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Methodological notes on model comparisons and strategy
classification: A falsificationist proposition

Morten Moshagen∗ Benjamin E. Hilbig†

Abstract

Taking a falsificationist perspective, the present paper identifies two major shortcomings of existing approaches to
comparative model evaluations in general and strategy classifications in particular. These are (1) failure to consider
systematic error and (2) neglect of global model fit. Using adherence measures to evaluate competing models implicitly
makes the unrealistic assumption that the error associated with the model predictions is entirely random. By means of
simple schematic examples, we show that failure to discriminate between systematic and random error seriously under-
mines this approach to model evaluation. Second, approaches that treat random versus systematic error appropriately
usually rely on relative model fit to infer which model or strategy most likely generated the data. However, the model
comparatively yielding the best fit may still be invalid. We demonstrate that taking for granted the vital requirement
that a model by itself should adequately describe the data can easily lead to flawed conclusions. Thus, prior to consid-
ering the relative discrepancy of competing models, it is necessary to assess their absolute fit and thus, again, attempt
falsification. Finally, the scientific value of model fit is discussed from a broader perspective.
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1 Introduction

The comparative evaluation of theories is an issue of fun-
damental importance in all sciences. In general, many
disciplines proceed by submitting a particular theory or
derived hypothesis to empirical tests and evaluating it
through the logic of verification and falsification. Al-
though such tests can be constructed to differentiate be-
tween models (experimentum crucis) given that oppos-
ing predictions can be derived (Platt, 1964), it is more
common that their comparison proceeds more indirectly.
Specifically, underlying assumptions or predictions de-
rived from each particular model are tested indepen-
dently. Over time, instances of confirmation and dis-
confirmation are accumulated for each model. Accord-
ing to the classical falsificationist logic (Popper, 1959),
a model that repeatedly fails relevant tests is eventually
discarded. Thereby, the question of which is the better
theory or model is answered indirectly: In the long run, it
is the model which makes testable and falsifiable predic-
tions and endures critical tests of these. There are numer-
ous implementations of this approach in JDM research
and well-stated arguments have been formulated in fa-
vor of testing critical properties or central assumptions of
single models (for recent examples see Birnbaum, 2008;
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Fiedler, 2010). Indeed, a typical variant is to conduct
series of investigations which successively shed light on
the determinants and/or bounding conditions of certain
effects or theories.

However, discontent with testing properties of single
models in isolation has been voiced. The line of argument
can be summarized as follows (Gigerenzer & Brighton,
2009; Marewski & Olsson, 2009): It is problematic to
test a specific hypothesis derived from a single model
against the indefinite number of unspecified alternatives.
Rather, it is argued that we need to compare alternative
models directly. In line with such arguments, a popular
approach is to specify several competing models and di-
rectly compare these in terms of their ability to account
for empirical data (Shiffrin, Lee, Kim, & Wagenmakers,
2008). One particular variant specific to JDM research
is the strategy classification approach which attempts to
identify the decision strategy an individual most likely
used (Bröder, 2000, 2002; Rieskamp & Hoffrage, 2008;
Rieskamp & Otto, 2006). Following the idea that people
adaptively select from a set of strategies (Gigerenzer &
Selten, 2001; Payne, Bettman, & Johnson, 1988, 1993),
models are compared on the level of individual subjects1

1It has repeatedly been stated that individual-level analyses are
preferable over aggregate results (Gigerenzer & Brighton, 2009; Glöck-
ner, 2009; Pachur, Bröder, & Marewski, 2008), given clear individ-
ual differences in judgment and decision making (e.g., Bröder, 2003;
Hilbig, 2008a). In essence, however, neither an individual-level nor an
aggregate view should be considered superior per se (Cohen, Sanborn,
& Shiffrin, 2008), and converging evidence from both views certainly
is most conclusive (Hilbig, Erdfelder, & Pohl, 2011).
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and the superior model is retained as a description of how
the decision maker proceeded.

In the current paper, we focus on comparative model
testing in general and the more JDM-specific procedure
of strategy classification in particular. Following the no-
tion that a good test of a theory is one that implements
a sufficiently high hurdle to be overcome by this theory
(e.g., Meehl, 1967), we identify two major shortcomings
in existing approaches to comparative model evaluation:
(1) failure to distinguish between random and systematic
error and (2) neglect of global model fit. As we will argue
and demonstrate, these seriously question the conclusions
that may be drawn.

