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RICE THEOREMS FOR D.R.E. SETS 

LOUISE HAY 

1. I n t r o d u c t i o n . Two of the basic theorems in the classification of index 
sets of classes of recursively enumerable (r.e.) sets are the following: 

(i) T h e index set of a class C of r.e. sets is recursive if and only if C is e m p t y 
or contains all r.e. sets; and 

(ii) the index set of a class C or r.e. sets is recursively enumerable if and only 
if C is empty or consists of all r.e. sets which extend some element of a canoni-
cally enumerable class of finite sets. 

T h e first theorem is due to Rice [7, p . 364, Corollary B] . T h e second was 
conjectured by Rice [7, p. 361] and proved independent ly by McNaugh ton , 
Shapiro, and Myhill [6]. (A proof of both (i) and (ii) is given in [9, p. 324, 
Theorem XIV] . ) In this paper we consider the corresponding classification 
problem in the case where C is a class of sets which are differences of r.e. sets 
(d.r.e. sets) . The main results are the following: 

(i) The index set of a class C of d.r.e. sets is recursively enumerable if and 
only if C is empty or contains all d.r.e. sets; 

(ii) the index set of a class C of d.r.e. sets is d.r.e. if and only if C is empty or 
consists of all d.r.e. sets which extend a single finite set. 

In addit ion, a complete classification is given for the index sets of classes C 
of d.r.e. sets which consist of all d.r.e. sets which extend some element of a 
finite class of finite sets; these turn out to have maximum 1-degree a t a l te rnate 
levels of the difference hierarchy generated by the r.e. sets (i.e., the levels 
X2n of the hierarchy developed in [2]). 

2. N o t a t i o n . T h e basic recursion-theoretic nota t ion will be t h a t of [9]. 
{t^xîzX) denotes a s tandard enumerat ion of all r.e. sets. K denotes the complete 
r.e. set {x\x G Wx}. N denotes the set of natura l numbers and 2N the class of 
all subsets of N. $ Ç 2N denotes the class of all r.e. sets and 3) the class of 
all d.r.e. sets. If C Ç S, the index set of C is j x l ^ £ C] and is denoted by 
6C. A set A Ç N is called non-trivial if A ^ 0 or N. (x, y ) denotes a s tandard 
recursive pairing function N X N —» N with recursive inverse functions 
7Ti(s), TT2(Z), so t h a t z = <7ri(z), TT2(Z) ) for all z G N. If A, B Q N, À denotes 
N — A, \A\ denotes the cardinali ty of A, and A X B = { (x, y )\x G A 8c y G B). 
^ i and ^ r denote 1 — 1 reducibil i ty and Tur ing reducibility respectively, 
and = , =T denote the corresponding equivalences. If C Ç ^ , C denotes 
Qf — C. K' = \x\x Ç WX

K) denotes the complete 22° set. {Du}u>0 denotes the 
canonical indexing of finite sets. 
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3. Index sets of d.r.e. sets. A set A C N is d.r.e. if and only iî A = B — C 
for some r.e. sets B, C. It is natural to associate with A the set 
{ (x, y)\A — Wx — Wy}. This yields an enumeration { F^}x>0 of all d.r.e. sets, 
where Vx is defined by: Vx = W^iu) — Wr2(x). It is easily verified that this 
enumeration satisfies the usual recursion-theoretic properties; more precisely, 
call a d.r.e. set A d.r.e.-complete if B Si A for every d.r.e. set B, and d.r.e.-
creative if A is productive with respect to d.r.e. subsets. The following then 
holds: 

THEOREM 3.1. (a) {x\x £ Vx) is a d.r.e.-complete set. 
(b) A set is d.r.e.-creative if and only if it is d.r.e.-complete. 
(c) {Fixed point property) If f is any recursive function, there is a number e 

such that Ve = Vf(e). 

Proof, (a) and (b) are proved in [2, p. 28, Theorem 1 and p. 35, Theorem 4]. 
(c) is a simple consequence of the Smullyan double recursion theorem [9, p. 190, 
Theorem X(a)], which implies that for any recursive function / there exist 
eu e2 such that Wrif((ei,e2)) = Wei and Wr2/«ei,e2» = ^e 2 , s o t n a t 

V<elfe2) = Wei — W€2 = W T I / « « I , 6 2 » — W /
1r2/((ei,e2)) = ^/ ( (e i ,e 2 ) ) -

It follows from Theorem 3.1 that there are d.r.e. sets whose complements 
are not d.r.e., and which therefore are neither r.e. nor co-r.e. It has in fact 
been shown by Cooper [1] that there are d.r.e. sets which are not Turing-
equivalent to any r.e. set. However, the familiar properties of the enumeration 
{ Vx}x>o suggest that index sets for classes of d.r.e. sets may have properties 
analogous to those of index sets of classes of r.e. sets, and it will be seen below 
that this is indeed the case, using the obvious definition: 

Definition. If C is a class of d.r.e. sets, the index set of C is [x\ Vx G C}, and 
is denoted by bC. 

For our purposes, it will be useful to have the following characterization of 
the complete d.r.e .set: 

PROPOSITION 3.2. (a) K X K is a complete d.r.e. set. 

