)

We compute the specific areas of H2O and Hg from the simple relation

aref
α =

2√
3
(2 rα)

2 with rα =
3

√
3π

4
v
ref
α , (8.5)

which corresponds to a layer of densely packed spheres. The values for H2O and Hg are

determined as

a
ref
H2O

= 10.33 · 108 cm2

mol
and a

ref
Hg = 9.05 · 108 cm2

mol
. (8.6)

Because the specific areas of the water molecules and mercury atoms are quite similar, we

assume that each mercury atom offers one adsorption site, i.e.,

ωHg = 1 . (8.7)

8.1.2 Interfacial tension γM

We seek to determine γM from an experiment that is independent of the actual

metal/aqueous electrolyte interface. Therefore, we consider the interface between Hg

and some inert gas and assume also in this setup a material model analogous to Section 7,

such that the decomposition γ = γM − γgas holds true. As the gas phases consist solely of

uncharged constituents, there is no boundary layer contribution γgas
BL to γgas. Additionally,

if the gas does not adsorb on the metal (i.e., an inert gas like N2 or Ar), then γ
s

gas = 0

and we can read of γM from an independent measurement of γHg|gas. With the value [30]

γHg|gas = 485.5 · 10−3 N
m

for the Hg|gas interface at 20◦C, we get

γM = γHg|gas = 486.5 · 10−3 N
m
. (8.8)

8.1.3 Adsorption energy of the solvent

Consider the interface between a metal M and pure water, without any additive salt. Then,

(7.24) and the representations formulas (7.20) and (7.21) reduce to

y
s
V + y

s
H2O = 1 with y

s
V = exp

(
−

a
ref
Hg

ωHgkBT
γ
s

H2O
)

(8.9a)

and y
s
H2O = exp

(
− ΔgH2O

kBT
−
a

ref
H2O

kBT
γ
s

H2O
)
, (8.9b)
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Given a value for γ
s

H2O from independent experiment, we can thus determine the corres-

ponding solvent adsorption energy ΔgH2O. Therefore, we consider the H2O|gas interface

and assume that there also holds the decomposition γH2O|gas = γH2O−γgas and γgas = 0 for

a non-adsorbing gas for the same reasons as above. Similar to the gas phase, the boundary

layer contribution γH2O
BL of water vanishes. Using the same database of Jaspers [30] for

the H2O|gas interface at 20◦C, we then get γ
s

H2O = γH2O = γH2O|gas = 72.14 · 10−3 N
m
. As

a further implication, we can determine γHg|H2O = γHg|gas − γH2O|gas = 414.36 · 10−3 N
m

,

a value that coincides well with direct measurements of the Hg|H2O interface with [1]

γ
Hg|H2O
measured ≈ 415 · 10−3 N

m
at 20◦C, which subsequently justifies the assumptions above. We

can thus choose ΔgH2O such that γ
s

H2O = 72.14 · 10−3 N
m

, i.e., numerical solution of (8.9)

yields

ΔgH2O = −0.0735 eV . (8.10)

8.2 Non-adsorbing monovalent salt

Consider some monovalent salt AC which completely dissociates in anions A− and cations

C+ and that does not adsorb on the Hg surface. Thus, only the boundary layer charge

density QE
BL can cause a potential dependent contribution γEBL to the interfacial tension

γ. The amount of charge that can be stored in the layer only depends on the bulk

concentration of the salt as well as on parameters χ and vrefα . Regardless of all possible

parameter variation, at the potential of zero charge, i.e., for E = 0, always the same

maximal value of γ is attained. To effectively prevent adsorption, we set in the calculations

Δgα = +1 eV for non-adsorbing species. (8.11)

8.2.1 Specific volume

Due to the incompressibility of the electrolyte, the specific volume vrefα limits the maximal

charge that can be stored per unit volume. We assume vref
A− = v

ref
C+ such that the electro-

capillarity curves are symmetric w.r.t. E = 0. Then, Figure 4a shows that by increasing

vrefα the electrocapillarity curves widen up, i.e., the slopes that are related to QE
BL decrease.