2 Systematic versus random error

One approach to model evaluation is to assess which of
several models makes most correct predictions in terms of
observable choices. The adherence rate denotes the pro-
portion of observed choices that are in line with the pre-
dictions of a model, given that the latter makes a predic-
tion.2 For example, the recognition heuristic (Goldstein
& Gigerenzer, 2002) predicts that people choose rec-
ognized over unrecognized options when judging which
scores higher on some criterion (e.g., which of two cities
has more inhabitants). The rate of adherence to this
heuristic is simply the proportion of cases in which a
participant chose the recognized option, while the error
rate is defined as the proportion of choices that conflict
with the heuristic’s predictions (i.e., 100% minus the ad-
herence rate). When we compare competing models,
we regard the one yielding the highest adherence rate as
the data generating model (e.g., Marewski, Gaissmaier,
Schooler, Goldstein, & Gigerenzer, 2010). At the same
time, a model need not yield perfect adherence (100%),
because choices will be marred by some execution errors
resulting from demands of the task, fatigue, slips of the
finger etc.

The question of which maximal error rate a model
should be allowed to produce is subject to idiosyncrasies
of researchers, however. Since an adherence rate of 50%
would be observed for purely random patterns in bi-
nary choices, this is the lowest useful criterion (Glöck-
ner, 2009; Rieskamp, 2008). However, for choice pat-
terns approaching simple random responding, it would
be dubitable to conclude systematic execution of any
strategy at all. Some have therefore suggested apply-
ing stricter criteria (Bröder & Schiffer, 2003; Glöckner,

2As a result, the adherence rate will often lead to comparing apples
with oranges (Hilbig, 2010b): One model may produce high adherence
but make predictions only in very few cases; another may yield slightly
less adherence but actually make a prediction in the majority of cases.
Clearly, the former need not be considered superior at all.

2009). Nonetheless, a general reservation against apply-
ing a single error-threshold to all models or strategies is
that their application may be not equally difficult, and that
the amount of execution errors may also depend on the
particular task.3

Irrespective of the error threshold applied, adherence
rates make a strong and very problematic assumption re-
garding the type of error which occurs. It is implicitly
taken for granted that the error is entirely random and that
only its average size—across all items or trials—matters.
In the above example, it is merely considered how many
of, say, 100 paired-comparison choices the recognition
heuristic predicts correctly. However, an at least equally
relevant question is which of these 100 choices are ex-
plained by the model. The adherence rate ignores the lat-
ter aspect. As an upshot, model refutation becomes ex-
tremely difficult: Since almost any (completely implau-
sible) model can easily produce above-chance-level ad-
herence rates (Hilbig, 2010b), how should we expect to
falsify a model? By contrast, assessment of whether a
model or strategy adequately describes observed choices
is a question of the degree of systematic error. The crucial
question is not merely how much overall error a model
implies, but whether the error really is random and, con-
sequently, of equal magnitude across all items. The main
flaw inherent in adherence rates is the neglect of differ-
ent item types and their respective error-rates. Only by
considering these separately can we identify systematic
error.

Returning to the above example, the recognition
heuristic often yields adherence rates greater than 80%
(Pachur et al., 2008; Pohl, 2006) and thus a relatively
small average error. However, as argued above, the cru-
cial question is whether the probability of choosing as
predicted by the recognition heuristic is roughly 80%
across all items (allowing for attributing the remaining
20% to random error). In fact, however, this is not the
case (Hilbig & Pohl, 2008; Pohl, 2006). Participants of-
ten adhere to the recognition heuristic whenever it im-
plies a factually correct choice (e.g., when the recognized
of two cities really has more inhabitants than the unrec-
ognized one), but deviate from the heuristic’s prediction
whenever the choice it implies is factually false (Hilbig,
Pohl, & Bröder, 2009). Thus, their adherence varies sys-
tematically as a function of item type, which is why it is
entirely inappropriate to attribute non-adherence to ran-
dom error only (Hilbig, Erdfelder, & Pohl, 2010; Hilbig,
2010b).

3A viable approach would be to estimate a to-be-expected error-rate
for each strategy from independent data: Specifically, each participant
could be taught one particular strategy and it could then be assessed how
many trials she needs before consistently solving problems in line with
this strategy (or how many errors she makes). This could then serve as
an estimate for the difficulty associated with executing a strategy.
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For exactly these reasons, researchers have specifically
tested whether models yield equal adherence rates across
different types of items (e.g., Bröder & Eichler, 2006;
Hilbig, 2008b; Newell & Fernandez, 2006; Richter &
Späth, 2006). These studies represent clear instances of
model refutation by testing the critical property of unsys-
tematic errors across experimentally manipulated types
of items. The overall adherence rate, by contrast, is un-
informative, unlikely to provide an instance of model
refutation, and often biased (Hilbig, 2010a). Therefore,
models cannot be evaluated (let alone compared to each
other) by merely considering whether choices deviate
from model predictions. Although this point has been
recognized before (e.g., Bröder & Schiffer, 2003), current
JDM articles fail to treat it appropriately (e.g., Brandstät-
ter, Gigerenzer, & Hertwig, 2008; Marewski et al., 2010).