(b)KXK SiKXK. 
(c) If A is d.r.e., then K X K %iA. 

Proof, (a) It is evident that K X K = (K X N) - (K X K) is d.r.e. To 
show completeness, let A = Wa — Wh be any d.r.e. set. Define recursive 
functions g(x), h(x) as the indices of r.e. sets generated as follows: 

w,M -{ 
N iîx £ Wa, 
0 otherwise ; 

WhM = i N if x 6 Wb, 
Hx) )& otherwise. 
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Let / (x) = (g(x), h(x) ). Then / i s 1 — 1, and 

x£Wa- Wb=>Woix) = N& WHx) = 0 

=>/(*) = (g(x),h(x)) £ KXK; 
while 

x ^ f l - I ^ ^ Woix) = 0 V WMx) = iV 

=>g(s) 6 i? V M*) 6 X 

=>/(*) d KXK. 

So A èiK X K v ia / . 
(b) now follows from (a) and Theorem 3.1(b), since K X K is d.r.e.-

creative and hence its complement cannot be d.r.e. ((b) also follows directly 
from the fact that, as shown in [4, p. 39, Theorem 1], K X K is recursively 
isomorphic to an index set 6 A and hence cannot be 1 — 1 reducible to its 
complement.) 

For (c), assume A is d.r.e. Then by (a), A ^ i K X K. If K X K ^ i A, 
then K X K g i A which implies K X K ^ i K X K, contradicting (b) ; hence 
KXK %XA. 

4. The first Rice theorem for d.r.e. sets. An examination of the proof 
of Rice's first theorem [9, p. 324, Theorem XIV(a)] shows that it can be given 
the following more precise form: 

THEOREM R-l. If C is a class of r.e. sets such that 6C is non-trivial, then 
K ^idCor K ^1dC. 

COROLLARY. 7/ C is a class of r.e. sets such that 6C is r.e., then either 6C is 
trivial or 6C = K. 

The analogous result for classes of d.r.e. sets is the following: 

THEOREM 4.1. If C is a class of d.r.e. sets such that ôC is non-trivial, then 
K X K SiàC or K X K SiôC. 

Proof. The theorem will be an immediate consequence of the following 
lemma: 

LEMMA 4.2. Let C be a class of d.r.e. sets. If there are d.r.e. sets X, Y such that 
X is finite, X C Y, X Ç C and Y $ C, then K X K ^lôC. 

Proof. Assume there exist d.r.e. sets X, Y satisfying the hypothesis. Then 
X = Du for some u, while Y = Wa — Wb for some a, b. Since X £ C but 
Y g C, it follows that X £ Y so that Du^Wa- Wb. Hence Du Q Wa and 
Wb Q: Wa — Du, and we can define recursive functions g{x), h{x) as the 
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indices of r.e. sets generated as follows: 

wg(x) = 
Du, if TI(X) d K and w2(x) î K, 
Wa, otherwise; 

WHx) 
(wb, 
\wa-

if w2(x) <2 K, 
Du, otherwise. 

L e t / ( x ) = (g(x), h(x) ). T h e n / i s 1 — 1 and 

x € K X K => TTI(X) 6 K & 7r2(x) <Z # 

=> W, ( I ) = Wa& Wh(x) = W6 

while 

x $ K X K => 7TI(X) ^ V TT2(X) G if 

=> W u ) =Du&Wh(x) = W6) 

=> Vf(x) = w,<*> - ^ ( , ) = A , e a 
Sox e K X K <=>/(*) G ôC, and if X X g i ô C v i a / . 

Theorem 4.1 now follows since if bC is non-trivial, then 5C ^ 0 and 5C ^ 0. 

Suppose 0 £ C; then for some F 2 0, F g C and by Lemma 4.2, K X K Si 

bC. If on the other hand 0 C? C, then 0 G C and, by symmetry , K X K Si 

bC = bC. 

COROLLARY 4.3. / / C is a class of d.r.e. sets such that bC is d.r.e., then either bC 
is trivial or bC = K X K. 

Proof. Suppose bC is d.r.e.; then by Proposition 3.2, bC Si K X K and 
K X K Si bC- If bC is non-trivial, then by Theorem 4.1, K X K Si bC or 
K X K Si bC\ since the lat ter cannot hold, it follows tha t bC = K X K. 

COROLLARY 4.4. The index set of a class C of d.r.e. sets is recursively enumer
able if and only if C is empty or contains all d.r.e. sets. 

Proof. If C is empty or contains all d.r.e. sets, then bC = 0 or TV and is hence 
r.e. Conversely, suppose bC is r.e.; it follows tha t bC is d.r.e., so by Corollary 
4.3, either bC is trivial or bC = K X K. But if bC = K X K then bC is not 
r.e., since K X K r.e. => K X K S\ K => K Si K which is impossible. So 
bC is r.e. only if bC is trivial. 

5. T h e second Rice t h e o r e m for d.r .e . s e t s . In [7, p. 359] a class C of 
r.e. sets is called completely recursively enumerable (c.r.e.) if dC is r.e. A precise 
s ta tement of what we shall call the ' 'second Rice theorem" is then the following: 

T H E O R E M R-2. A class C of r.e. sets is c.r.e. if and only if C is empty or there is 
a recursive function f such that C = {Wx\(3u)(DfM Ç Wx)). 
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By analogy, call a class C of d.r.e. sets completely d.r.e. (c.d.r.e.) if bC is 
d.r.e. The following analogue to the second Rice theorem is then obtained: 

THEOREM 5.1. A class C of d.r.e. sets is c.d.r.e. if and only if C is empty or 
there is a single finite set Du such that C = { VX\DU C Vx). 