Since we consider the ionic species A− and C+ as solvated ions consisting of a charged

centre ion and κα solvent molecules in the solvation shell, the simplest choice to determine

the specific volume of a solvated ion is

vrefα = (1 + κα) · vref0 , (8.12)

where vref0 is the specific volume of the solvent. For mono-valent ions, we proceed with

vrefα = 45 · vref0 , (8.13)

which implies κα = 44 according to (8.12). For the Ag|aqueous electrolyte interface a

similar value was used in [31].
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Figure 4. Parameter study of a monovalent, completely dissociated salt AC with bulk concentration

0.1M. (a) Dependency of the interfacial tension γ on the ionic specific volume vref
α with χ = 15.

(b) Influence of the susceptibility χ on the interfacial tension γ with vref
α = 45 · vref

0 .

8.2.2 Electric susceptibility

The electric susceptibility χ can in general spatially depend on the local electrolyte con-

centration. It is usually supposed that χ gets smaller in the boundary layers where the

solution gets more concentrated, cf. [7]. Non-constant susceptibility can be self-consistently

modeled, cf. [41], but for simplicity we assume a constant χ. Since the capacity maximum

is essentially determined by the stored charge after saturation of the boundary layer

sets in, it seems reasonable to approximate χ by a value considerably lower than the

bulk value of χ ≈ 80 for pure water. Figure 4b shows that variation of χ (vrefα and

κα according to (8.12) and (8.13), respectively) has similar effect on the surface tension

like variation of vrefα when χ is fixed. Thus, only the combination of both paramet-

ers can be fitted to experiments. Given the choice (8.13), we proceed in the following

with

χ = 15 . (8.14)

8.2.3 Salt concentration

Now that all necessary fit parameters for non-adsorbing monovalent salts are fixed by

(8.11)–(8.14), we can study the dependency of the electrocapillarity curves on the salt

concentration. It is well known that the interfacial tension dependents on the electrolyte

concentration [22–24]. In Figure 5, we see that the numerical solutions of our model

reproduce measurements quite well for a concentration range 0.0025–0.1 M of a completely

dissociated, non-adsorbing salt AC.

8.3 Adsorption and reactions

Specific adsorption of ions leads to a non-vanishing contribution γ
s

E which lowers the

interfacial tension γ. While anions mostly adsorb in the right side of an electrocapillary

diagram where more positive voltages are applied, the cations adsorb stronger for more
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Figure 5. Measurement and simulation for aqueous solutions of non-adsorbing monovalent salts

show good agreement for different salt concentrations. (a) Electrocapillarity curves for NaF solutions

(based on Figure 2 of [12]). (b) Parameter study of the salt concentration for a monovalent salt AC.

Figure 6. Measurement of the Hg|0.05M Na2SO4 interface (a) and with cation adsorbing

additives (b) and anion adsorbing additives (c) (based on Figure 36 of [43]).

negative voltages. This is accompanied by a corresponding shift of the potential of zero

charge in negative direction when anions adsorb, while for cations the is shift is in the

positive direction, see Figure 6 for experimental data. The effect of the adsorption on the

electrocapillary curves is controlled by the parameters Δgα and aref
α studied below.

8.3.1 Adsorption energies

As a representative example for salts having the same non-adsorbing cation but different

monovalent anions, e.g., KCl, KI, KOH, we study the effect of varying the parameter

ΔgA− on the computed electrocapillary curves of a 0.1M AC mixture. Since Figure 1a

suggests that cations do not adsorb on Hg, we set ΔgC+ = 1eV according to (8.11). From

Figure 7a, we see that if we decrease the adsorption energy ΔgA− , the interfacial tension γ
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Figure 7. Parameter study of a completely dissociated salt AC of 0.1M concentration with an

adsorbing anion A−. (a) Variation of the anion adsorption energy ΔgA− with aA− = 30 aref
0 . (b)

Variation of the anion specific area aA− with adsorption energy ΔgA− = −0.6eV.

is lowered for larger applied potentials. Additionally, we observe that the position of the

electrocapillary maximum moves to the left when the adsorption energy is decreased. Once

the surface is completely covered by adsorbed anions, the double layer charge density

does not depend on the parameter choice for ΔgA− any more. Thus, there is no visible

difference in the slope of the curves in Figure 7a when the applied potential is large.

