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ON-LINE SELECTION OF AN ACCEPTABLE PAIR

J. PREATER,∗ Keele University

Abstract

A sequence of objects with independent, identically distributed qualities is presented to a
selector who must choose two on-line, i.e. without anticipation or recall. The selector’s
aim is to obtain a satisfactory pair as quickly as possible. Two versions of the problem
are considered, and optimal selection rules are derived and compared. An investigation
is also made of a heuristic rule suitable for a selector who has no prior knowledge of the
nature of the object sequence.
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1. Introduction and model

We investigate a rather primitive version of sequential selection with two choices. Imagine
that some objects are offered to us one by one and that our aim is to choose expeditiously
two that are satisfactory. The usual rules of on-line selection apply: the decision to accept
or reject the current object must made before observing the next one and cannot be based on
the characteristics of the objects yet to be revealed; in short, the choices are irrevocable and
nonanticipatory. Other recent work on two-choice problems can be found in [1] and [6].

In addition to the substantial theoretical literature on sequential selection there are a number
of established applications, the foremost of which is employee selection. Biologists have
used single selection to model mate choice ([9] contains a useful bibliography); but imagine a
zoologist searching for a promising mating pair of some species. Economists have interpreted
on-line choice in terms of job search [7]; but suppose that both a job and a house are sought,
either of which may be secured first as opportunities arise. More starkly, if the vertices from
a known or unknown graph are presented to us by means of sampling with replacement, how
should we go about obtaining an edge? In all these cases, what is deemed a satisfactory second
object will be strongly influenced by the choice made for the first. Moreover, in many potential
applications it is unlikely that the defining attributes of an acceptable pair could be stated
explicitly; this raises the issue of selector ignorance.

We begin with the following simple model for the problem. Let Y1, Y2, . . . be independent
random variables with values in the unit interval [0, 1] and distribution F ; these variables
represent the qualities of successive objects. Any given pair of object qualities is adjudged
acceptable or unacceptable. We suppose for now that the set, A ⊂ [0, 1]2, of acceptable pairs
is nonempty, symmetric, i.e.

(y, y′) ∈ A �⇒ (y′, y) ∈ A,
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and monotone, i.e.

(y, y′) ∈ A and (z, z′) ≥ (y, y′) �⇒ (z, z′) ∈ A,

with ‘≥’being the usual coordinatewise order on [0, 1]2. The confinement of the object qualities
to [0, 1] clearly incurs no real loss of generality; indeed, by transforming them and A we could
take F to be uniform, except that this turns out not to be expedient (see Lemma 2.2, below).

It is assumed that F and A are known prior to the disclosure of any objects and are such that
acceptable pairs do arise, i.e. P((Y1, Y2) ∈ A) > 0. A nonanticipatory selection is, as usual,
represented by a stopping time relative to the Yt sequence: we let T denote the set of admissible
stopping time pairs (τ, τ ′) with either 1 ≤ τ < τ ′ or 1 ≤ τ ≤ τ ′ = ∞. A generalization of the
model encompassing all of the applications mentioned above will be discussed in due course.

There are two natural objectives. First, the aim might be to maximize the probability of
selecting an acceptable pair from the first N objects, where N ≥ 1 is known; in this case the
maximal win probability is

wN = sup{E(1A(Yτ , Yτ ′)1{τ ′≤N}) : (τ, τ ′) ∈ T }, (1.1)

with 1A the indicator of a set A. Here and elsewhere the convention is that (Yt , Yt ′) 
∈ A when
either t or t ′ is infinite.

