
23 Foreign Function Interface

This chapter includes contributions from Jeremy Yallop.

OCaml has several options available to interact with non-OCaml code. The compiler

can link with external system libraries via C code and also can produce standalone

native object �les that can be embedded within other non-OCaml applications.

The mechanism by which code in one programming language can invoke routines

in a di�erent programming language is called a foreign function interface. This chapter

will:

• Show how to call routines in C libraries directly from your OCaml code

• Teach you how to build higher-level abstractions in OCaml from the low-level C

bindings

• Work through some full examples for binding a terminal interface and UNIX date/-

time functions

The simplest foreign function interface in OCaml doesn't even require you to write

any C code at all! The Ctypes library lets you de�ne the C interface in pure OCaml, and

the library then takes care of loading the C symbols and invoking the foreign function

call.

Let's dive straight into a realistic example to show you how the library looks. We'll

create a binding to the Ncurses terminal toolkit, as it's widely available onmost systems

and doesn't have any complex dependencies.

Installing the Ctypes Library

If you want to use Ctypes interactively, you'll also need to install the libffi library as

a prerequisite to using Ctypes. It's a fairly popular library and should be available in

your OS package manager. If you're using opam 2.1 or higher, it will prompt you to

install it automatically when you install ctypes-foreign.

$ opam install ctypes ctypes-foreign
$ utop
require "ctypes-foreign" ;;

You'll also need the Ncurses library for the �rst example. This comes preinstalled

on many operating systems such as macOS, and Debian Linux provides it as the

libncurses5-dev package.

https://doi.org/10.1017/9781009129220.027 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.027

406 Foreign Function Interface

23.1 Example: A Terminal Interface

Ncurses is a library to help build terminal-independent text interfaces in a reasonably

e�cient way. It's used in console mail clients like Mutt and Pine, and console web

browsers such as Lynx.

The full C interface is quite large and is explained in the online documentation1 .

We'll just use the small excerpt, since we just want to demonstrate Ctypes in action:

typedef struct _win_st WINDOW;
typedef unsigned int chtype;

WINDOW *initscr (void);
WINDOW *newwin (int, int, int, int);
void endwin (void);
void refresh (void);
void wrefresh (WINDOW *);
void addstr (const char *);
int mvwaddch (WINDOW *, int, int, const chtype);
void mvwaddstr (WINDOW *, int, int, char *);
void box (WINDOW *, chtype, chtype);
int cbreak (void);

The Ncurses functions either operate on the current pseudoterminal or on a window

that has been created via newwin. The WINDOW structure holds the internal library state

and is considered abstract outside of Ncurses. Ncurses clients just need to store the

pointer somewhere and pass it back to Ncurses library calls, which in turn dereference

its contents.

Note that there are over 200 library calls in Ncurses, so we're only binding a select

few for this example. The initscr and newwin create WINDOW pointers for the global and

subwindows, respectively. The mvwaddrstr takes a window, x/y o�sets, and a string

and writes to the screen at that location. The terminal is only updated after refresh or

wrefresh are called.

Ctypes provides anOCaml interface that lets youmap theseC functions to equivalent

OCaml functions. The library takes care of converting OCaml function calls and

arguments into the C calling convention, invoking the foreign call within the C library

and �nally returning the result as an OCaml value.

Let's begin by de�ning the basic values we need, starting with the WINDOW state

pointer:

open Ctypes

type window = unit ptr

let window : window typ = ptr void

We don't know the internal representation of the window pointer, so we treat it as

a C void pointer. We'll improve on this later on in the chapter, but it's good enough

for now. The second statement de�nes an OCaml value that represents the WINDOW C

pointer. This value is used later in the Ctypes function de�nitions:

1 http://www.gnu.org/software/ncurses/

https://doi.org/10.1017/9781009129220.027 Published online by Cambridge University Press

http://www.gnu.org/software/ncurses/
https://doi.org/10.1017/9781009129220.027

23.1 Example: A Terminal Interface 407

open Foreign

let initscr = foreign "initscr" (void @-> returning window)

That's all we need to invoke our �rst function call to initscr to initialize the

terminal. The foreign function accepts two parameters:

• The C function call name, which is looked up using the dlsym POSIX function.

• Avalue that de�nes the complete set of C function arguments and its return type. The

@-> operator adds an argument to the C parameter list, and returning terminates

the parameter list with the return type.