8.3.2 Specific area

Quite similar to the specific volume vrefα , the specific area aref
α controls the maximal charge

of adsorbed species that can be stored on the surface. For the ionic constituent on the

surface we choose a simple relation between aref
α and κα analogous to (8.12), i.e.,

aref
α = (1 + κα)a

ref
H2O

. (8.15)

We assume that the cation C+ does effectively not adsorb and set ΔgC+ = 1eV and

ΔgA− = −0.6eV. When the parameter aref
α then is varied in multiples of the solvent

specific area aref
H2O

, we observe in Figure 7b that anions can already adsorb more easily for

lower values of aref
A− , resulting in a considerably larger curvature at the electrocapillarity

maximum. Moreover, with decreasing specific area, we see a shift of the position of the

maximum to the left. This shift appears stronger than that observed when decreasing

ΔgA− in Figure 7a. When the applied voltage is large, the slopes are again the same for

all curves.

8.3.3 Side remark on dissociation

Due to the dissociation reaction H2O � H+ + OH− of water, there is always some – but

possibly very small – amount of H+ and OH− present in the electrolyte. It is reasonable

to assume a similar dissociation process also on the surface, leading to the presence of

adsorbed H+ and OH− on the surface. Because Hg is usually considered not catalysing
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the self-ionization of water. We assume that for pure water the potential of zero charge

is equal to zero. As a consequence, if OH− and H+ adsorb on the metal surface, then

their surface concentrations are equal at the potential of zero charge, i.e., ΔgOH− = ΔgH+.

Then the reaction equilibrium conditions imply ΔgOH− + ΔgH+ = ΔgH2O and thus

ΔgOH− = ΔgH+ = −0.0367eV . (8.16)

With these values, we find that the impact of adsorbed H+ and OH− on the electrocapil-

larity curve is negligible. Note, however, that the actual surface concentration of H+ and

OH− is not zero.

8.3.4 Electron transfer and metal surface reactions

The steep anodic branches of several salts in the electrocapillarity curves of Figure 1

indicate the occurrence of either an electron transfer reaction

A− − e− � A (8.17a)

or a reaction of the form

2Hg2+ + 2A− + 2e− � Hg2A2 (8.17b)

like, e.g., mentioned by Frumkin [18]. We discuss the impact of both reactions, starting

with the electron transfer (8.17a).

Consider a 0.1M AC solution where the anion may adsorb on the surface. Whenever

ΔgA � ΔgA− , the adsorbed anions will directly undergo the electron transfer reaction

leaving almost no A− on the surface. If the reaction energy ΔgA is considerably larger

than ΔgA− , the adsorbed anions will cause some visible decrease of the surface tension

before the reaction sets in. Figure 8a displays a variation of ΔgA. Because the reaction

product A is uncharged, there is no solvation shell and thus the specific area a
ref
A is

comparable to aref
H2O

. We set

κA = 0 , a
ref
A = a

ref
H2O

. (8.18)

The free solvent molecules are released to the volume according to the adsorption

equilibrium condition leaving unoccupied sites on the surface which in turn allow for

additional adsorption of A− from the volume. Because of the strongly different specific

areas of A− and A, we observe such a steep decrease of the electrocapillarity curve when

the electron transfer reaction sets in.