3 Neglect of global model fit

Addressing this severe shortcoming of adherence rates,
several researchers developed methods assessing which
model or strategy best accounts for the data while allow-
ing for a certain degree of random errors only (Bröder
& Schiffer, 2003; Glöckner, 2009; Jekel, Nicklisch, &
Glöckner, 2010; Rieskamp, 2008). For each model con-
sidered, the empirical distance of the predicted pattern
from the observed pattern is measured by means of a dis-
tance function (usually a log-likelihood value or a trans-
formation thereof such as the Bayesian Information Cri-
terion, BIC). Because the error is constrained to be equal
across all item types, systematic errors lead to model mis-
fit and are thus penalized. The best-fitting model is then
deemed to reflect the actual decision making process or
strategy.

Despite the indubitable superiority of such procedures
over the mere comparison of adherence rates, this par-
ticular procedure also bears a caveat: Reliance on rela-
tive model fit as criterion requires that the data generating
model is among the competitors. However, the observed
data may not have been generated by any of the models
considered, and the model yielding the smallest discrep-
ancy may be entirely invalid (Gelman & Rubin, 1995;
Roberts & Pashler, 2000; Zuccini, 2000). Like the aver-
age adherence rate, relative model fit is unlikely to allow
for model refutation. One model will always fit the data
best. Without the ability to falsify candidate models, re-
searchers may uphold a model that is merely least false
but still far from adequate.

Although this issue has been openly acknowledged
(Bröder & Schiffer, 2003; Glöckner, 2009), no conclusive
efforts have tackled the problem. Fortunately, however, it
is easy to assess whether a particular model might have
generated the data: Prior to preferring a certain model

Table 1: Cue patterns for three item types and choice
predictions of strategies taken from Bröder and Schiffer
(2003).

Item type 1 Item type 2 Item type 3

A B C D E F

Cue 1 1 0 1 0 1 0
Cue 2 1 1 0 1 1 1
Cue 3 1 0 0 1 1 1
Cue 4 0 1 0 0 0 1

Predictions:
WADD A D E
EQW A D Guess
TTB A C E

over others by drawing on relative fit, we need to establish
that each is able to account for the observed data, through
testing global goodness-of-fit. Thus, instead of taking for
granted the vital requirement that a model by itself should
adequately describe the data, we need to test this assump-
tion. As we demonstrate below, failure to consider abso-
lute model fit can easily lead to flawed conclusions.

To illustrate this point, consider the judgment situation
depicted in Table 1 (Bröder & Schiffer, 2003): Decision
makers infer which of two options (A or B) is superior
in terms of some criterion given four probabilistic binary
cues (for applications of such task structures see Bröder
& Schiffer, 2006; Glöckner & Betsch, 2008; Rieskamp
& Hoffrage, 2008). For example, the task might be to
judge which of two cities, A or B (options), has more in-
habitants (criterion) based on whether or not a city has
an international airport, is state capitol, has a university,
and has a major-league football team (probabilistic binary
cues with different predictive validity, cf. Gigerenzer &
Goldstein, 1996). There are three item types (choices
between A/B, C/D and E/F in Table 1) which differ in
the cue patterns, constructed so as to differentiate be-
tween three candidate decision strategies: A weighted ad-
ditive strategy (WADD; choose the option with the higher
sum of cue values weighted by their validities), an equal
weight strategy (EQW; choose the option with the higher
sum of positive cue values), and a lexicographic take-the-
best strategy (TTB; consider cues in order of their valid-
ity; choose according to first discriminating cue). Table 1
shows the choice predictions of each strategy.

Using this set-up, we ran a series of simulations,
mostly mirroring the procedures of Bröder and Schiffer
(2003). We first let each of the three strategies (WADD,
EQW, and TTB) generate 1,000 data sets (simulated de-
cision makers) with 30 choices per item type and a con-
stant random error rate of 10%. Additionally, 1,000 data
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Table 2: Simulation results generating data by different
strategies and classifying data sets by means of the BIC.

