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Abstract

The integrality of the numbers An,m = (2n)! (2m)!/n! m! (n + m)! was observed by Catalan as early as
1874 and Gessel named An,m the super Catalan numbers. The positivity of the q-super Catalan numbers
(q-analogue of the super Catalan numbers) was investigated by Warnaar and Zudilin [‘A q-rious positivity’,
Aequationes Math. 81 (2011), 177–183]. We prove the divisibility of sums of q-super Catalan numbers,
which establishes a q-analogue of Apagodu’s congruence involving super Catalan numbers.
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1. Introduction

The Catalan numbers, given by

Cn =
1

n + 1

(
2n
n

)
, n ≥ 0,

occur in various counting problems. For instance, Cn is the number of monotonic
lattice paths along the edges of a grid with n × n square cells, which do not pass
above the diagonal, and is also the number of permutations of {1, . . . , n} that avoid
the permutation pattern 123, that is, with no three-term increasing subsequence. We
refer to [12] for many different combinatorial interpretations of the Catalan numbers.

Although the Catalan numbers naturally arise in combinatorics, they also possess
rich arithmetic properties. One of the remarkable examples is the following congru-
ence due to Sun and Tauraso [13]:

p−1∑
k=0

Ck ≡
3
2

( p
3

)
− 1

2
(mod p2). (1.1)

Here and in what follows, p ≥ 5 is a prime and ( ·· ) denotes the Legendre symbol.
We remark that Tauraso [14, Theorem 6.1] established an interesting q-analogue of
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the modulo p version of (1.1), which was further generalised to a q-analogue of the
modulo p2 version by the first author [9, Theorem 1].

In 1874, Catalan [3] observed that the numbers An,m = (2n)! (2m)!/n! m! (n + m)!
are always integral. Since An,1/2 coincides with the Catalan number Cn, these An,m
were named the super Catalan numbers by Gessel [6]. The integrality of An,m can also
be deduced from Von Szily’s identity [15]:

An,m =

∞∑
k=−∞

(−1)k
(

2n
n + k

)(
2m

m + k

)
. (1.2)

There are interpretations of An,m for some special values of m (see, for example,
[1, 4, 11]). However, it is still an open problem to find a general combinatorial
interpretation for the super Catalan numbers.

In 2018, Apagodu [2, Conjecture 2] proposed two conjectural congruences on
double sums of super Catalan numbers, one of which is

p−1∑
i=0

p−1∑
j=0

Ai,j ≡
( p

3

)
(mod p). (1.3)

The first author [8] confirmed the conjectural congruence (1.3) using combinatorial
identities which were proved by Zeilberger’s algorithm [10].

It is natural to consider the q-counterpart for An,m. The q-super Catalan numbers are
defined as

An,m(q) =
[2n]! [2m]!

[n]! [m]! [n + m]!
,

where the q-factorial [n]!=
∏n

k=1(1 − qk)/(1 − q). Warnaar and Zudilin [16] obtained
the remarkable result that the An,m(q) are polynomials with nonnegative coefficients
(positive polynomials) and Guo et al. [7] obtained another interesting positivity result
related to An,m(q).

As mentioned in [16], one can obtain a q-analogue of Von Szily’s identity (1.2),

An,m(q) =
∞∑

k=−∞
(−1)kq(k

2)+k2
[

2n
n + k

][
2m

m + k

]
, (1.4)

by taking (a, b, c) �→ (1,∞, q−m) in the very-well poised 6φ5 summation [5, (II.21)].
Here and throughout the paper, the q-binomial coefficients are defined as

[
n
k

]
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(q; q)n

(q; q)k(q; q)n−k
if 0 � k � n,

0 otherwise,
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where the q-shifted factorials are given by (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1) for
n ≥ 1 and (a; q)0 = 1. The nth cyclotomic polynomial is given by

Φn(q) =
∏

1≤k≤n
(n,k)=1

(q − ζk),

where ζ denotes a primitive nth root of unity.
Our interest concerns a q-analogue of Apagodu’s congruence (1.3) as follows.