Proof. If C is empty then bC = 0 is d.r.e. Suppose there is a finite set Du 

such that C = [VX\DU C Vx). Then bC = {x\Du Q WTl(x) - W*2ix)} = 
{x\Du Ç Tt^j^)} — {x\DuC\ Wrr2(X) 7^0} which is evidently d.r.e. Hence in 
either case C is c.d.r.e. The converse will follow from a sequence of lemmas. 

LEMMA 5.2. Le Wa be an infinite r.e. set. Then there is a recursive function g 
such that for all x G TV, 

Wx infinite => Woix) = Wa, 

Wx finite => W0(X) is a finite subset of Wa. 

Proof. This is left to the reader. 

LEMMA 5.3. Let C be a class of d.r.e. sets. If there is a d.r.e. set X such that 
X G C but no finite subset of X is in C, then K' ^\bC. 

Proof. Suppose I f C is an infinite d.r.e. set none of whose finite subsets are 
in C. Let X = Wa — Wb; clearly Wa must be infinite. Let g be as in Lemma 5.2, 
and define a recursive function/(x) by f(x) = (g(x), b). Then for all x Ç N, 

Wx infinite => Vfix) = Wç(x) - Wb = Wa - Wb = X, 

Wx finite => Vnx) is a finite subset of Wa — Wb = X —> Vf(x) g C. 

Hence if D = {W^W^ is infinite}, then 6D ^ibC v i a / . But it is well-known 
that 6D = K'\ it follows that K' SibC. 

LEMMA 5.4. Let C be a class of d.r.e. sets. Suppose there exist finite sets DUJ 

Dv e C such that DUC\DV^ C. Then K X K g i ÔC. 

Proof. Assume the hypothesis. Define recursive functions g(x), h(x) as 
follows: 

= (Du, if 7n(x) « K V TT2(X) ? K, 
0(x) \DU\JDV, otherwise; 

= (0, i f T i ( x ) € X , 
VVh{x) \DU - Dv otherwise. 

Le t / (x) = (g(x),h(x)).Then 

x £ KXK=> Wg(x) = Du& Wh(x) = Du- Dv 

=> vf(x) = wg(x) - wHx) = Dur\Dvz c, 

https://doi.org/10.4153/CJM-1975-043-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-043-4


RICE THEOREMS 357 

while 

x $ K XK=Ï TTIO) g K V 7T2(X) Ç if 

=>(W,U , =2?«&ÏTM „ = 0 ) 

V (Wg(x) = DuKJDv&WHx) = Du- Dv) 

=> /̂<*> = ^ (x) - Whis) = Du£ C V 7 / 0 t ) = Dv£ C. 

Sox £ KXK <=»/(*) e bC and X X K Si bC v ia / . 

£wd of proof of Theorem 5.1. Assume C is c.d.r.e. and non-empty. We will 
show that there exists a finite set Du such that C = { VX\DU C F^}. Since C is 
c.d.r.e., 5Cisd.r.e. and hence by Proposition 3.2, bC Si K X KandK X K ^ i 
5C. Let X be any set in C. If C contains no finite subset of X, then by Lemma 
5.3, K' Si bC; but this implies K' SiK X K, which is impossible since 
K X K ST K <T K'. S o i f C only if some finite subset of X is in C; it 
follows that {v\Dv £ C) 9^ 0. Let Du be a finite set in C of minimum cardinality. 
We claim C = { VX\DU Ç Fx}. Suppose F^ $ C for some Vx ~D A*. Then since 
Du G C, it follows by Lemma 4.2 that K X K Si bC, which is a contradiction; 
hence { Vx\ Vx 3 Du) Ç C. Now suppose Vx 6 C but Z>„ 2£ ^ - It was shown 
above that F ^ C only if VX^D Dv for some Dv £ C, and A< Ç£ Fx implies 
Du £ Dv. Then DUC\ Dv^ DU which implies |Z>M P\ Dv\ < \DU\ and hence 
DUC\ Dv Q C since Z)w has minimum cardinality. But then by Lemma 5.4, 
K X K Si àC which again gives a contradiction. Hence Vx G C =* Du Cl Vx 

and C = {VX\DUŒ Vx\. 

We note that Theorems R-2 and 5.1 can be given a topological interpreta
tion by means of the "inclusion topology" on 2N [9, p. 217, Ex. 11-35], as 
follows: 

Definition. Let A Ç 2N. Then 
(a) A is a basic open class <=> A = {X\DU Ç X] for some Du. 
(b) 4̂ is an open class <=> A is a union of basic open classes. 