Second, the intention may be to minimize the expected number of object observations; in
this case we let

u = inf{E(τ ′) : (Yτ , Yτ ′) ∈ A, (τ, τ ′) ∈ T }. (1.2)

In particular, u = ∞ when τ ′ = ∞.
Rather fancifully, but in keeping with [4], we shall call the case in which (1.1) holds the

primal problem and the case in which (1.2) holds the dual problem. Any admissible pair of
stopping times achieving either the supremum in (1.1) or the infimum in (1.2) is said to be
optimal for the respective problem. In both cases the second choice is trivial – we simply wait
for an acceptable partner for the object already chosen; the first choice is the crux. Thus, for
any τ ≥ 1, we fix

τ ′ = inf{t > τ : (Yτ , Yt ) ∈ A}, (1.3)

with τ ′ = ∞ when either τ = ∞ or the set is empty.
The primal problem is a special case of the general monotone two-choice problem

vN = sup{E(�(Yτ , Yτ ′)) : 1 ≤ τ < τ ′ ≤ N},
where the function � : R

2 → [0, ∞) is nondecreasing and symmetric (i.e. �(x, y) = �(y, x)

for x, y ∈ R). This was discussed in [8]. The question there was whether the selector should be
progressively less particular as the object sequence unfolds, as is the case for the corresponding
single-selection problem. This is deceptively plausible but seems difficult to prove for all �;
indeed it is sometimes false when the Yt are R

2-valued, for example. Our principal result is
that this time monotonicity property does hold for the primal problem, in which � = 1A.

Chen et al. [2] and Coffman et al. [4] studied an associated pair of on-line selection problems.
In the former, m elements from an infinite Yt sequence must be chosen so that their sum does
not exceed a constant, C > 0; the objective is to minimize the expected number of observations
required to achieve this. In the latter, the goal is to maximize the expected number of selections
made from a finite Yt sequence under the same constraint. The former, for m = 2, is essentially
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included in our dual problem, whereas the latter is informed just a little by our primal problem,
as illustrated later.

The paper is organized as follows. In Section 2 we study the primal problem, proving time
monotonicity and giving some asymptotics. The dual problem, which is more straightforward,
is considered in Section 3, and the optimal selection policy is compared with that for the primal
problem. Finally, in the discursive Section 4, we examine the implications of broadening the
problem formulation, and reflect on the matter of selector ignorance.

2. The primal problem

In this section we adopt the model from Section 1 and, after some preparatory work, address
the primal problem, (1.1).

2.1. Preliminaries

A subset of [0, 1] of the form (x, 1] or [x, 1] will be called an upper interval with threshold
x. For any distribution G on [0, 1], define the constant

βG = inf{x ∈ [0, 1] : G(x) ≥ 1 − x}.
Let Y be a typical object quality. Define p(x) = P((x, Y ) 
∈ A), x ∈ [0, 1], and let H

denote the distribution function of p(Y ). Since A is monotone, p is nonincreasing. Thus, the
right-continuous inverse of p is given by

p̄(y) = inf{x ∈ [0, 1] : p(x) ≤ y}, y ∈ [0, 1],
with inf ∅ = 1; p̄ is also nonincreasing.

Now consider the sets

AA = {y ∈ [0, 1] : (y, y) ∈ A}, BH = {y ∈ [0, 1] : p(y) ≤ βH },
each of which is an upper interval, and let a∗ = inf AA.

Lemma 2.1. We have AA ⊂ BH , and if p is strictly decreasing then

a∗ = inf BH = p̄(βH ).

Proof. Let y ∈ AA. Then, because A is monotone, (y, Y ) 
∈ A implies that Y < y and, so,
p(y) ≤ F(y−). Consequently, if x < p(y) then

x < p(y) ≤ F(y−) ≤ F(p̄(x)−) = P(Y < p̄(x)) = P(p(Y ) > x) = 1 − H(x),

showing that x ≤ βH . It follows that p(y) ≤ βH , i.e. that y ∈ BH , and we conclude that
AA ⊂ BH .

Now assume that p is strictly decreasing. From above we know that a∗ ≥ inf BH . To prove
the reverse inequality, suppose that y < a∗. Then (y, y) 
∈ AA and, so,

p(y) ≥ F(y−) = P(Y < y) = P(p(Y ) > p(y)).