THEOREM 1.1. For any positive integer n, modulo Φn(q),

n−1∑
i=0

n−1∑
j=0

qi+jAi,j(q) ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(n
3

)
qn−1 if n � 0 (mod 3)

qn/3−1(1 − qn/3) if n ≡ 0 (mod 3).
(1.5)

We remark that letting n = p and q→ 1 in (1.5) leads us to (1.3). The proof of (1.5)
relies on (1.4) and the following q-congruence due to Tauraso [14, Corollary 4.3]:

n−1∑
i=0

qi
[

2i
i + k

]
≡

(n − k
3

)
q3r(r+1)/2+k(2r+1) (mod Φn(q)), (1.6)

where k is a nonnegative integer and r = �2(n − k)/3	.
As we will see, the proof of (1.5) is more natural than that of (1.3) in [8] and avoids

using some exotic combinatorial identities. We shall present the proof of Theorem 1.1
in the next section.

2. Proof of Theorem 1.1

By (1.4),

n−1∑
i=0

n−1∑
j=0

qi+jAi,j(q) =
n−1∑
i=0

n−1∑
j=0

qi+j
j∑

k=−j

(−1)kq(k
2)+k2

[
2j

j + k

][
2i

i + k

]

=

n−1∑
k=1−n

(−1)kq(k
2)+k2

n−1∑
i=0

qi
[

2i
i + k

] n−1∑
j=0

qj
[

2j
j + k

]

=

n−1∑
k=1−n

(−1)kq(k
2)+k2

( n−1∑
i=0

qi
[

2i
i + k

])2
. (2.1)

Let

a(k) = (−1)kq(k
2)+k2

( n−1∑
i=0

qi
[

2i
i + k

])2
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and

b(k) = a(−k) = (−1)kq(k+1
2 )+k2

( n−1∑
i=0

qi
[

2i
i + k

])2
.

We split the sum on the right-hand side of (2.1) into two pieces:

S1 =

n−1∑
k=0

a(k) and S2 =

n−1∑
k=1

b(k),

so that
n−1∑
i=0

n−1∑
j=0

qi+jAi,j(q) = S1 + S2. (2.2)

From (1.6), we deduce that

a(k) ≡ (−1)kq(k
2)+k2

(n − k
3

)2
q3r(r+1)+2k(2r+1) (mod Φn(q)) (2.3)

and

b(k) ≡ (−1)kq(k+1
2 )+k2

(n − k
3

)2
q3r(r+1)+2k(2r+1) (mod Φn(q)), (2.4)

where r = �2(n − k)/3	.
Next, we shall distinguish three cases to prove (1.5).

Case 1: n ≡ 1 (mod 3).
If k = 3m, then ((n − k)/3) = 1 and r = 2(n − 1)/3 − 2m. It follows from (2.3) and

(2.4) that

a(k) ≡ (−1)mq2(2n+1)(n−1)/3+3m(m−1)/2 (mod Φn(q)) (2.5)

and

b(k) ≡ (−1)mq2(2n+1)(n−1)/3+3m(m+1)/2 (mod Φn(q)). (2.6)

If k = 3m + 1, then ((n − k)/3) = 0, and so

a(k) ≡ b(k) ≡ 0 (mod Φn(q)). (2.7)

If k = 3m + 2, then ((n − k)/3) = −1 and r = 2(n − 1)/3 − 2m − 1, and so

a(k) ≡ (−1)mq2n(2n+1)/3+(m+1)(3m−2)/2 (mod Φn(q)) (2.8)

and

b(k) ≡ (−1)mq2n(2n+1)/3+(m+2)(3m+1)/2 (mod Φn(q)). (2.9)
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Combining (2.5)–(2.9) gives modulo Φn(q),

a(k) ≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(−1)mq2(2n+1)(n−1)/3+3m(m−1)/2 if k = 3m
0 if k = 3m + 1
(−1)mq2n(2n+1)/3+(m+1)(3m−2)/2 if k = 3m + 2

(2.10)

and

b(k) ≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(−1)mq2(2n+1)(n−1)/3+3m(m+1)/2 if k = 3m
0 if k = 3m + 1
(−1)mq2n(2n+1)/3+(m+2)(3m+1)/2 if k = 3m + 2.