Also the reaction (8.17b) produces a new species on the surface. We assume for the

specific area aref
Hg2A2

the simple relation

κHg2A2
= 0 , a

ref
Hg2A2

≈ 2aref
Hg + 2aref

A ≈ 4aref
H2O

. (8.19)

Figure 8b displays a variation of ΔgHg2A2
, for a 0.1M AC solution and ΔgA− = −1eV.

The steep decrease originates from the rather small specific volume aref
Hg2A2

and the fact

that there are two electrons involved in the reaction.
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Figure 8. Parameter study of electron transfer and reactions with the metal. (a) Variation of the

adsorption energy ΔgA related to the electron transfer reaction A− − e− �A + κA− · H2O. (b)

Variation of ΔgHg2A2 related to the reaction 2Hg2+ + 2A− + 2e− �Hg2A2 + 2κA−H2O.

8.4 Calculated electrocapilarity curves for Figure 1a

Based on the parameter study above, we can now specify model parameters that allow

reproduction of the introductory electrocapillarity curves Figure 1b. Then, we discuss

quantitative and qualitative agreement of our results.

8.4.1 Parameter choice

We consider the monovalent salts KOH, NaCl, NaBr,KI, KCNS, and Ca(NO3)2.
2 The

goal is to reproduce the height and position of the electrocapillarity maximum as well as

the slopes for large positive applied voltages and the endpoints of the curves.

For CaNO+
3 and the alkali cations we set ΔgC+ = 1eV according to (8.11), whereby

effectively no adsorption occurs. The adsorption energy of H+ is given as ΔgH+ =

−0.0367eV according to (8.16). With the assumption of equal specific volume for Na+,

K+ and CaNO+
3 the left electrocapillarity arc’s coincide in all cases.

All anions are assumed to adsorb on Hg and strip of a part of their salvation shell.

Among the considered halogenes, this process is strongest for iodide, followed by bromide

and chloride, we choose

ΔgI− = −0.6eV , ΔgBr− = −0.4eV , and ΔgCl− = −0.2eV . (8.20a)

The anions CNS−, CaNO3−, and OH− may also adsorb on Hg, where we have chosen

ΔgCNS− = −0.45eV and ΔgNO3− = −0.35eV (8.20b)

and ΔgOH− = −0.0367eV according to (8.16). It seems likely that stronger adsorbed

constituents also have a smaller solvation shell (and thus a specific area), whereby we

2 Note that we assume here actually a complete (or major) dissociation of Ca(NO3)2 in CaNO+
3

and NO−
3 , similar as H2SO4 dissociates mainly into HSO−

4 and H+. A further dissociation of

CaNO+
3 into Ca2+ and NO−

3 is possible within our framework, but requires some more discussion

of parameters for the multivalent ion Ca2+, i.e., its specific volume.
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choose

a
ref
I− = 10 aref

H2O
, a

ref
Br− = 15 aref

H2O
, and a

ref
Cl− = 20 aref

H2O
. (8.20c)

With respect to the anions CNS−, CaNO3−, and OH−, we choose specific areas

a
ref
CNS− = 10 aref

H2O
a

ref
CaNO3− = 35 aref

H2O
and a

ref
OH− = 30 aref

H2O
. (8.20d )

We consider further the reactions of the type (8.17b) between Hg and the anions

I−,Br−,Cl− and OH− with the energies

ΔgHg2I2
= −0.8eV, ΔgHg2Br2

= −0.4eV,

ΔgHg2Cl2 = −0.1eV, ΔgHg2(OH)2 = −0.1eV .
(8.20e)

The specific areas of the adsorbed, uncharged reaction products are chosen according

(8.19) as aref
β = 4aref

H2O
.