Thus, p(y) ≥ βH , which in turn entails that y ≤ inf BH , by virtue of the strict monotonicity
of p. Therefore, a∗ ≤ inf BH , completing the proof.
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2.2. A real sequence

The analysis of the primal problem depends on the properties of a particular sequence of
real numbers.

Lemma 2.2. Let X be a random variable taking values in the interval [0, 1] and having
distribution G. If the sequence of numbers (bn) is defined by

b1 = 1, bn+1 = E([bn ∧ X]n)1/(n+1), n = 1, 2, . . . , (2.1)

then
the bn are nonincreasing in n (2.2)

and
lim
n

bn = βG. (2.3)

Proof. Let X be as prescribed. To prove (2.2) we proceed by induction. Clearly b1 ≥ b2.
Suppose that

b1 ≥ · · · ≥ bn. (2.4)

Pick a b ∈ (0, 1) and impose the constraint bn = b. Since b is arbitrary it then suffices,
for the induction step, to show that E(bn ∧ Xn) ≤ bn+1, and in doing so we may assume that
0 ≤ X ≤ b. This follows by an obvious continuity argument once we have observed that, on
the one hand, moving all of the mass of G to b entails that bn = b(n−1)/n ≥ b, while, on the
other hand, bn ≤ b is the result of moving to b any mass lying to the right thereof.

It remains to show that
E(Xn) ≤ bn+1. (2.5)

Using (2.1) and (2.4) we obtain E(Xn−1) = bn. Set Z = Xn−1. Then

0 ≤ Z ≤ bn−1, E(Z) = bn, E(h(Z)) = E(Xn), (2.6)

where h(z) = zn/(n−1), 0 ≤ z ≤ 1. Now, since h is convex, it follows from a standard dilation
result that E(h(Z)) is maximized, subject to the first two properties in (2.6), only when Z takes
the value 0 or the value bn−1. Here, this entails that P(Z = bn−1) = b. Thus, the X maximizing
the left-hand side of (2.5) satisfies P(X = b) = b = 1−P(X = 0), and, hence, E(Xn) = bn+1.
This proves (2.5) and, consequently, (2.2).

Turning to the verification of (2.3), let b∞ = limn bn and β ≡ βG. We have b1 = 1 ≥ β,
and if bn ≥ β then

bn+1
n+1 = E([bn ∧ X]n) ≥ E([β ∧ X]n) ≥ βn(1 − G(β−)) ≥ βn+1,

giving bn+1 ≥ β. Thus, bn ≥ β for all n by induction and, hence, b∞ ≥ β.
To prove the reverse inequality, suppose that b∞ = η > β. Then, for any n ≥ 1, we have

bn ≥ η and

bn+1
n+1 = bn

n E([1 ∧ X/bn]n) ≤ bn
n E([1 ∧ X/η]n)

= bn
n[(1 − G(η−)) + E((X/η)n1{X<η})].

However, in the last expression 1 − G(η−) < η and, by the bounded convergence theorem,
the expectation is vanishingly small for large n. Therefore, for some δ > 0 and some positive
integer N ,

bn+1
n+1 ≤ bn

n(η − δ), n = N, N + 1, . . . .
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Iterating, we obtain
bn+N
n+N ≤ bN

N (η − δ)n, n = 1, 2, . . . ,

which requires that b∞ = limn bn ≤ η − δ < η, a contradiction. We conclude that b∞ ≤ β,
and (2.3) follows.

Statement (2.2) is the kernel of our work; the case where b2 ≥ b3, i.e. E(E(X) ∧ X2) ≤
E(X)3/2, is of mild intrinsic interest.

2.3. Main theorem

We introduce the sets

An = {y ∈ [0, 1] : p(y) ≤ (1 − wn)
1/n}, n = 1, 2, . . . , (2.7)

where wn is the primal problem win probability, (1.1), for n objects. Each An is an upper
interval with threshold

an = p̄((1 − wn)
1/n), n = 1, 2, . . . . (2.8)

Note that a1 = 0.