(2.11)

It follows from (2.10) and (2.11) that

S1 =

n−1∑
k=0

a(k) =
�(n−1)/3	∑

m=0

a(3m) +
�(n−2)/3	∑

m=0

a(3m + 1) +
�(n−3)/3	∑

m=0

a(3m + 2)

≡ q2(2n+1)(n−1)/3
(n−1)/3∑

m=0

(−1)mq3m(m−1)/2

+ q2n(2n+1)/3
(n−4)/3∑

m=0

(−1)mq(m+1)(3m−2)/2 (mod Φn(q)) (2.12)

and

S2 =

n−1∑
k=1

b(k) =
�(n−1)/3	∑

m=1

b(3m) +
�(n−2)/3	∑

m=0

b(3m + 1) +
�(n−3)/3	∑

m=0

b(3m + 2)

≡ q2(2n+1)(n−1)/3
(n−1)/3∑

m=1

(−1)mq3m(m+1)/2

+ q2n(2n+1)/3
(n−4)/3∑

m=0

(−1)mq(m+2)(3m+1)/2 (mod Φn(q)). (2.13)

Combining (2.2), (2.12) and (2.13), we arrive at

n−1∑
i=0

n−1∑
j=0

qi+jAi,j(q)

≡ q2(2n+1)(n−1)/3
( (n−1)/3∑

m=0

(−1)mq3m(m−1)/2 +

(n−1)/3∑
m=1

(−1)mq3m(m+1)/2
)

+ q2n(2n+1)/3
( (n−4)/3∑

m=0

(−1)mq(m+1)(3m−2)/2 +

(n−4)/3∑
m=0

(−1)mq(m+2)(3m+1)/2
)

(mod Φn(q)).
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Noting that

(n−1)/3∑
m=0

(−1)mq3m(m−1)/2 = −
(n−4)/3∑
m=−1

(−1)mq3m(m+1)/2

and
(n−4)/3∑

m=0

(−1)mq(m+2)(3m+1)/2 = −
(n−1)/3∑

m=1

(−1)mq(m+1)(3m−2)/2,

we obtain
n−1∑
i=0

n−1∑
j=0

qi+jAi,j(q) ≡ q2n(2n+1)/3−1 − (−1)(n−1)/3q(n+1)(3n−2)/2 + (−1)(n−1)/3q(n−1)(3n+2)/2

= q2n(2n+1)/3−1 + (−1)(n−1)/3q(n−1)(3n+2)/2(1 − qn)

≡ q−1 ≡ qn−1 (mod Φn(q)),

where we have used the fact qn ≡ 1 (mod Φn(q)). This completes the proof of the case
n ≡ 1 (mod 3) of (1.5).

Case 2: n ≡ 2 (mod 3).
By using the same method as in the previous case, we can evaluate a(k) and b(k)

modulo Φn(q):

a(k) ≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(−1)mq2(2n−1)(n+1)/3+3m(m−1)/2 if k = 3m
(−1)m+1q2n(2n−1)/3+(3m+2)(m−1)/2 if k = 3m + 1
0 if k = 3m + 2

and

b(k) ≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(−1)mq2(2n−1)(n+1)/3+3m(m+1)/2 if k = 3m
(−1)m+1q2n(2n−1)/3+(3m+5)m/2 if k = 3m + 1
0 if k = 3m + 2.

It follows that

S1 =

n−1∑
k=0

a(k) =
�(n−1)/3	∑

m=0

a(3m) +
�(n−2)/3	∑

m=0

a(3m + 1) +
�(n−3)/3	∑

m=0

a(3m + 2)

≡ q2(2n−1)(n+1)/3
(n−2)/3∑

m=0

(−1)mq3m(m−1)/2

− q2n(2n−1)/3
(n−2)/3∑

m=0

(−1)mq(3m+2)(m−1)/2 (mod Φn(q))
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and

S2 =

n−1∑
k=1

b(k) =
�(n−1)/3	∑

m=1

b(3m) +
�(n−2)/3	∑

m=0

b(3m + 1) +
�(n−3)/3	∑

m=0

b(3m + 2)

≡ q2(2n−1)(n+1)/3
(n−2)/3∑

m=1

(−1)mq3m(m+1)/2

− q2n(2n−1)/3
(n−2)/3∑

m=0

(−1)mq(3m+5)m/2 (mod Φn(q)).

Thus,

n−1∑
i=0

n−1∑
j=0

qi+jAi,j(q) = S1 + S2

≡ q2(2n−1)(n+1)/3
( (n−2)/3∑

m=0

(−1)mq3m(m−1)/2 +

(n−2)/3∑
m=1

(−1)mq3m(m+1)/2
)

− q2n(2n−1)/3
( (n−2)/3∑

m=0

(−1)mq(3m+2)(m−1)/2 +

(n−2)/3∑
m=0

(−1)mq(3m+5)m/2
)

(mod Φn(q)).