The remainder of the Ncurses binding simply expands on these de�nitions:

let newwin =
foreign "newwin" (int @-> int @-> int @-> int @-> returning window)

let endwin = foreign "endwin" (void @-> returning void)
let refresh = foreign "refresh" (void @-> returning void)
let wrefresh = foreign "wrefresh" (window @-> returning void)
let addstr = foreign "addstr" (string @-> returning void)

let mvwaddch =
foreign
"mvwaddch"
(window @-> int @-> int @-> char @-> returning void)

let mvwaddstr =
foreign
"mvwaddstr"
(window @-> int @-> int @-> string @-> returning void)

let box = foreign "box" (window @-> char @-> char @-> returning void)
let cbreak = foreign "cbreak" (void @-> returning int)

These de�nitions are all straightforward mappings from the C declarations in the

Ncurses header �le. Note that the string and int values here are nothing to do with

OCaml type declarations; instead, they are values that come from opening the Ctypes

module at the top of the �le.

Most of the parameters in the Ncurses example represent fairly simple scalar C

types, except for window (a pointer to the library state) and string, which maps from

OCaml strings that have a speci�c length onto C character bu�ers whose length is

de�ned by a terminating null character that immediately follows the string data.

The module signature for ncurses.mli looks much like a normal OCaml signa-

ture. You can infer it directly from the ncurses.ml by running a command called

ocaml-print-intf, which you can install with opam.

$ ocaml-print-intf ncurses.ml
type window = unit Ctypes.ptr
val window : window Ctypes.typ
val initscr : unit -> window
val newwin : int -> int -> int -> int -> window
val endwin : unit -> unit
val refresh : unit -> unit

https://doi.org/10.1017/9781009129220.027 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.027

408 Foreign Function Interface

val wrefresh : window -> unit
val addstr : string -> unit
val mvwaddch : window -> int -> int -> char -> unit
val mvwaddstr : window -> int -> int -> string -> unit
val box : window -> char -> char -> unit
val cbreak : unit -> int

The ocaml-print-intf tool examines the default signature inferred by the compiler

for a module �le and prints it out as human-readable output. You can copy this into

a corresponding mli �le and customize it to improve its safety for external callers by

making some of its internals more abstract.

Here's the customized ncurses.mli interface that we can safely use from other

libraries:

type window

val window : window Ctypes.typ
val initscr : unit -> window
val endwin : unit -> unit
val refresh : unit -> unit
val wrefresh : window -> unit
val newwin : int -> int -> int -> int -> window
val mvwaddch : window -> int -> int -> char -> unit
val addstr : string -> unit
val mvwaddstr : window -> int -> int -> string -> unit
val box : window -> char -> char -> unit
val cbreak : unit -> int

Note that the window type is now abstract in the signature, to ensure that window

pointers can only be constructed via the Ncurses.initscr function. This prevents

void pointers obtained from other sources from being mistakenly passed to an Ncurses

library call.

Now compile a �hello world� terminal drawing program to tie this all together:

open Ncurses

let () =
let main_window = initscr () in
ignore (cbreak ());
let small_window = newwin 10 10 5 5 in
mvwaddstr main_window 1 2 "Hello";
mvwaddstr small_window 2 2 "World";
box small_window '\000' '\000';
refresh ();
Unix.sleep 1;
wrefresh small_window;
Unix.sleep 5;
endwin ()

The hello executable is compiled by linking with the ctypes-foreign package. We

also add in a (flags) directive to instruct the compiler to link in the system ncurses

C library to the executable. If you do not specify the C library in the dune �le, then

the program may build successfully, but attempting to invoke the executable will fail

as not all of the dependencies will be available.

https://doi.org/10.1017/9781009129220.027 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.027

23.2 Basic Scalar C Types 409

(executable
(name hello)
(libraries ctypes-foreign)
(flags :standard -cclib -lncurses))

And now we can build it with Dune.

$ dune build hello.exe

Running hello.exe should now display a Hello World in your terminal!

Ctypes wouldn't be very useful if it were limited to only de�ning simple C types,

of course. It provides full support for C pointer arithmetic, pointer conversions, and

reading and writing through pointers, using OCaml functions as function pointers to

C code, as well as struct and union de�nitions.

We'll go over some of these features in more detail for the remainder of the chapter

by using some POSIX date functions as running examples.

Linking Modes: lib� and Stub Generation

The core of ctypes is a set of OCaml combinators for describing the structure of C

types (numeric types, arrays, pointers, structs, unions and functions). You can then use

these combinators to describe the types of the C functions that you want to call. There

are two entirely distinct ways to actually link to the system libraries that contain the

function de�nitions: dynamic linking and stub generation.