Theorem 2.1. The primal problem has an optimal stopping pair (τp, τ
′
p) with

τp = inf{t : Yt ∈ AN−t }, (2.9)

where the stopping sets An are as given in (2.7), and τ ′
p is as defined in (1.3). There is time

monotonicity in that
[0, 1] = A1 ⊃ A2 ⊃ · · · , (2.10)

and, thus, the thresholds an defined in (2.8) are nondecreasing in n. Furthermore,

a∞ := lim
n

an = p̄(βH ), (2.11)

where, recall, H is the distribution of p(Y ).

Remark 2.1. The rather elaborate description in (2.9) and (2.10) of a time-monotone threshold
rule, along with ‘stopping set’terminology, is used simply because the An may be upper intervals
of either type.

Proof of Theorem 2.1. For any τ, 1 ≤ τ ≤ N − 1, and τ ′ defined by (1.3), we have

E(1A(Yτ , Yτ ′)1{τ ′≤N}) = 1 − E(p(Yτ )
N−τ ).

Hence, on writing un = 1 − wn and Xt = p(Yt ), the two-choice problem (1.1) reduces to a
single-choice problem for the Xt sequence:

uN = inf{E(XN−τ
τ ) : 1 ≤ τ ≤ N − 1}.

According to standard stopping time theory [3], the reduced problem admits the Bellman
equation

u1 = 1, un+1 = E(un ∧ Xn), n = 1, 2, . . . , N − 1, (2.12)

and has optimal stopping time

τ = inf{t ≥ 1 : XN−t
t ≤ uN−t } = inf{t ≥ 1 : p(Yt ) ≤ u

1/(N−t)
N−t }.

This establishes (2.9).
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By virtue of (2.12), the numbers bn = u
1/n
n satisfy (2.1). Property (2.10) is therefore a direct

consequence of (2.2) and (2.7).
Finally, since X has distribution H , (2.3) implies that limn u

1/n
n = βH . The limit (2.11) then

follows from (2.8) and the right continuity of p̄.

The following corollary, which is immediate from Lemma 2.1, shows that the limit of the
thresholds depends typically on A but not on F .

Corollary 2.1. We have a∞ ≤ a∗, with equality when p is strictly decreasing.

The condition to have a∞ = a∗ in Corollary 2.1 can be weakened; for example, it is enough
that p be strictly decreasing in an open neighbourhood of a∞. However, it is easy to construct
cases where a∞ < a∗; for instance, if A = [0, 1]2 −[0, a]2, 0 < a < 1, then an = 0 for every
n and a∗ = a, whatever the distribution F is.

2.4. An illustration

Consider the following instance of Coffman et al.’s [4] aforementioned problem: maxi-
mize the expected number of selections from an independent, identically distributed sequence
Z1, . . . , ZN , when Z1 is uniformly distributed on ( 1

3 , 1), subject to their sum not exceeding 1.
Since at least one selection is always made, whereas three or more are not feasible, an equivalent
problem is to maximize the probability of making two selections. By working with transformed
variables Yt = 4

3 − Zt , we reduce this to our primal problem with

A = {(y, y′) : y + y′ ≥ 5
3 }.