(2.14)

Furthermore, note that

(n−2)/3∑
m=0

(−1)mq3m(m−1)/2 = −
(n−5)/3∑
m=−1

(−1)mq3m(m+1)2 (2.15)

and

(n−2)/3∑
m=0

(−1)mq(3m+2)(m−1)/2 = −
(n−5)/3∑
m=−1

(−1)mq(3m+5)m/2. (2.16)

Combining (2.14)–(2.16) gives

n−1∑
i=0

n−1∑
j=0

qi+jAi,j(q) ≡ (−1)(n−2)/3q(n+1)(3n−2)/2 − q2n(2n−1)/3−1 − (−1)(n−2)/3q(3n+2)(n−1)/2

= −q2n(2n−1)/3−1 + (−1)(n−2)/3q(3n+2)(n−1)/2(qn − 1)

≡ −q−1 ≡ −qn−1 (mod Φn(q)),

which is the case n ≡ 2 (mod 3) of (1.5).
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Case 3: n ≡ 0 (mod 3).
By using the same method as in the first case, we find that modulo Φn(q),

a(k) ≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if k = 3m
(−1)m+1q2n(2n+1)/3+(3m+2)(m−1)/2 if k = 3m + 1
(−1)mq2n(2n−1)/3+(3m−2)(m+1)/2 if k = 3m + 2

and

b(k) ≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if k = 3m
(−1)m+1q2n(2n+1)/3+m(3m+5)/2 if k = 3m + 1
(−1)mq2n(2n−1)/3+(m+2)(3m+1)/2 if k = 3m + 2.

It follows that

S1 =

n−1∑
k=0

a(k) =
�(n−1)/3	∑

m=0

a(3m) +
�(n−2)/3	∑

m=0

a(3m + 1) +
�(n−3)/3	∑

m=0

a(3m + 2)

≡ q2n(2n−1)/3
(n−3)/3∑

m=0

(−1)mq(3m−2)(m+1)/2

− q2n(2n+1)/3
(n−3)/3∑

m=0

(−1)mq(3m+2)(m−1)/2 (mod Φn(q))

and

S2 =

n−1∑
k=1

b(k) =
�(n−1)/3	∑

m=1

b(3m) +
�(n−2)/3	∑

m=0

b(3m + 1) +
�(n−3)/3	∑

m=0

b(3m + 2)

≡ q2n(2n−1)/3
(n−3)/3∑

m=0

(−1)mq(m+2)(3m+1)/2

− q2n(2n+1)/3
(n−3)/3∑

m=0

(−1)mqm(3m+5)/2 (mod Φn(q)).

Thus,
n−1∑
i=0

n−1∑
j=0

qi+jAi,j(q) = S1 + S2

≡ q2n(2n−1)/3
( (n−3)/3∑

m=0

(−1)mq(3m−2)(m+1)/2 +

(n−3)/3∑
m=0

(−1)mq(m+2)(3m+1)/2
)

− q2n(2n+1)/3
( (n−3)/3∑

m=0

(−1)mq(3m+2)(m−1)/2 +

(n−3)/3∑
m=0

(−1)mqm(3m+5)/2
)

(mod Φn(q)).

(2.17)
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Furthermore, note that
(n−3)/3∑

m=0

(−1)mq(3m+2)(m−1)/2 = −
(n−6)/3∑
m=−1

(−1)mqm(3m+5)/2 (2.18)

and
(n−3)/3∑

m=0

(−1)mq(3m−2)(m+1)/2 = −
(n−6)/3∑
m=−1

(−1)mq(3m+1)(m+2)/2. (2.19)

Finally, combining (2.17)–(2.19), we arrive at

n−1∑
i=0

n−1∑
j=0

qi+jAi,j(q)

≡ q2n(2n−1)/3−1 − q2n(2n+1)/3−1 + (−1)n/3q(n+1)(3n−2)/2 + (−1)(n−3)/3q(n−1)(3n+2)/2

= qn(4n−3)/3+n/3−1(1 − qn+n/3) − (−1)n/3q(n−1)(3n+2)/2(1 − qn)

≡ qn/3−1(1 − qn/3) (mod Φn(q)),

which confirms the case n ≡ 0 (mod 3) of (1.5).
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