The ctypes-foreign package used in this chapter uses the low-level libffi library

to dynamically open C libraries, search for the relevant symbols for the function call

being invoked, andmarshal the function parameters according to the operating system's

application binary interface (ABI). While much of this happens behind-the-scenes and

permits convenient interactive programmingwhile developing bindings, it is not always

the solution you want to use in production.

The ctypes-cstubs package provides an alternative mechanism to shift much of the

linking work to be done once at build time, instead of doing it on every invocation of the

function. It does this by taking the same OCaml binding descriptions, and generating

intermediate C source �les that contain the corresponding C/OCaml glue code. When

these are compiled with a normal dune build, the generated C code is treated just

as any handwritten code might be, and compiled against the system header �les. This

allows certain C values to be used that cannot be dynamically probed (e.g. preprocessor

macro de�nitions), and can also catch de�nition errors if there is a C header mismatch

at compile time.

C rarely makes life easier though. There are some de�nitions that cannot be entirely

expressed as static C code (e.g. dynamic function pointers), and those require the use

of ctypes-foreign (and libffi). Using ctypes does make it possible to share the

majority of de�nitions across both linking modes, all while avoiding writing C code

directly.

While we do not cover the details of C stub generation further in this chapter, you can

read more about how to use this mode in the �Dealing with foreign libraries� chapter

in the dune manual.

https://doi.org/10.1017/9781009129220.027 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.027

410 Foreign Function Interface

23.2 Basic Scalar C Types

First, let's look at how to de�ne basic scalar C types. Every C type is represented by

an OCaml equivalent via the single type de�nition:

type 'a typ

Ctypes.typ is the type of values that represents C types to OCaml. There are two types

associated with each instance of typ:

• The C type used to store and pass values to the foreign library.

• The corresponding OCaml type. The 'a type parameter contains the OCaml type

such that a value of type t typ is used to read and write OCaml values of type t.

There are various other uses of typ values within Ctypes, such as:

• Constructing function types for binding native functions

• Constructing pointers for reading and writing locations in C-managed storage

• Describing component �elds of structures, unions, and arrays

Here are the de�nitions for most of the standard C99 scalar types, including some

platform-dependent ones:

val void : unit typ
val char : char typ
val schar : int typ
val short : int typ
val int : int typ
val long : long typ
val llong : llong typ
val nativeint : nativeint typ

val int8_t : int typ
val int16_t : int typ
val int32_t : int32 typ
val int64_t : int64 typ
val uchar : uchar typ
val uint8_t : uint8 typ
val uint16_t : uint16 typ
val uint32_t : uint32 typ
val uint64_t : uint64 typ
val size_t : size_t typ
val ushort : ushort typ
val uint : uint typ
val ulong : ulong typ
val ullong : ullong typ

val float : float typ
val double : float typ

val complex32 : Complex.t typ
val complex64 : Complex.t typ

These values are all of type 'a typ, where the value name (e.g., void) tells you

the C type and the 'a component (e.g., unit) is the OCaml representation of that C

https://doi.org/10.1017/9781009129220.027 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.027

23.3 Pointers and Arrays 411

type. Most of the mappings are straightforward, but some of them need a bit more

explanation:

• Void values appear in OCaml as the unit type. Using void in an argument or

result type speci�cation produces an OCaml function that accepts or returns

unit. Dereferencing a pointer to void is an error, as in C, and will raise the

IncompleteType exception.

• The C size_t type is an alias for one of the unsigned integer types. The actual

size and alignment requirements for size_t varies between platforms. Ctypes

provides an OCaml size_t type that is aliased to the appropriate integer type.

• OCaml only supports double-precision �oating-point numbers, and so the C float

and double types both map onto the OCaml float type, and the C float complex

and double complex types bothmap onto theOCaml double-precision Complex.t

type.

23.3 Pointers and Arrays

Pointers are at the heart of C, so they are necessarily part of Ctypes, which provides sup-

port for pointer arithmetic, pointer conversions, reading and writing through pointers,

and passing and returning pointers to and from functions.

We've already seen a simple use of pointers in the Ncurses example. Let's start a

new example by binding the following POSIX functions:

time_t time(time_t *);
double difftime(time_t, time_t);
char *ctime(const time_t *timep);

The time function returns the current calendar time and is a simple start. The �rst

step is to open some of the Ctypes modules:

Ctypes The Ctypes module provides functions for describing C types in OCaml.

PosixTypes The PosixTypesmodule includes some extra POSIX-speci�c types (such

as time_t).

Foreign The Foreignmodule exposes the foreign function that makes it possible to

invoke C functions.