It follows that if we let Au denote {X|J9M Ç X}, then A is an open class 
<^> A = \Jutz Au for some set Z Ç TV. Clearly 4̂ is a basic open class if and 
only if Z can be chosen to be a singleton. A is an r.e. open class if and only if Z 
can be chosen to be r.e. HA Ç <f (A Ç j ^ ) we call 4̂ a basic open class or 
an open class if A = B C\ <f (B C\ 2iï) where B is a basic open class or an 
open class in 2N, respectively, and similarly for r.e. open classes. Theorems 
R-2 and 5.1 then take the following form: 

THEOREM R-2 (restated). Let C Ç $. Then bC is recursively enumerable if 
and only if C is an r.e. open class. 

THEOREM 5.1 (restated). Let C Q 2iï. Then bC is d.r.e. if and only if C is a 
basic open class. 

The following question suggests itself: What can be said about bC if C — 
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U u ç z ^ when Z is finite bu t \Z\ > 1? This question is answered in the next 
section. 

6. Index sets of finite unions of basic open classes of d.r.e. sets. 
Following [8, p . 306] we introduce the notion of the "core" of a class of d.r.e. 
sets. 

Definition. Let C be a class of d.r.e. sets, Z C N. T h e set Z is a core of C if 

(b) if u 6 Z, Z), Ç C and £ , C £>„ then Dv = Du. 

Z is thus a core of C if it is the set of canonical indices of "min ima l " finite 
sets in C. Since these * 'minimal" finite sets are evidently uniquely determined 
by C and since canonical indices are also unique, the core of C is uniquely 
determined. Evident ly C is a finite union of basic open classes if and only if C 
is an open class with finite core. Hence the problem of classifying the index 
sets of classes of d.r.e. sets which are finite unions of basic open classes reduces 
to t ha t of classifying the index sets of open classes with finite core. This 
classification will require some notat ion for the highest 1-degrees of sets of 
form U^=i (R^i-i — Rzi) w h e r e R \ , . . . , R2n are r.e. sets. T h e existence of these 
maximum 1-degrees was proved in [2, p . 33, Theorem 2] (where the class of 
such sets is denoted by 22re

-1)> and in [5] a descriptive notat ion was introduced 
for these 1-degrees. In the following, if a is a 1-degree and X Ç TV we shall 
u s e ! ^ a (a ^ 1 ) to mean tha t X ^ F ( F ^ 1 ) for some F G a. 

PROPOSITION 6.1. Let a, b be any 1-degrees. Then 
(a) there is a 1-degree which is maximum for sets X C\ F where X Si a, 

(b) there is a 1-degree which is maximum for sets X \J Y where X :gi a, 
Y ^ i b . 

Proof. This follows from [5, Proposition 2.9]. 

This justifies the following operation on 1-degrees; 

Definition. Let a, b be any 1-degrees. 
(a) a A b denotes the 1-degree described in Proposition 6.1(a). 
(b) a V b denotes the 1-degree described in Proposition 6.2(b). 
(c) For all n ^ 1, a-w is defined inductively by a-1 = a, a - (« + 1) = 

(a-w) V a. 

T h e following is then obtained: 

PROPOSITION 6.2. Let d , ax denote the 1-degrees of the sets K, K respectively. 
Then if n ^ 1, 

(a) ( d A ai)-w is the maximum 1-degree for sets of form Ul=i (R2i-i — R2i) 
where Ru . . . , R2n are arbitrary r.e. sets; 
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(b) (ei A ai)-w is the maximum 1-degree for sets of form Ui=i (ft*-i — ft*) 
wfegrg ft, . . . , R2n are arbitrary r.e. sets satisfying i^i 2 ft 2 • . . 2 ftw; 

(c) (d A ai)-« < (ei A ai)-(» + 1) for all n ^ 1. 

Proof, (a) We use induction on w. For « = 1, note thate i A ai is the maxi
mum 1-degree for sets I H F where X ^i K and Y ^i K; but it is easy to 
verify that for all sets 5 Ç TV, 5 = X - Y where X SiK ^nd Y ^x K <^ S = 
ft — ft where ft, R2 are r.e. sets. Now assume that (a) holds for n. For 
n + 1, note that (ei A ai)-(w + 1) = (d A 2Li)-n V (ei A ai) is the 
maximum 1-degree for sets X U Y where X g i (ei A ai)-w and Y ^ i 
d A ai. By the induction hypothesis, there are r.e. sets ft, ft, . . . , K2n+2 

such that U"=i (ft*-i - ft*) = (ei A 2Li)-n and ftw_i - ft» = d A ai, 
and the following holds: 

X ^ i (ei A a O - w & K ^ i d A a x ^ Z ^ i U (ftz-i - ft,) & 

F g i K2n+i — K2n+2 <=> there exist r.e. sets ft, ft, . . . , ftw+2 such that 
ft 

X = U (ft i- i — ft,) & Y = ftft+i — ftn+2-

Hence (d A ai)-(w + 1) is the maximum 1-degree for sets X U F for which 
there exist r.e. sets ft, ft. . . . , ft„+2 such that X U F = U Ï Î ( f t , - i - ft*), 
which completes the induction. 

(b) now follows from (a), using the fact that, as shown in [2, p. 29, Proposi
tion 1] a set S has form U*=i (ft*-i — ft*) for r.e. sets ft, . . . , ftn <=> 5 has 
form U*=i ( f t , - / - ft/) for r.e. sets ft', . . . , ftn' satisfying ft' C . . . I) 
ft»'-

(c) then follows from (b) and [2, §1]. 