Theorem 2.1 then tells us that the initial selection should be at the first time t for which
Yt ≥ aN−t , i.e. for which

Zt ≤ 4
3 − aN−t ,

where the thresholds an are nondecreasing. This monotonicity proved difficult to establish
for the general problem in [4]. Furthermore, as p is strictly decreasing where it matters, the
thresholds have limit a∞ = a∗ = 5

6 .
Let us now compute the thresholds. From (2.8) and (2.12), an = p̄(bn), where the bn satisfy

(2.1) with X = p(Y ). Straightforward calculations show that

p̄(y) =

⎧⎪⎨
⎪⎩

0, y = 1,
4
3 − 2

3y, 1
2 ≤ y < 1,

1, 0 ≤ y < 1
2 ;

that H , the distribution of X, is given by

H(x) =

⎧⎪⎨
⎪⎩

1, x = 1,

x − 1
2 , 1

2 ≤ x < 1,

0, 0 ≤ x < 1
2 ;

and that recursion (2.1) reads

b1 = 1, bn+1 =
[(

3

2
− n

n + 1
bn

)
bn
n − 1

n + 1

(
1

2

)n+1]1/(n+1)

, n = 1, 2, . . . .

From this we obtain a1 = 0, a2 = 0.7097, a3 = 0.7344, a4 = 0.7507, . . . , with slow
convergence to the limit.
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3. The dual problem

In this section we examine the dual problem, in which (1.2) holds. The second selection is
again governed by (1.3).

In seeking to attain the infimum in (1.2) we can obviously restrict attention to stopping times
τ with finite expectation. Conditional upon τ = t and Yt = y, the waiting time, τ ′ − τ , until
the second selection has a geometric distribution with parameter 1 − p(y). Thus,

E(τ ′) = E(τ ) + E(τ ′ − τ) = E(τ ) + E(E(τ ′ − τ | Fτ ))

= E(τ ) + E((1 − p(Yτ ))
−1)

= E(τ + (1 − p(Yτ ))
−1),

where Fτ is the pre-τ σ -field relative to the Yt sequence. Therefore, writing

Zt = −(1 − p(Yt ))
−1

(which equals −∞ if p(Yt ) = 1), we obtain

u = inf
τ

{E(τ + (1 − p(Yτ ))
−1) : E(τ ) < ∞} = − sup

τ
{E(Zτ − τ) : E(τ ) < ∞}.

The supremum represents the classical problem of maximizing the net gain from the sale
of an asset subject to independent, identically distributed offers Zt and unit observation cost.
This problem was solved in [3] and discussed further in, for example, [5]. (In the cited work
E(|Z1|) < ∞, but a simple truncation argument shows that the results also apply in our case,
where Z1 ≤ 0 and P(Z1 > −∞) > 0.) The following stopping time, where ζ = −u, the
maximal net gain, is the unique solution to

E((Z1 − ζ )+) = 1, (3.1)

is optimal:
τ = inf{t ≥ 1 : Zt ≥ ζ }. (3.2)

The next result summarizes these findings and appends a complement roughly to the effect
that the dual selector is no more particular than the primal selector when N is large. Let

B = {y ∈ [0, 1] : p(y) ≤ 1 − u−1}, (3.3)

which is an upper interval with threshold

b = p̄(1 − u−1).

Theorem 3.1. The dual problem has an optimal stopping pair (τd, τ
′
d) with

τd = inf{t ≥ 1 : Yt ∈ B}, (3.4)

where B is as given in (3.3), and τ ′
d is as defined in (1.3). The minimal expected number of

observations, u, needed to procure an acceptable pair is the unique solution to

E((u − (1 − p(Y ))−1)+) = 1. (3.5)

Moreover, the dual threshold, b, is no larger than the asymptotic primal threshold, a∞.
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Proof. All but the final statement of the theorem comes from the preceding discussion, (3.4)
and (3.5) being transliterations of (3.2) and (3.1), respectively. To show that b ≤ a∞, we first
define the function K by

K(x) =
∫ x

1
H((1 − y−1)−) dy, x > 1,

where H is the distribution of p(Y ), as before. Since the integrand is nondecreasing and left
continuous, K is nondecreasing and convex, with left-hand derivative, ′K say, given by

′K(x) = H((1 − x−1)−), x > 1.