8.4.2 Discussion on the calculated electrocapilarity curves

With this set of parameters, we compute the electrocapillarity curves of the respective

0.1 M salt solutions in the potential range from −1.3V to 0.6V and obtain a very good

qualitative and quantitative agreement to the experimental data of Grahame and Gouy

(cf. Figure 1). It is to emphasize that our results are based on the rather simple material

functions given in Section 7.1. Near to the end points of the experimental curves it is

likely that there are additional phenomena, which are not included in our calculations

so far. For example, Hg might start dissolving into solution or there can be reactions

different from the considered net reactions (4.19). If some adsorbed ions undergo a

charge transfer reaction and the reaction product can desorb back to the solution, e.g.,

like 2H+ + 2e− � H2 or 2Cl− − 2e− � Cl2, then a net charge transfer occurs which

invalidates the current–charge relation (7.17). While all these phenomena con be an

origin of deviation between experimental and computed data, it is remarkable, that our

computed electrocapilarity curves reproduce the experimental curves well within such a

wide potential range.

Seemingly, there is some qualitative difference between the measured data and the

computed electrocapillarity curves which show a tiny kink when the reaction (8.17b)

sets in (cf. Figure 1b at 0.1 V for I−, 0.25 V for Br− and 0.4V for Cl−). But one

has to keep in mind that although the continuous plots of the electrocapillarity curves

in Figure 1a suggest an infinite precision of the measurement with respect to the ap-

plied potential, they are in fact based on discrete data points. In fact, the data sets of

Gouy are actually based on a very coarse potential discretization of 0.1 V. If we fol-

low this procedure, i.e., interpolate the computed data points corresponding to a coarse

discretization of 0.1 V for the applied potential E, this kink is not visible any more

(cf. Figure 9).
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Figure 9. Computation of the interfacial tension based on our model with the parameters

(8.20a)–(8.20e) and a voltage discretization of 0.1V.

Due to the constant potential difference UM and the simple relation (8.2) between the

potential difference UE and measured potential E, the Lippmann equation (4.18) can be

rewritten as

dγ

dE
= −Q . (8.21)

This shows that the electrocapillarity maximum indeed corresponds to the potential of

zero charge E0, i.e.

dγ

dE
|E=E0 = 0 ⇔ Q|E=E0 = 0 . (8.22)

8.5 Capacity curves

The double layer capacity C is related to the double layer charge density Q according

to C = −dQ/dE, cf. [8, 37, 38]. From the representation formulas of Section 7.3, we have

QBL and Q
s

given as functions of UE and γ
s

E. Thus, by differentiation of (7.25) and (7.26)

it is possible to derive an algebraic system that directly determines C in dependence

of E. The actual functional representations of C are derived in detail in [31]. From

the Lippmann equation (8.21), we obtain the relation between interfacial tension γ and

differential capacity C as

− dγ2

d2E
= C . (8.23)

A computation of the double layer capacity based on our model and the parameters

(8.20a)–(8.20e) for the various Hg|aqueous salt solution interfaces is given in Figure 10.

Coming from negative potentials we first observe a local capacity maximum that is the

same for all considered interfaces and is mainly due to storage of the boundary layer

charge density QE
BL. Proceeding in direction towards more positive potentials, each curve
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Figure 10. Double layer capacity C(E) based on our model with parameters (8.20a)–(8.20e).

shows a local minimum at the respective potential of zero charge, but the position of the

minima differ between the individual curves. Next, we observe a local capacity maximum

significantly higher than the first one (except for KOH), where position and height differ

between the curves. This second local maximum has to be attributed to the capacity related

to the surface charge density Q
s

E. While there also is a boundary layer contribution to the

capacity for potential positive w.r.t. the potential of zero charge, it is effectively hidden

under the dominant surface part of C . Finally, we observe very pronounced capacity

peaks which are related to the onset of the reaction (8.17b).