With these opens in place, we can now create a binding to time directly from the

toplevel.

#require "ctypes-foreign";;
#require "ctypes.top";;
open Core;;
open Ctypes;;
open PosixTypes ;;
open Foreign;;
let time = foreign "time" (ptr time_t @-> returning time_t);;
val time : time_t Ctypes_static.ptr -> time_t = <fun>

https://doi.org/10.1017/9781009129220.027 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.027

412 Foreign Function Interface

The foreign function is themain link betweenOCaml andC. It takes two arguments:

the name of theC function to bind, and a value describing the type of the bound function.

In the time binding, the function type speci�es one argument of type ptr time_t and

a return type of time_t.

We can now call time immediately in the same toplevel. The argument is actually

optional, so we'll just pass a null pointer that has been coerced into becoming a null

pointer to time_t:

let cur_time = time (from_voidp time_t null);;
val cur_time : time_t = <abstr>

Since we're going to call time a few times, let's create a wrapper function that passes

the null pointer through:

let time' () = time (from_voidp time_t null);;
val time' : unit -> time_t = <fun>

Since time_t is an abstract type, we can't actually do anything useful with it directly.

We need to bind a second function to do anything useful with the return values from

time. We'll move on to difftime; the second C function in our prototype list:

let difftime = foreign "difftime" (time_t @-> time_t @-> returning
double);;

val difftime : time_t -> time_t -> float = <fun>

Here's the resulting function difftime in action.

let delta =
let t1 = time' () in
Unix.sleep 2;
let t2 = time' () in
difftime t2 t1;;

val delta : float = 2.

The binding to difftime above is su�cient to compare two time_t values.

23.3.1 Allocating Typed Memory for Pointers

Let's look at a slightly less trivial example where we pass a nonnull pointer to a

function. Continuing with the theme from earlier, we'll bind to the ctime function,

which converts a time_t value to a human-readable string:

let ctime = foreign "ctime" (ptr time_t @-> returning string);;
val ctime : time_t Ctypes_static.ptr -> string = <fun>

The binding is continued in the toplevel to add to our growing collection. However,

we can't just pass the result of time to ctime:

ctime (time' ());;
Line 1, characters 7-17:

Error: This expression has type time_t but an expression was expected

of type

time_t Ctypes_static.ptr = (time_t, [`C]) pointer

This is because ctime needs a pointer to the time_t rather than passing it by value.

We thus need to allocate some memory for the time_t and obtain its memory address:

https://doi.org/10.1017/9781009129220.027 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.027

23.3 Using Views to Map Complex Values 413

let t_ptr = allocate time_t (time' ());;
...

The allocate function takes the type of the memory to be allocated and the initial

value and it returns a suitably typed pointer. We can now call ctime passing the pointer

as an argument:

ctime t_ptr;;
...

23.3.2 Using Views to Map Complex Values

While scalar types typically have a 1:1 representation, other C types require extra work

to convert them into OCaml. Views create new C type descriptions that have special

behavior when used to read or write C values.

We've already used one view in the de�nition of ctime earlier. The string view

wraps the C type char * (written in OCaml as ptr char) and converts between the C

and OCaml string representations each time the value is written or read.

Here is the type signature of the Ctypes.view function:

val view :
read:('a -> 'b) ->
write:('b -> 'a) ->
'a typ -> 'b typ

Ctypes has some internal low-level conversion functions that map between an

OCaml string and a C character bu�er by copying the contents into the respective

data structure. They have the following type signature:

val string_of_char_ptr : char ptr -> string
val char_ptr_of_string : string -> char ptr

Given these functions, the de�nition of the Ctypes.string value that uses views is

quite simple:

let string =
view (char ptr)
~read:string_of_char_ptr
~write:char_ptr_of_string

The type of this string function is a normal typ with no external sign of the use of

the view function:

val string : string typ

OCaml Strings Versus C Character Bu�ers

Although OCaml strings may look like C character bu�ers from an interface perspec-

tive, they're very di�erent in terms of their memory representations.

OCaml strings are stored in the OCaml heap with a header that explicitly de�nes

their length. C bu�ers are also �xed-length, but by convention, a C string is terminated

https://doi.org/10.1017/9781009129220.027 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.027

414 Foreign Function Interface

by a null (a \0 byte) character. The C string functions calculate their length by scanning

the bu�er until the �rst null character is encountered.