Classification [%]

Data generated by WADD EQW TTB Unclassified

WADD + 10% error 99.6 0.4 0.0 0.0
EQW + 10% error 2.1 97.9 0.0 0.0
TTB + 10% error 0.0 0.0 100.0 0.0
Random 0.0 0.1 0.0 99.9

3C + 10% error 43.2 0.0 41.8 15.0
Note. The target category is highlighted in bold.

sets were generated by a pure guessing strategy to rule
out that some strategies would fit random data. However,
our main argument raised above is that conclusions based
on the mere assessment of relative fit will be flawed if the
data generating strategy is not within the set of those con-
sidered. Thus, we additionally simulated 1,000 data sets
generated by a three-cue strategy (3C; compare choice
options on each cue; choose the first option to reach three
positive cue values). Across the three item types, it pre-
dicts the choice pattern “A, guess, E” which is distinct
from those of the other strategies (see Table 1). Note that
any other strategy could have been used for this demon-
stration, as long as it predicts a choice pattern distinct
from the strategies under consideration.4

Parameter estimation for each strategy and data set pro-
ceeded by minimizing the log-likelihood ratio statistic G2

by means of the EM algorithm (Hu & Batchelder, 1994)
as implemented in the multiTree software tool (Mosha-
gen, 2010). Following the recommendation of Glöckner
(2009), a strategy was no longer considered if it required
an average error of 30% or larger. Then, the strategy
yielding the smallest BIC was chosen for classification.

The results displayed in Table 2 mirror those of Bröder
and Schiffer (2003): For data generated by either of the
strategies within the set, classifications were almost per-
fect. The reliability of such classifications can be as-
sessed through the Bayes Factor, which expresses the
posterior odds in favor of one model compared to another,
given the data (Wagenmakers, 2007). The Bayes Factors
between the best and the second best fitting strategy were
> 3 (implying positive evidence, Raftery, 1995) for more
than 95% of all classifications, suggesting that these were
highly reliable. At the same time, random data generation

4Once several strategies make exactly the same choice predictions,
there is no possibility to discriminate between them. The only rem-
edy would then be to look for further item types which can discrim-
inate between strategies or—if strategies inherently make the same
choice predictions—consider further dependent measures such as reac-
tion times or confidence judgments (Glöckner, 2009; Jekel et al., 2010).

led to practically all data sets remaining unclassified, as
is desirable.

However, once data were generated by a strategy out-
side of the set considered, there were substantial misclas-
sifications. When the 3C strategy was the true underlying
model, the optimal outcome would have been that no sin-
gle data set is classified. However, about 85% of data sets
were actually classified—all as WADD and TTB in about
equal proportions (final row of Table 2). Once again,
Bayes Factors were > 3 comparing the best and second
best fitting model in over 99% of data sets. Thus, most
data sets were clearly and reliably classified, even though
no single one was generated by any of the strategies un-
der consideration. Given that researchers can rarely claim
to know whether the data generating strategy is in fact
within their set, this finding seriously questions any con-
clusion drawn from such a model comparison procedure
based on relative fit.

As a remedy, we call for initially considering absolute
model fit to determine whether a model is consistent with
the data. Because the classification method of Bröder and
Schiffer (2003) is a member of the family of multinomial
processing tree models (Batchelder & Riefer, 1999; Erd-
felder et al., 2009), absolute model fit for each strategy
can be determined by evaluating the asymptotically chi-
square distributed log-likelihood ratio statistic G2 (Hu &
Batchelder, 1994).5 In the above example with the 3C
strategy generating the data, using a conventional type-
I error of .056 yielded exclusion of 95.5% of data sets
as unclassifiable. Thus, rather than wrongly considering
about 85% of decision makers as WADD or TTB-users,
the vast majority was treated appropriately and left un-
classified. At the same time, introducing an absolute-fit-
threshold only marginally affected classifications when-
ever data generation followed one of the strategies within
the set: Non-classification rates were 7.6%, 5.7%, and
10.3% for data generated by WADD, EQW, and TTB, re-
spectively. As this exercise demonstrates, using absolute
model fit to refute candidate models prevents false classi-
fications if the data generating model is not in the set of
those considered. At the same time, if the true model is
within the set, classifications are only slightly more con-
servative.

5It might be argued that sparse cell counts resulting from individual
level analyses question the assumption of an asymptotic chi-square dis-
tribution of the G2 statistic. However, the exact distribution of G2 under
H0 can be easily estimated by means of the parametric bootstrap (Efron
& Tibshirani, 1993).