9 Summary

9.1 General setting

For continuum models of electrochemical interfaces in the context of thermodynamics, the

necessary requirements are to be compatible with balance equations of mass, momentum

and energy and the 2nd law of thermodynamics in the sense that entropy production

is guaranteed to be non-negative. No less important is the compatibility with experi-

mentally well confirmed fundamental equations of electrochemistry like the Lippmann

equation. In this paper, we showed how the Lippmann equation can be derived – or

recovered – from the continuum thermodynamic model within an asymptotic regime

that is relevant for macroscopic measurements. Thereby, we clarified the role of the

Lippmann equation as an implication of the model equations in the bulk domains and

on the surface rather than being an independent axiom. Since no information about the

material specific free energy densities was required, the role of the Lippmann equation

as an universal identity is confirmed as far as it is applied in a sufficiently macroscopic

setting. Moreover, we are able to give sharp definitions of all quantities appearing in the

equation.
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In particular, our derivation reveals that the boundary layer contributions γ̃± to the

interfacial tension γ are always non-negative and can only reduce the interfacial tension.

Moreover, we see that by measuring interface charge it is only possible to draw conclusions

about the combined interfacial tension γ, but not about the thermodynamic surface

tension γ
s
.

9.2 Validity and applicability

The asymptotic framework used in the derivation relies on scaling relations of the dimen-

sionless parameters which are implied by the chosen reference quantities like length scales

and number densities. Thereby, it allows to estimate the applicability of the Lippmann

equation in a specific parameter range. In particular, the minimal curvature radius of the

interface has to be larger than the Debye length by about one order of magnitude, i.e.,

λLref kM � 1 . (9.1)

Since we derived the Lippmann equation without any assumption of the material

specific behaviour encoded in the free energy densities, the derivation is also valid for

general liquid–liquid interfaces. Nevertheless, further modelling is necessary to specify a

suitable free energy for such an liquid–liquid interface before it is possible to actually

calculate all contributions to the double layer charge density and the interfacial tension.

9.3 Liquid metal–aqueous electrolyte interface

For the example of the liquid metal–aqueous electrolyte interface an explicit material model

consisting of free energy densities can be applied. This enables us to derive representation

equations in terms of the applied potential E for all surface quantities and the layer

charge density and layer tension and thereby allows the efficient numerical computation of

electrocapilarity curves. Detailed investigations on the various equilibrium parameters of

our model were carried out in order to provide insight on the respective dependency. This

finally allows to identify a parameter set such that it is possible to reproduce experimental

electrocapilarity curves with a remarkable qualitative and quantitative agreement in a 2 V

potential range.

It is worth to point out that the definition of the double layer capacity defined by the

Lippmann equation is consistent with the definition of the differential capacity in [31].

We see that adsorption and charging of the double layer always results in a reduction of

the thermodynamic surface tension γ
s
, in addition to the reduction of the boundary layer

tension γ̃± by charge accumulation in the boundary layers. Together with the monotonicity

properties of the representation equations this leads to the general parabolic shape of the

electrocapilarity curves.

In the literature, there has been some discussion about the electrode charge and the

applicability of the Lippmann equation – or generalizations thereof – in the presence

of Faradayic currents or for the case of a reversible electrode, cf. [19, 20]. The general

derivation of the Lippmann equation given above does not require the assumption of a

perfectly polarizable electrode but stays also valid in the presence of Fradayic currents.
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Only one has to keep in mind that the charge–current relation that can be used to measure

the double layer charge by an experiment independent from the Lippmann equation, was

based on the assumption that there is no charge transfer across the interface.
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Appendix A Relation between UE and the measured cell potential E

Let us consider a experimental setup, where the metal and the reference electrode R are

connected via cables C1 and C2 to a voltmeter V which measures a voltage E between

its two identical, metallic plates V1 and V2. The electrochemical cell, including measuring
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device and cables, may thus be written as

V1 | C1 | M | E | R | C2 | V2︸ ︷︷ ︸
E=ϕ

s
V1
−ϕ

s
V2

. (A 1)

The measured cell potential E then corresponds to the surface potential difference between

the two plates of the voltmeter, i.e.,

E = ϕ
s
V1
− ϕ

s
V2
. (A 2)

Due to the continuity of electrochemical potential μe−e0ϕ of the electrons in the different

metals and at metal contacts, we have

E = UE +UR with UR = − 1

e0
(μ
s

M
e − μ

s

R
e ) −UR,E (A 3)

where UR,E = ϕ
s

R−ϕE denotes the potential difference between bulk electrolyte and surface

potential of the reference electrode. We follow the common assumption that the reference

potential UR,E = const. is constant [8]. If we assume for R an analogous material model

to the one used for M, then μ
s

R
e and thus also UR is a constant.