This means that you need to be careful that OCaml strings that you pass to C

functions don't contain any null values, since the �rst occurrence of a null character

will be treated as the end of the C string. Ctypes also defaults to a copying interface for

strings, which means that you shouldn't use them when you want the library to mutate

the bu�er in-place. In that situation, use the Ctypes Bigarray support to pass memory

by reference instead.

23.4 Structs and Unions

The C constructs struct and union make it possible to build new types from existing

types. Ctypes contains counterparts that work similarly.

23.4.1 De�ning a Structure

Let's improve the timer function that we wrote earlier. The POSIX function

gettimeofday retrieves the time with microsecond resolution. The signature of

gettimeofday is as follows, including the structure de�nitions:

struct timeval {
long tv_sec;
long tv_usec;

};

int gettimeofday(struct timeval *, struct timezone *tv);

Using Ctypes, we can describe this type as follows in our toplevel, continuing on

from the previous de�nitions:

type timeval;;
type timeval

let timeval : timeval structure typ = structure "timeval";;
val timeval : timeval structure typ =

Ctypes_static.Struct

{Ctypes_static.tag = "timeval";

spec = Ctypes_static.Incomplete {Ctypes_static.isize = 0}; fields

= []}

The �rst command de�nes a new OCaml type timeval that we'll use to instantiate

the OCaml version of the struct. This is a phantom type that exists only to distinguish

the underlying C type from other pointer types. The particular timeval structure now

has a distinct type from other structures we de�ne elsewhere, which helps to avoid

getting them mixed up.

The second command calls structure to create a fresh structure type. At this point,

the structure type is incomplete: we can add �elds but cannot yet use it in foreign

calls or use it to create values.

https://doi.org/10.1017/9781009129220.027 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.027

23.4 Incomplete Structure De�nitions 415

23.4.2 Adding Fields to Structures

The timeval structure de�nition still doesn't have any �elds, so we need to add those

next:

let tv_sec = field timeval "tv_sec" long;;
val tv_sec : (Signed.long, timeval structure) field =

{Ctypes_static.ftype = Ctypes_static.Primitive

Ctypes_primitive_types.Long;

foffset = 0; fname = "tv_sec"}

let tv_usec = field timeval "tv_usec" long;;
val tv_usec : (Signed.long, timeval structure) field =

{Ctypes_static.ftype = Ctypes_static.Primitive

Ctypes_primitive_types.Long;

foffset = 8; fname = "tv_usec"}

seal timeval;;
- : unit = ()

The field function appends a �eld to the structure, as shown with tv_sec and

tv_usec. Structure �elds are typed accessors that are associated with a particular

structure, and they correspond to the labels in C.

Every �eld addition mutates the structure variable and records a new size (the exact

value of which depends on the type of the �eld that was just added). Once we seal

the structure, we will be able to create values using it, but adding �elds to a sealed

structure is an error.

23.4.3 Incomplete Structure De�nitions

Since gettimeofday needs a struct timezone pointer for its second argument, we

also need to de�ne a second structure type:

type timezone;;
type timezone

let timezone : timezone structure typ = structure "timezone";;
val timezone : timezone structure typ =

Ctypes_static.Struct

{Ctypes_static.tag = "timezone";

spec = Ctypes_static.Incomplete {Ctypes_static.isize = 0}; fields

= []}

We don't ever need to create struct timezone values, so we can leave this struct as

incomplete without adding any �elds or sealing it. If you ever try to use it in a situation

where its concrete size needs to be known, the library will raise an IncompleteType

exception.

We're �nally ready to bind to gettimeofday now:

let gettimeofday = foreign "gettimeofday" ~check_errno:true
(ptr timeval @-> ptr timezone @-> returning int);;

val gettimeofday :

timeval structure Ctypes_static.ptr ->

timezone structure Ctypes_static.ptr -> int = <fun>

There's one other new feature here: the returning_checking_errno function be-

haves like returning, except that it checks whether the bound C function modi�es

https://doi.org/10.1017/9781009129220.027 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.027

416 Foreign Function Interface

the C error �ag. Changes to errno are mapped into OCaml exceptions and raise a

Unix.Unix_error exception just as the standard library functions do.