It was shown in [4, p. 39, Theorem 1] and, independently in [2, p. 41, 
Theorem 6] that the 1-degrees (d A ai)-wfor n ^ 1 are exactly the 1-degrees 
of index sets 6C where C is a non-empty finite class of finite sets such that 
0 (? C. It will be shown below that these 1-degrees are also exactly the 1-degrees 
of index sets 5C of non-trivial open classes of d.r.e. sets with finite core. First 
we require some machinery for eliminating ' 'redundant" information from 
the core. 

Definition. Let C be an open class of d.r.e. sets with finite core Z. The se
quence (DU1, . . . , DUn ) (w ^ 2) will be called regular for C if 

(a)ut e Zior 1 g iS n; 

(b) (V*)i***.(V« € Z) \DU £ ( U A u ) n ( U Dui)l 

If such a sequence exists, we say C has a regular sequence of length n. Note 
that if C has a regular sequence of length n ^ 2, then 0 ' (? C and that 
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if (Duu . . . , DUn ) is regular for C, then DUi ^ DUj for i ^ 7. We remark that 
it is necessary to consider sequences (DUI, . . . , DUn) rather than just sets 
{DU1, . . . , DUn). For example, if DUI = {1, 2, 3}, A 2 = {1, 3, 4} and Du% = 
{2, 3, 5} and Z = {ui, u2l ^3}, then it can be checked that (DU21 DUI, DUz ) is 
regular for C but (DU1, DU2, Duz) is not (since DU1 Ç DUI H (Z)M2 U DUz)). 

LEMMA 6.3. If C is an open class of d.r.e. sets with core Z and \Z\ ^ 2, then C 
has a regular sequence of length 2. 

Proof. Let \Z\ ^ 2, and suppose U\, u2 £ Z, U\ ^ «2. If (An, A 2 ) ls n ° t 
regular for C, then for some u £ Z, Du Ç. DUI P\ Z)W2; but then Du C A i and 
A £ A 2 which implies A = DUI = DU2 since U\, u2 G core C. But then U\ = 
u2l contrary to assumption. Hence (DU1, DU2 ) must be a regular sequence for C 
of length 2. 

LEMMA 6.4. Let C be an open class of d.r.e. sets which has a regular sequence of 
length n ^ 2. Then (ei A ai)-w ^ 1 5C 

Proof. Assume C is an open class with core Z, and let (DU1, . . . , A „ ) 
(w ^ 2) be a regular sequence for C. As noted above, this implies 0 $ C. By 
Proposition 6.2(b) it suffices to show that if ft, ft, . . . , ftw are arbitrary r.e. 
sets satisfying ft 3 i£2 2 . . . 2 ftn, then Uï=i (ft*-i — ft*) ^1 5C. Suppose 
^1 2 ft 2 . . . 3 Pin, and generate r.e. sets Wg(x)} Wh{x) according to the 
following instructions: For 1 ^ k ^ n, 

(i) put all elements of DUk into W0(X) <=> x £ ft*-i; 
(ii) put all elements of A * — \Jk<i^n Dui into W^) <=> x 6 ft*. 
Let / (x) = (g(x), h{x) ); we claim that 

n 

x G U (i?2*-i - ft*) <=>/(*) G 5C. 
*=1 

Assume x G ft*_i — ft* for 1 ^ k ta n.Thenx £ ft for all j , 1 ^ j ^ 2k — 1, 
so that [Ji^i^jcDui Q Wg(x). Moreover, x £ R2j if and only if 1 ^ 7 < k, so 
s G WMx) <=> (3j)i^K*(z G A , - U K ^ A I But 

A* n u (DUJ - u A,) = 0, 

which implies DUk Pi W (̂ic) = 0 ; so A * <3 ^ ( x ) - WHx) = Vf{x) which im
plies /(x) G 5C. Conversely, suppose x $ U*=i (ft*-i — ft*). Since ft 3 
ft 2 . . . 3 ft„,_this implies x Ç f t U ^ U U*lî, (ft* - ft*+i). 

Ca^ 1. x G ft: Then ( V ^ ) i ^ ^ ^ ? ft, which implies ^ ( x ) = 0 and 
^/(x) = Wg{x) - WHx) = 0; hence/(x) g <5C. 

Case 2. x £ ftn- Then (V&)i^*^n* € ft, which implies W^) = W^) = 
W i ^ n A*. But then Vnx) = 0 and/ (a ) g <5C. 

Case 3. x G ft* — ft*+i for some ^, 1 ^ ^ < »: Then WGix) = \J\^j^kDUj 

and Wh(x) = \Ji^j^k(DU] — U K ^ ^ J ; hence 

vf(x) = wç(x) - wHx) = ( u A , ) n f u A,V 

https://doi.org/10.4153/CJM-1975-043-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-043-4


RICE THEOREMS 361 

But then by the hypothesis that (DU1, . . . , DUn ) is regular, (V u G Z) 
(Pu g 7/(s)), which implies / (a) g ôC. It follows that fix) G ôC=>x G 
Uï- i tR2*-i - i?2,), and Uï- i (R**-i - Ru) ^ibC v ia / . 