6Since multiple disjoint hypothesis are tested using the same data
set, it may be reasonable adjust the type-I error of each single test to
arrive at a desired family-wise error. Similarly, to avoid rejection of an
otherwise correct model or strategy based on trivial differences when
the statistical power is very high, a compromise power analyses (Erd-
felder, Faul, & Buchner, 2005; Faul, Erdfelder, Lang, & Buchner, 2007)
can be applied, adjusting the type-I error such that it is equal to the type-
II error.
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4 Model fit and validity
If a model or strategy is found to fit the data in absolute
terms and also outperforms other (fitting) models, can
we conclude that the model under investigation is cor-
rect? Unfortunately, not. The seminal work of Wason
(1968) provides an instructive example of this fallacy:
When asked to identify a rule underlying a sequence of
numbers such as “2, 4, 8”, people find it difficult to iden-
tify the generality of the underlying rule and tend to test
overly specific rules such as “the previous number multi-
plied by two”. Although such specific rules may perfectly
describe the given sequence, the actual data generating
rule may be much more general (e.g., “a triple of num-
bers”). Thus, considering a fitting model to be the data-
generating one is an instance of the classical logical fal-
lacy of affirming the consequent (Trafimow, 2009): The
rule “if the model is correct, then the model will fit the
data” cannot imply the reverse “the model fits the data,
therefore it is correct”. If a model fits the data, it is only a
candidate that may have generated the data (although the
validity of this assertion can be made more or less plausi-
ble by drawing on additional tests).

More generally speaking, even a perfectly fitting model
need not be valid, because at least one of its core assump-
tions may be entirely wrong (Roberts & Pashler, 2000),
and there may also be “infinitely many theoretically dis-
tinct models that fit the data equally well” (Voss, Rother-
mund, & Voss, 2004, p. 1217). In essence, “the danger
is [. . . ] to use a good fit as a surrogate for a theory”
(Gigerenzer, 1998, p. 200), as model fit is only ever nec-
essary but never sufficient for model validity. In turn,
regardless of whether the underlying assumptions of a
model are theoretically and empirically justifiable, mis-
fit provides an instance of falsification with regard to the
model in question. However, the diagnosticity of model
misfit is also limited, because it may stem from very dif-
ferent sources that do not necessarily invalidate the core
assumptions of a certain model. Even repeated occur-
rences of misfit may still be due to inappropriate auxiliary
assumptions that are of little relevance to the core ideas
of a model (Lakatos, 1970). Nevertheless, model (mis)fit
must be acknowledged and failure to fit the data calls for
model refinement in the very least.

Since the conclusions that can be drawn from model
comparisons—even if they include testing for systematic
error appropriately and are based on assessment of ab-
solute model fit as we have called for herein—are nec-
essarily limited, model evaluations will always need to
be complemented by other test of critical model proper-
ties or tests of competing hypothesis derived from differ-
ent models (Glöckner & Herbold, 2011; Hilbig & Pohl,
2009; Roberts & Pashler, 2000).7

7The diagnostic paucity of such model comparisons also implies that

5 Conclusion
In the present paper, we identified two major shortcom-
ings of existing approaches to comparative model evalu-
ation, namely (1) failure to distinguish between random
and systematic error and (2) neglect of global model fit.
Both of these lessen the chances to falsify models and
therefore increase the dangers of drawing inadequate con-
clusions. The first point refers to studies comparing mod-
els by means of the average adherence across items, that
is, the proportion of choices in line with a model’s pre-
dictions (e.g., Brandstätter, Gigerenzer, & Hertwig, 2008;
Marewski et al., 2010) or similar measures such as major-
ity choices (Brandstätter, Gigerenzer, & Hertwig, 2006;
Kahneman & Tversky, 1979). The second applies to su-
perior approaches which panelize systematic error and
compare models based on their relative ability to account
for the data (Bröder & Schiffer, 2003; Glöckner, 2009;
Rieskamp, 2008). These can warrant valid conclusions
only if the data-generating model is in the set of those
compared. However, this is typically unknown and when-
ever it is not the case, failure to test whether models are
able to adequately describe observed data in terms of ab-
solute goodness-of-fit can lead to false conclusions.

In summary, we propose to retain the logic of
falsification—as is well-implemented when testing criti-
cal properties of single models (Birnbaum, 2008; Fiedler,
2010)—when comparing models or strategies in terms of
fit. Misfit of a model represents an instance of falsifica-
tion and should exclude this model from consideration in
a model comparison. This, in turn, will secure conclu-
sions drawn from model comparisons against the daunt-
ing possibility that “in the land of the blind, the one-eyed
[model] is made king”. Moreover, we advocate testing
critical properties or central assumptions of models di-
rectly, instead of pursuing blind competitions. The higher
we set the hurdles for our models, the more confidence
we can have in those which stand the test of time.
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