We have K(1) = 0. Moreover, using (3.5), we obtain

1 = E((u − (1 − p(Y ))−1)+) =
∫ ∞

0
P(u − (1 − p(Y ))−1 > z) dz

=
∫ u−1

0
H((1 − (u − z)−1)−) dz

=
∫ u

1
H((1 − y−1)−) dy (y = u − z)

= K(u).

Therefore,

1 − H(1 − u−1) ≤ 1 − H((1 − u−1)−)

= 1 − ′K(u)

≤ 1 − K(u) − K(1)

u − 1

= 1 − (u − 1)−1

< 1 − u−1,

the second inequality owing to the convexity of K . It follows that βH ≤ 1 − u−1, whence
b = p̄(1 − u−1) ≤ p̄(βH ) = a∞, as claimed.

4. Complements

In this section we broaden the model and tackle selector ignorance.

4.1. Generalization

In the simple model, object qualities were numerical and A was monotone. However, this
setting cannot capture, for example, the male–female selection problem because, even if the
individuals within each gender can be scored numerically, they must occupy disjoint subsets of
[0, 1]; thus, the monotonicity of A will almost certainly be lost. In general, object qualities may
not even be ordered. To construct a model in these circumstances, let (S, S) be a measurable
space and let the object qualities Yt be independent, S-valued random variables, again with
distribution F . The set A ⊂ S × S of acceptable pairs is assumed to be nonempty, symmetric,
and S × S measurable (which was guaranteed previously by monotonicity). The remainder of
the formulation in Section 1 carries through unchanged.
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Let us review the consequences for the primal and dual problems. Beginning with the former,
note first that the update

p(x) = P((x, Y ) 
∈ A), x ∈ S,

is well defined by virtue of A’s measurability, but is no longer necessarily monotonic. Never-
theless, with (2.7) replaced by

An = {y ∈ S : p(y) ≤ (1 − wn)
1/n}, n = 1, 2, . . . ,

we have the following reworking of Theorem 2.1.

The generalized primal problem has an optimal stopping pair (τp, τ
′
p) with τp given

by (2.9) and τ ′
p defined by (1.3). There is time monotonicity in that

S = A1 ⊃ A2 ⊃ · · · .

Furthermore, the sets An decrease to A∞ = {y ∈ S : p(y) ≤ βH }.
The proof of Theorem 2.1 (apart from the last sentence) holds also for this version. There is

no counterpart to Corollary 2.1.
Turning to the dual problem, replace (3.3) by

B = {y ∈ S : p(y) ≤ 1 − u−1}.
Then Theorem 3.1 and its proof carry through essentially unchanged, as follows.

The generalized dual problem has an optimal stopping pair (τd, τ
′
d) with τd given

by (3.4) and τ ′
d defined by (1.3); u is determined by (3.5). Moreover, A∞ ⊂ B.

Here, the final claim of Theorem 3.1 which is the analogue of b ≤ a∞, is immediate because
βH ≤ 1 − u−1 still applies.

4.2. Ignorance

Our solutions to the primal and dual problems, in both original and generalized forms,
presuppose that A, F , and N are all known to the selector; notwithstanding some special cases,
this is clearly necessary for achieving exact optimality. Partial knowledge is arguably more
realistic, and could be modelled in a variety of ways; indeed there are many precedents in the
sequential selection literature, for instance [10]. However, being rather primitive, we wish to
consider briefly the plight of a selector who, ignorant of A, F , and N , times the choices solely
on the basis of knowing which pairs of observed objects are acceptable. More formally, the
stopping times used must be adapted to the filtration (Gt ), where

Gt = σ(1{(Yr ,Ys)∈A} : 1 ≤ r ≤ s ≤ t), t = 1, 2, . . . .

Notice that we have generously granted the selector a modicum of imagination, in that r = s is
permitted, i.e. the acceptability, or otherwise, of an observed object paired with an exact replica
is assumed known.