LEMMA 6.5. Let C be an open class of d.r.e. sets with finite core, and assume 
n ^ 1. If C has no regular sequence of length w + 1, then bC ^ i (ei A 2L\)-n. 

Proof. Suppose C is an open class with finite core Z. If C has no regular se
quence of length n + 1, then for all u\, u2} . . . , un+1 G Z, 

(3*)i^»(3« e Z)[DUQ( \j DUI)n( u A«)l. 

By Proposition 6.2(a), it suffices to show that bC = Uï=i {Ru-\ — R2k) for 
some r.e. sets Ru R2} . . . , i?2W- This is done as follows: For notational conveni
ence, we will use (3^i, . . . , w;- G Z) to abbreviate (3 «i £ Z)(]w2 £ 2) . . . 
(3 w;- G Z), and for 1 ^ j < w, we let $j(vi, . . . , vj} u\, . . . , z^+i) denote the 
following formula: 

Duj+1 ç Wrl(,) & Dvj c tr„(X) & A,y+1 n ( U £,<) = 0 

& ( V ^ € Z ) f i ) M ç U Dui->Dur\Dvj?±1d). 

Define the sets Ri, R2l . . . , R2n as follows: 

i?i = {*|(3«i G Z)(£>W1 Ç ^ 1 ( , ) ) } ; 

î 2 = {*|(3«i G Z)[£>M1 Ç W ^ & A ^ n WT,(I) ^ 0 ] } ; 

and for 1 < k ^ n, 

R2k-i = W (3^1, «2, . . . , w* 6 Z) (3 vu • • • ,»*-i)[5«i Q WTl(X) 

& $ i ( l / i , Wi, U2) & $2(v1} »2, « 1 , U2, Uz) 

& . . . & $*_i(vi,. . . , w*_i, « i , . . . , «*)]}; 

^2* = {x|(3«i, . . . , uk G Z)Qvu . . . ,»*_!)[Z?ttl ç W ĵcx) 
& $ i ( f l i , Ui, U2) & <J>2(z>l, Z>2, Ui, U2l UZ) 

& . . . & $ * _ i ( > i , . . . , »*_! , Wi, . . . , W*) 

& ( V ^ Z ) ( D „ Ç U DUi-+DuC\ W*2ix) ^ 0 ) ] } . 

It is clear that since Z is a fixed finite set, each ^ (v i , . . . , flj, Wi, . . . , w^+i) 
is an r.e. condition and hence each set Rt is r.e., 1 ^ i ^ 2n; in addition it is 
easily verified that Ri 3 R2 Z> . . . 3 i?2n- It remains to show that 
UA=I (R2k-i — R2k) = SC. 

( C ) Assume x £ Ri — R2. Then for some u\ G Z, DUI Ç W^^). If for this 
#i, An ^ W r̂2(x) ^ 0 then x G Ri, contrary to assumption. So x G Ri — R2 =* 
Qui G Z)(DU1 Ç Wx^s) — Wri(X)) which implies x G bC. Next assume 
x G R2k-i — R2k for some k, 1 < k ^ n. Then for some «i, . . . , w* G Z, 

(3 vi, • • • , vk-i)[Dul Ç Wri{X) & $i(»i, «i, «2) 
& . . . & <J>A;_l(^l, • . • , » * _ 1 , ttl, • . . , Uk)]. 
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Note that for each j , 

$ , 0 l , . . . , Vj, Mi, . . . , Uj+1) =* Duj+l 3 Wviix), 

so that Ui£i£kDui Ç W^l(X). If for all u £ Z, DUQ U i ^ ^ ^ « t implies Z>M H 
Wr2(x) ^ 0, then x G i?2*, contrary to assumption. So 

x e i?2*-i - i?2* => (3 « G z) [ A ç u Dui ç w;1(x) & A r\ w*2{x) = 0] 
L l^t^fc -I 

=* (3 u 6 Z) [A ç W^o - TT„(„ = 7J => x Ç 5C. 

Hence Uî- i (J?2*-i - i?2*) £ BC. 
( 3 ) Assume x g U*=i(^2*-i — ^2*)- Then again since i^i 3 î 2 3 • • • 2 

î 2n, X 6 -Ri U ^ 2 n W Ufcll (^2* ~ ^2fc+l)-
Case 1. x Ç i?i: Then (V^i Ç Z ) ( A i £ W^iu)), which implies (Vwi Ç Z) 

(An ^ , = ^ 1 0 - Wriw). Hence x ^ i ^ x ^ C . 
Case 2. x Ç R2k — R2JC+1 for some fe, 1 g fe < w: Suppose x G ôC; then for 

some M0 6 Z, A 0 Ç W^l(ar) — WT2(X). Now x Ç i?2* implies that for some 
Ui, . . . , uk Ç Z and some Ui, . . . , fl*, 

A i £ Wri(x) A $i(l>i, Mi, M2) & . . . & fcjt-lfal, • • • , »*-l, Wi, . . . , Mfc) 

& (y« G Z) f A Q U A.- => A H W 2̂(z) ^ 0V 

Then since for each 7, $ ; 0 i , . . . , vh uu . . . , uj+1) => Dvj C WT2(:c)f U I ^ K A 