Appendix B Current–charge relation of the metal/electrolyte interface

The derivation of the relation (7.17) between the current and the electric charge is

based on non-equilibrium thermodynamics [14,35]. First of all, we introduce the domains

of metallic and electrolytic boundary layer3 at the metal/electrolyte interface S , viz.,

ΩM
BL := {x + εν|x ∈ S, , 0 < ε < ε0} ⊂ ΩM and ΩE

BL := {x − εν|x ∈ S, , 0 < ε < ε0} ⊂ ΩE.

The electric current I [A/m2] flowing into the double layer through the surface AM

between ΩM
BL and ΩM \ ΩM

BL is given by

I = − 1

|AM|

∫
AM

(
zee0
me

je · ν + zMe0
mM

jM · ν
)
da . (B 1)

Herein, je,M [kg/s m2] are the mass flux densities of electrons and metal ions, respectively.

The following objective is the representation of the right hand side of (B 1) by time

derivatives. To this purpose, we introduce the mass balance equations for electrons and

metal ions for ΩM
BL,

d

dt

∫
ΩM

BL

mαnα dx = −
∫
AM

jα · ν da+

∫
S

jα · ν da , α = e,M . (B 2)

Note that the normal vector at AM points outward ΩM
BL and at S points into ΩM

BL. Next,

3 For simplicity, we assume here that S is a closed surface in �3, to avoid discussion about the

phenomena at the boundary lines ∂S of S . By this, we have assumed that the charge transport over

the contact lines ∂S only has a minor impact on the total charge transport across the surface S .
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we introduce the corresponding surface balance equations, which are used to determine

the fluxes at S in (B 2),

d

dt

∫
S

(mαn
s
α) da =

∫
S

rα da−
∫
S

jα · ν da , α = e,M . (B 3)

Herein denotes rα the production density of electrons and metal ions due to surface

reactions on S . According to the surface reaction (4.19) the production densities are

defined by

rα = −
∑

β∈MS\ME,M

ναβmαR
β , α = e,M . (B 4)

Here, Rβ denotes the reaction rates of the net reaction of the surface constituent Aβ ,

β ∈ MS \ME,M. For the exclusive surface constituents Aβ , where no corresponding bulk

species exists, the surface mass balances read

d

dt

∫
S

(mβn
s
β) da =

∫
S

rβ da , β ∈ MS \ME,M . (B 5)

According to (4.19) the production densities are related to the reaction rates by

rβ = mβR
β , β ∈ MS \ME,M . (B 6)

Inserting the balance equations (B 2), (B 3), (B 5) into (B 1) and using the relations (B 4)

and (B 6) yields

I =
1

|AM|
d

dt

(∫
ΩM

BL

nF dx+

∫
S

∑
α∈MM

(zαe0n
s
α) da+

∫
S

( ∑
α∈MM

∑
β∈MS\ME,M

zαe0ναβn
s
β

)
da

)
. (B 7)

We assume that the current itself is of first order, i.e., I = λI (0), than the first non-vanishing

order of (B 7) reads

I =
d

dt

( ∫ +∞

0

nF dx+
∑
α∈MM

(zαe0n
s
α) da+

( ∑
α∈MM

∑
β∈MS\ME,M

zαe0ναβn
s
β

)
da

)
. (B 8)

The charge conservation (2.3a) for reaction (4.19) reads zβ =
∑

α∈ME,M
ναβzα for all

β ∈ MS \ ME,M. Together with the electroneutrality condition (4.6b) we get the sought

relation (7.17).
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