As before, we can create a wrapper to make gettimeofday easier to use. The

functions make, addr, and getf create a structure value, retrieve the address of a

structure value, and retrieve the value of a �eld from a structure.

let gettimeofday' () =
let tv = make timeval in
ignore (gettimeofday (addr tv) (from_voidp timezone null) : int);
let secs = Signed.Long.to_int (getf tv tv_sec) in
let usecs = Signed.Long.to_int (getf tv tv_usec) in
Float.of_int secs +. Float.of_int usecs /. 1_000_000.0;;

val gettimeofday' : unit -> float = <fun>

And we can now call that function to get the current time.

gettimeofday' ();;
- : float = 1650045389.278065

Recap: a Time-Printing Command

We built up a lot of bindings in the previous section, so let's recap themwith a complete

example that ties it together with a command-line frontend:

open Core
open Ctypes
open PosixTypes
open Foreign

let time = foreign "time" (ptr time_t @-> returning time_t)

let difftime =
foreign "difftime" (time_t @-> time_t @-> returning double)

let ctime = foreign "ctime" (ptr time_t @-> returning string)

type timeval

let timeval : timeval structure typ = structure "timeval"
let tv_sec = field timeval "tv_sec" long
let tv_usec = field timeval "tv_usec" long
let () = seal timeval

type timezone

let timezone : timezone structure typ = structure "timezone"

let gettimeofday =
foreign
"gettimeofday"
~check_errno:true
(ptr timeval @-> ptr timezone @-> returning int)

let time' () = time (from_voidp time_t null)

let gettimeofday' () =

https://doi.org/10.1017/9781009129220.027 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.027

23.4 Recap: a Time-Printing Command 417

let tv = make timeval in
ignore (gettimeofday (addr tv) (from_voidp timezone null) : int);
let secs = Signed.Long.to_int (getf tv tv_sec) in
let usecs = Signed.Long.to_int (getf tv tv_usec) in
Float.of_int secs +. (Float.of_int usecs /. 1_000_000.)

let float_time () = printf "%f%!\n" (gettimeofday' ())

let ascii_time () =
let t_ptr = allocate time_t (time' ()) in
printf "%s%!" (ctime t_ptr)

let () =
Command.basic
~summary:"Display the current time in various formats"
(let%map_open.Command human =
flag "-a" no_arg ~doc:" Human-readable output format"

in
if human then ascii_time else float_time)

|> Command.run

This can be compiled and run in the usual way:

(executable
(name datetime)
(preprocess (pps ppx_jane))
(libraries core ctypes-foreign))

$ dune build datetime.exe
$./_build/default/datetime.exe
1633964258.014484
$./_build/default/datetime.exe -a
Mon Oct 11 15:57:38 2021

Why Do We Need to Use returning?

The alert reader may be curious about why all these function de�nitions have to be

terminated by returning:

(* correct types *)
val time: ptr time_t @-> returning time_t
val difftime: time_t @-> time_t @-> returning double

The returning function may appear super�uous here. Why couldn't we simply give

the types as follows?

(* incorrect types *)
val time: ptr time_t @-> time_t
val difftime: time_t @-> time_t @-> double

The reason involves higher types and two di�erences between the way that functions

are treated in OCaml and C. Functions are �rst-class values in OCaml, but not in C.

For example, in C it is possible to return a function pointer from a function, but not to

return an actual function.

Secondly, OCaml functions are typically de�ned in a curried style. The signature of

a two-argument function is written as follows:

https://doi.org/10.1017/9781009129220.027 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.027

418 Foreign Function Interface

val curried : int -> int -> int

but this really means:

val curried : int -> (int -> int)

and the arguments can be supplied one at a time to create a closure. In contrast, C

functions receive their arguments all at once. The equivalent C function type is the

following:

int uncurried_C(int, int);

and the arguments must always be supplied together:

uncurried_C(3, 4);

A C function that's written in curried style looks very di�erent:

/* A function that accepts an int, and returns a function
pointer that accepts a second int and returns an int. */

typedef int (function_t)(int);
function_t *curried_C(int);

/* supply both arguments */
curried_C(3)(4);

/* supply one argument at a time */
function_t *f = curried_C(3); f(4);

The OCaml type of uncurried_C when bound by Ctypes is int -> int -> int:

a two-argument function. The OCaml type of curried_C when bound by ctypes is

int -> (int -> int): a one-argument function that returns a one-argument function.

In OCaml, of course, these types are absolutely equivalent. Since the OCaml types

are the same but the C semantics are quite di�erent, we need some kind of marker to

distinguish the cases. This is the purpose of returning in function de�nitions.