A,- Q t̂ raCz) which implies £>M0 H U i ^ « * A,- = 0- Let 

Zk = {u ç Z|A Ç! U i ^ ^ A,-} ; 

thenZ}„P\ WT2(X) 9e 0 for each M G Z^. For each u G Zfc, choosey G A P Wir2(x), 
and let ^ be such that Dvk = \zu\u G Zk). Then Z>PA. Ç WT2(X), and, since 
Dur\ Dvk ^ 0 for each M 6 Z*, it follows that 

(Vu e z) (DUQ U A,-=> A H A * 5̂  0V 
V 1 ^ i<k / 

Hence ^ ( ^ 1 , • • • , *>*, Mi, . . . , M*, M0) holds, which implies that 

(3 Mi, . . . , uk+1 G Z)(3»i , . . . ,vk)[Dul Ç WTl(:c) 

& <J>lOl, Mi, M2) & . . . & $ * - l ( » l , • • • , V*-l, Mi, . . . , M*) 

& $ * ( » ! , . . . , ^ , Mi, . . . , MA + i ) ] . 

But then x Ç i? 2*4-1» contrary to assumption. Hence x Ç Ru — R2k+i => x $ ôC 
Case 3. x G i?2w: Then for some Mi, . . . , un G Z and some vi, . . . , vn-i, 

A i £ Wri(s) & $ 1 ^ 1 , Mi, M2) & . . . & $n-l(ï>l, • • • , VB-1, «1 , • • • , Un) & 

(VM G Z) ( A Q U A,- =» A H w;1(I) ^ 0). 

Suppose x G 8C. Then for some MW+I G Z, A„+i £ ^ ^ x ) — WV^X)- By the 
hypothesis that C has no regular sequence of length n + 1, there is a M' G Z 
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and a k', 1 ^ k' ^ n, satisfying 

DU,Q( U A,,) n ( u A,, Y 

If fe' = n, then Z>w> Ç DUn+1 which since u'} un+i Ç Z implies Du> = DUn+l by 
minimality. But then DUn+l C Ui^ignA*,- which implies DUn+l C\ WT2(X) 7^ 0, 
which contradicts DUn+l Ç Win (3) — WT2(X). So fe' < w, which implies 
^ ' ( v i , . . . , i v , wi, . . . , M* ' + I ) holds.ThenDu> C U i ^ ^ ' ^ M l ^ ^ M ' ^ ^ w ^ </>• 
Let 2 G Du> C\ Dvk>\ then 2; G A«' C\ Dvk> C\ Wir2(x) since 

$*'(»l , • • • , »*', «1 , . . . , «*'+i) =» -DM' ^ ^ 2 ( x ) . NOW 

A.' C U fl„=>«e U Dui. 
k'<i^n+l k'<i^n+l 

But for each j,f ^ j < n, $j(vi,. . . ,Vj,U\, . . . , uj+i) => Z>Mi+1 P\ U i ^ ^ ^ B i = 
0, which implies 2 $ A*y+iî so tha t z (£ Uk'<i^n Dui. Thus z £ DUn+l, which 
implies DUn+l H W^2(z) 7̂  0 again contradicting £>Wn+1 £ WTl{x) - WT2(x). 
Hence x £ i?2W ̂  x g ôC, which completes the proof tha t bC Ç U*=i (Rn-i — 

We can now classify the 1-degree of index sets of open classes of d.r.e. sets 
with finite core, by means of the following theorem: 

T H E O R E M 6.6. Let C be a non-trivial open class of d.r.e. sets with finite core 
Z = {ui, . . . , um}, m ^ 1. Then 

(a) bC = ( d A a i ) <=> m = 1 ; 
(b) if m ^ 2, let nc be the largest n such that C has a regular sequence of length n. 

Then 2 ^ nc ^ m, and bC = ( d A ai)-w c . 

Proof. Assume C is an open class with core containing m elements. If m = 1, 
then C is a basic open class; hence bC is d.r.e. by Theorem 5.1 and, since bC is 
non-trivial by hypothesis, bC = K X i? by Corollary 4.3. But K X K = 
d A a i by Propositions 6.2(a) and 3.2(a). Conversely, <5C = ei A a i implies 
<5C is d.r.e. by Proposition 6.2(a); tha t m = 1 then follows from Theorem 5.1. 
Now assume w ^ 2, a n d l e t i ? c = {n\C has a regular sequence of length n\. By 
definition of "regular sequence," n £ Re => n S m, while by Lemma 6.3, 
2 G i?c- Hence nc = max i^ c exists and satisfies 2 ^ nc ^ w. By Lemma 6.4, 
( d A ai)-Wc ^ 1 5C, and since wc + 1 g i ? c , it follows tha t bC Si 
( d A a i ) - » c . Hence ôC = ( d A ai)-w c . 