Consider the simple model of Section 1 again, and let us focus first on the primal problem.
Corollary 2.1 suggests making the first selection at time

τ0 = inf{t ≥ 1 : Yt ∈ AA}, (4.1)
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which is the principal reason for our aforementioned generosity. As above, the time of the
second selection is prescribed by (1.3), and we use τ ′

0 to denote it. Let w0 be the associated
probability of obtaining an acceptable pair. It may well happen that τ0 ≥ N , in which case
w0 = 0. We have the following result.

Theorem 4.1. For any monotone A, any F , and any N ≥ 2,

wN − w0 ≤ 1
4 ;

moreover, the bound is tight.

Proof. Fix a monotone A, an F , and an N ≥ 2, and let Jp and J0 be the events that an
acceptable pair is obtained using τp and τ0, respectively. Write

M = card{1 ≤ t ≤ N : Yt ∈ AA}, a = P(Y ∈ AA), (4.2)

and note that, since M has a binomial(N, a) distribution,

P(M = 1) = Na(1 − a)N−1 ≤ 1
2 , (4.3)

the bound being attained when N = 2 and a = 1
2 .

Next, when M = 1 there is just one object, say O, having the largest quality among the first
N objects. Denote by C and D the events that M = 1 and an acceptable partner to O appears
among the first N objects before and, respectively, after O arrives. For the choice at τp to win
(i.e. to result in an acceptable pair) and that at τ0 to lose, C must occur and D must not occur;
thus, Jp ∩ J c

0 ⊂ C ∩ Dc. Furthermore, by symmetry, the exclusive events C ∩ Dc and Cc ∩ D

are equiprobable, conditional on M = 1. Therefore,

P(Jp | M = 1) − P(J0 | M = 1) ≤ P(Jp ∩ J c
0 | M = 1) ≤ P(C ∩ Dc | M = 1) ≤ 1

2 . (4.4)

In view of the monotonicity of A, the choice at τp loses when M = 0 and the choice at τ0
wins when M ≥ 2. We conclude that

wN − w0 = P(Jp) − P(J0) =
N∑

m=0

[P(Jp | M = m) − P(J0 | M = m)] P(M = m)

≤ [P(Jp | M = 1) − P(J0 | M = 1)] P(M = 1)

≤ 1
2 × 1

2

= 1
4 ,

using (4.3) and (4.4).
Finally, when A = [0, 1]2 − [0, 1

2 ]2, F is uniform on [0, 1], and N = 2, it is easy to see
that w2 = 3

4 , w0 = 1
2 , and, thus, that the bound in the theorem is attained.

The application of (4.1) to the dual problem is less well motivated. Nevertheless, for this
problem there is a counterpart to Theorem 4.1. Let u0 denote the expected number of objects
observed when using the stopping times (τ0, τ

′
0).

Theorem 4.2. For any monotone A and any F ,

u0 − u

u
≤ 1

4
;

moreover, the bound is tight.
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Proof. Recall from (4.1) and (3.4) that the stopping sets for τ0 and τd are AA and B,
respectively. In the proof of Theorem 3.1 we learned that βH ≤ 1 − u−1 and, therefore, that
AA ⊂ B.

By monotonicity, an acceptable pair must include at least one object quality in AA. Thus,
τ ′

d ≥ τ0 and, so,
u = E(τ ′

d) ≥ E(τ0) = 1/a, (4.5)

τ0 having a geometric(a) distribution with a as defined in (4.2).
Now let Z = Yτ0 be the quality of the first object that is eligible when using τ0 (with Z = 1,

say, on the null event τ0 = ∞). For z ∈ AA, define

Bz = {y ∈ B : y 
∈ AA, (y, z) ∈ A}, bz = P(Bz),

and
Cz = {at least one quality from Bz occurs before time τ0}.