23.4.4 De�ning Arrays

Arrays in C are contiguous blocks of the same type of value. Any of the basic types

de�ned previously can be allocated as blocks via the Array module:

module Array : sig
type 'a t = 'a array

val get : 'a t -> int -> 'a
val set : 'a t -> int -> 'a -> unit
val of_list : 'a typ -> 'a list -> 'a t
val to_list : 'a t -> 'a list
val length : 'a t -> int
val start : 'a t -> 'a ptr
val from_ptr : 'a ptr -> int -> 'a t
val make : 'a typ -> ?initial:'a -> int -> 'a t

end

The array functions are similar to those in the standard library Arraymodule except

https://doi.org/10.1017/9781009129220.027 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.027

23.5 Passing Functions to C 419

that they operate on arrays stored using the �at C representation rather than the OCaml

representation described in Chapter 24 (Memory Representation of Values).

As with standard OCaml arrays, the conversion between arrays and lists requires

copying the values, which can be expensive for large data structures. Notice that you

can also convert an array into a ptr pointer to the head of the underlying bu�er, which

can be useful if you need to pass the pointer and size arguments separately to a C

function.

Unions in C are named structures that can be mapped onto the same underlying

memory. They are also fully supported in Ctypes, but we won't go into more detail

here.

Pointer Operators for Dereferencing and Arithmetic

Ctypes de�nes a number of operators that let you manipulate pointers and arrays just

as you would in C. The Ctypes equivalents do have the bene�t of being more strongly

typed, of course.

• !@ p will dereference the pointer p.
• p <-@ v will write the value v to the address p.
• p +@ n computes the address of the nth next element, if p points to an array element.
• p -@ n computes the address of the nth previous element, if p points to an array

element.

There are also other useful non-operator functions available (see the Ctypes docu-

mentation), such as pointer di�erencing and comparison.

23.5 Passing Functions to C

It's also straightforward to pass OCaml function values to C. The C standard library

function qsort sorts arrays of elements using a comparison function passed in as a

function pointer. The signature for qsort is:

void qsort(void *base, size_t nmemb, size_t size,
int(*compar)(const void *, const void *));

C programmers often use typedef to make type de�nitions involving function

pointers easier to read. Using a typedef, the type of qsort looks a little more palatable:

typedef int(compare_t)(const void *, const void *);

void qsort(void *base, size_t nmemb, size_t size, compare_t *);

This also happens to be a close mapping to the corresponding Ctypes de�nition.

Since type descriptions are regular values, we can just use let in place of typedef and

end up with working OCaml bindings to qsort:

open Core open Ctypes open PosixTypes open Foreign open
Ctypes_static;;

let compare_t = ptr void @-> ptr void @-> returning int;;

https://doi.org/10.1017/9781009129220.027 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.027

420 Foreign Function Interface

val compare_t : (unit Ctypes_static.ptr -> unit Ctypes_static.ptr ->

int) fn =

Function (Pointer Void,

Function (Pointer Void, Returns (Primitive

Ctypes_primitive_types.Int)))

let qsort =
foreign "qsort"
(ptr void @-> size_t @-> size_t @-> funptr compare_t
@-> returning void);;

val qsort :

unit Ctypes_static.ptr ->

size_t ->

size_t -> (unit Ctypes_static.ptr -> unit Ctypes_static.ptr -> int)

-> unit =

<fun>

We only use compare_t once (in the qsort de�nition), so you can choose to inline

it in the OCaml code if you prefer. As the type shows, the resulting qsort value is a

higher-order function, since the fourth argument is itself a function.

Arrays created usingCtypes have a richer runtime structure thanC arrays, sowe don't

need to pass size information around. Furthermore, we can use OCaml polymorphism

in place of the unsafe void ptr type.

23.5.1 Example: A Command-Line Quicksort

The following is a command-line tool that uses the qsort binding to sort all of the

integers supplied on the standard input:

open Core
open Ctypes
open PosixTypes
open Foreign

let compare_t = ptr void @-> ptr void @-> returning int

let qsort =
foreign
"qsort"
(ptr void
@-> size_t
@-> size_t
@-> funptr compare_t
@-> returning void)

let qsort' cmp arr =
let open Unsigned.Size_t in
let ty = CArray.element_type arr in
let len = of_int (CArray.length arr) in
let elsize = of_int (sizeof ty) in
let start = to_voidp (CArray.start arr) in
let compare l r = cmp !@(from_voidp ty l) !@(from_voidp ty r) in
qsort start len elsize compare

let sort_stdin () =

https://doi.org/10.1017/9781009129220.027 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.027

23.5 Example: A Command-Line Quicksort 421

let array =
In_channel.input_line_exn In_channel.stdin
|> String.split ~on:' '
|> List.map ~f:int_of_string
|> CArray.of_list int

in
qsort' Int.compare array;
CArray.to_list array
|> List.map ~f:Int.to_string
|> String.concat ~sep:" "
|> print_endline

let () =
Command.basic_spec
~summary:"Sort integers on standard input"
Command.Spec.empty
sort_stdin

|> Command.run

Compile it in the usual way with dune and test it against some input data, and also

build the inferred interface so we can examine it more closely:

(executable
(name qsort)
(libraries core ctypes-foreign))

$ echo 2 4 1 3 | dune exec ./qsort.exe
1 2 3 4

The inferred mli shows us the types of the raw qsort binding and also the qsort'

wrapper function.