T o complete the classification it remains to show tha t in Theorem 6.6(b), 
nc can take on all possible values. If a, b £ N we use [a, &] to denote 
{k £ iV|a S k ^ b} if a ^ b and the empty set otherwise. We require the 
following lemma: 

LEMMA 6.7. Assume n < m. For each j , 1 ^ j ^ m — n + 2, /e/ F j = 

[ 1 , 7 - 1 ] U [ ; + l , m - n + 2]. 
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(a) Suppose 1 ^ 71,72,73 ^ m — n + 2 and j 2 J* jz\ then Fjl C Fj2 U F i 3 . 
(b) Le/ (JH"I, . . . , Hp) be a sequence of finite sets with p ^ 3 and Ht ^ i?,, 

/ o r i 9e j . Suppose that for some ii, i2l H, ju j2, jz satisfying 1 ^ ii < i2 < iz S P 
and 1 ^ j i , 72, jz ^ m — 11 + 2, Hu = F^ , i7i2 = F;-2 a»d # i 3 = FH. Then 

Htl ç ( u Ht) n ( u ff,Y 

Proof, (a) Suppose 1 ^ 7*1,72,73 ;S m — » + 2 and 72 ^ 73; then 72 € F;-2
 = 

[1, m - » + 2] - {7*3}. Hence / ^ Ç [1, m - n + 2] = ([1, m - n + 2] -
{i2})U{j,} ÇFjtUFit. 

(b) Suppose 1 g ii < i2 < is ^ P and i7 t l = Fy i , Hi2 = F i 2 , i? , , = Fjz 

for 1 ^ 71, 72, jz ^ m - n + 2. Now i2 ^ u => #*2 ^ ff*3 =» Fj>2 ^ F,3 => 
72 * 73. Then by (a), Hh = Fh Ç Fj2 U ^ , = ff*2 U # î 3 C U n < ^ ^ 
since i\ < i2, 23. Hence 

Hh g ( u #,) n ( u #,). 

THEOREM 6.8. For each m ^ 2 aw J » satisfying 2 ^ n S m there is an open 
class of d.r.e. sets whose core contains m elements and whose index set has 1-degree 
(ei A ai)-». 

Proof. By Theorem 6.7(b), it suffices to show that for all m ^ 2 and any » 
satisfying 2 ^ n ^ m there is an open class X of d.r.e. sets whose core contains 
m sets and whose longest regular sequence has length n. We define the core of C 
as the set of canonical indices of the finite sets F\, . . . , Fm defined by 

Fj = [1,7 - 1] U [7 + 1, m - n + 2], for 1 g j g m - » + 2, 

F;- = [1, m — ») W {7}, for m — » + 2 < j ^ m. 

Case 1. m = »: Then Fi = {2}, F2 = {1} and /^ = {7} for 3 ^ 7 ^ ra, and 
it is easily verified that the sequence (Fi, . . . , Fm ) is regular for C; hence the 
longest regular sequence for C has length » = m. 

Case 2. n < m: We first show that C has a regular sequence of length n: 
Consider the sequence (Gi, . . . , Gn) where Gt = Fm-n+ÎJ 1 ^ i ^ ». Then 
d = [1, m — n] VJ {m — n + 2}, G2 = [1, m — n + 1] and G* = [1, m — n] VJ 
\m — n + i} for 3 ^ i ^ n. For each k, 1 ^ k < n, let P* = U i ^ ^ G * , 5A = 
Uk<i^nGi. We claim that for each 7, k, 1 ^ 7 ^ m, 1 ^ k <n, F3 Çt Pk Pi 5A. 
For suppose 1 ^ j ^ m — n + 1. Then ?» — » + 2 £ F,-, but it is easily 
checked that w — » + 2 G Gi while m — w + 2 Î Gj for 1 < i ^ n. Hence 
for each jfe, 1 ^ fe < », m - » + 2 G P* - 5*, and Fj ^ Pk H Sk if 1 ^ 7 ^ 
m — n + 1. Now suppose j = m — n + 2; then Fji = [1, m — n + 1]. But 
m - n + 1 g Gi = Pi , so Fj, £ Px C\ Su while m - n + 1 g G, for i > 2, 
so F ; ^ S* for ^ ^ 2. Hence Fj <£ Pk C\ Sk\î j = m — n + 2. Finally suppose 
m — n + S^j^m. Then 7 Ç Fj, while j £ Gt only if Î = 7 — w + n; but 
then for each k, 1 ^k^n,j£Pk— Ski(k^j — m + n and j (z Sk — Pk if 
^ < 7 — m + ». This completes the proof that the sequence (Gi, . . . , Gn ) is 
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regular for C. It remains to show that C has no regular sequence of length > n. 
Suppose (Hi, ... y HP) is such a sequence; then p > n ^ 2 and Ht ^ Hj for 
i T6 j . Since at most n — 2 of the sets if < can be from among 
{Fj\m — n + 3 ^ j ^ w ) , at least 3 of the sets Ht must be from among 
{Fj\l ^ j £ m + n - 2}, say Htl = F,„ i/,2 = F, l f # , 3 = Fj3 for 1 ^ n < 
iî < H ^ P, 1 ^ Ji, 72, 73 ^ w + n — 2. But then by Lemma 6.7(b), 

HtlQ ( u ff,)n( u #<), 

which contradicts the assumption that (iJi, . . . , Hp) is regular. Hence the 
longest regular sequence for C has length n, and the 1-degree of bC is 
(ei A 2L\)-n. 

COROLLARY 6.9. If m ^ 2, //zere are m — 1 possible 1-degrees for index sets bC 
where C is an open class of d.r.e. sets whose core contains m elements. 
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