Then

P(Cz) = bz

a + bz

. (4.6)

On Cc
Z , the dual selection policy will procure precisely one object by time τ0, and the quality

of this object will not be greater than Z. Thus,

E(τ ′
0 − τ ′

d | Cc
Z, Z) ≤ 0. (4.7)

On CZ , τ ′
0 − τ ′

d is at most the waiting time after τ0 until an acceptable partner (determined
by comparison of its quality with Z) appears, and this waiting time is independent of Fτ0 . It
follows that

E(τ ′
0 − τ ′

d | CZ, Z) ≤ 1

P((Y, Z) ∈ A | Z)
≤ 1

a + bZ

. (4.8)

Therefore, employing (4.6), (4.7), and (4.8), we have

u0 − u = E(τ ′
0) − E(τ ′

d)

= E(E(τ ′
0 − τ ′

d | Z))

= E(P(CZ | Z) E(τ ′
0 − τ ′

d | CZ, Z) + P(Cc
Z | Z) E(τ ′

0 − τ ′
d | Cc

Z, Z))

≤ E

(
bZ

a + bZ

× 1

a + bZ

+ a

a + bZ

× 0

)

= E

(
bZ

(a + bZ)2

)
.

From this and (4.5) we obtain

u0 − u

u
≤ E

(
abZ

(a + bZ)2

)
= E

( 1
4 ((a + bZ)2 − (a − bZ)2)

(a + bZ)2

)
≤ 1

4
.

When A is not monotone, or in the context of the generalized model, τ0 has nothing to
recommend it. One alternative is then

τ ∗ = inf{t ≥ 1 : (Ys, Yt ) ∈ A for some s, 1 ≤ s < t},
which we think of, facetiously, as ‘stable door’ stopping. The properties of τ ∗ merit a separate
study.

https://doi.org/10.1239/jap/1158784942 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1158784942


740 J. PREATER

Acknowledgement

The author would like to thank the referee for a thorough reading and for a simplification of
the proof of (2.2).

References

[1] Assaf, D., Goldstein, L. and Samuel-Cahn, E. (2004). Two-choice optimal stopping. Adv. Appl. Prob. 36,
1116–1147.

[2] Chen, R. W., Nair, V. N. and Vardi, Y. (1984). Optimal sequential selection of N random variables under a
constraint. J. Appl. Prob. 21, 537–547.

[3] Chow, Y. S., Robbins, H. and Seigmund, D. (1971). Great Expectations: The Theory of Optimal Stopping.
Houghton Mifflin, Boston, MA.

[4] Coffman, E. G., Jr., Flatto, L. and Weber, R. R. (1987). Optimal selection of stochastic intervals under a
sum constraint. Adv. Appl. Prob. 19, 454–473.

[5] Kennedy, D. P. and Kertz, R. P. (1992). Comparisons of optimal stopping values and expected suprema for
i.i.d. r.v.’s with costs and discounting. Contemp. Math. 125, 217–230.

[6] Kühne, R. and Rüschendorf, L. (2002). On optimal two-stopping problems. In Limit Theorems in Probability
and Statistics, Vol. II, János Bolyai Mathematical Society, Budapest, pp. 261–271.

[7] Lippman, S. A. and McCall, J. J. (1976). The economics of job search: a survey: part I. Econom. Enquiry 14,
155–189.

[8] Preater, J. (1993). A note on monotonicity in optimal multiple stopping problems. Statist. Prob. Lett. 16,
407–410.

[9] Ramsey, D. M. (1994). Models of evolution, interaction and learning in sequential decision processes. Doctoral
Thesis, University of Bristol.

[10] Tamaki, M. (1988). A Bayesian approach to the best-choice problem. J. Amer. Statist. Soc. 83, 1129–1133.

https://doi.org/10.1239/jap/1158784942 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1158784942

	1 Introduction and model
	2 The primal problem
	2.1 Preliminaries
	2.2 A real sequence
	2.3 Main theorem
	2.4 An illustration

	3 The dual problem
	4 Complements
	4.1 Generalization
	4.2 Ignorance

	Acknowledgement
	References