$ ocaml-print-intf qsort.ml
val compare_t :
(unit Ctypes_static.ptr -> unit Ctypes_static.ptr -> int) Ctypes.fn

val qsort :
unit Ctypes_static.ptr ->
PosixTypes.size_t ->
PosixTypes.size_t ->
(unit Ctypes_static.ptr -> unit Ctypes_static.ptr -> int) -> unit

val qsort' : ('a -> 'a -> int) -> 'a Ctypes.CArray.t -> unit
val sort_stdin : unit -> unit

The qsort' wrapper function has a much more canonical OCaml interface than the

raw binding. It accepts a comparator function and a Ctypes array, and returns unit.

Using qsort' to sort arrays is straightforward. Our example code reads the standard

input as a list, converts it to a C array, passes it through qsort, and outputs the result to

the standard output. Again, remember to not confuse the Ctypes.Array module with

the Core.Array module: the former is in scope since we opened Ctypes at the start of

the �le.

Lifetime of Allocated Ctypes

Values allocated via Ctypes (i.e., using allocate, Array.make, and so on) will not

be garbage-collected as long as they are reachable from OCaml values. The system

https://doi.org/10.1017/9781009129220.027 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.027

422 Foreign Function Interface

memory they occupy is freed when they do become unreachable, via a �nalizer function

registered with the garbage collector (GC).

The de�nition of reachability for Ctypes values is a little di�erent from conventional

OCaml values, though. The allocation functions return an OCaml-managed pointer to

the value, and as long as some derivative pointer is still reachable by the GC, the value

won't be collected.

�Derivative� means a pointer that's computed from the original pointer via arith-

metic, so a reachable reference to an array element or a structure �eld protects the

whole object from collection.

A corollary of the preceding rule is that pointers written into the C heap don't have

any e�ect on reachability. For example, if you have a C-managed array of pointers to

structs, then you'll need some additional way of keeping the structs themselves around

to protect them from collection. You could achieve this via a global array of values on

the OCaml side that would keep them live until they're no longer needed.

Functions passed to C have similar considerations regarding lifetime. On the OCaml

side, functions created at runtime may be collected when they become unreachable.

As we've seen, OCaml functions passed to C are converted to function pointers, and

function pointers written into the C heap have no e�ect on the reachability of the

OCaml functions they reference. With qsort things are straightforward, since the

comparison function is only used during the call to qsort itself. However, other C

libraries may store function pointers in global variables or elsewhere, in which case

you'll need to take care that the OCaml functions you pass to them aren't prematurely

garbage-collected.

23.6 Learning More About C Bindings

The Ctypes distribution2 contains a number of larger-scale examples, including:

• Bindings to the POSIX fts API, which demonstrates C callbacks more comprehen-

sively

• A more complete Ncurses binding than the example we opened the chapter with

• A comprehensive test suite that covers the complete library, and can provide useful

snippets for your own bindings

This chapter hasn't really needed you to understand the innards of OCaml at all.

Ctypes does its best to make function bindings easy, but the rest of this part will also

�ll you in about interactions with OCamlmemory layout inChapter 24 (MemoryRepre-

sentation of Values) and automatic memorymanagement inChapter 25 (Understanding

the Garbage Collector).

Ctypes gives OCaml programs access to the C representation of values, shielding

you from the details of the OCaml value representation, and introduces an abstraction

layer that hides the details of foreign calls.While this covers a wide variety of situations,

2 http://github.com/ocamllabs/ocaml-ctypes

https://doi.org/10.1017/9781009129220.027 Published online by Cambridge University Press

http://github.com/ocamllabs/ocaml-ctypes
https://doi.org/10.1017/9781009129220.027

23.6 Struct Memory Layout 423

it's sometimes necessary to look behind the abstraction to obtain �ner control over the

details of the interaction between the two languages.

You can �nd more information about the C interface in several places:

• The standard OCaml foreign function interface allows you to glue OCaml and C

together from the other side of the boundary, by writing C functions that operate

on the OCaml representation of values. You can �nd details of the standard

interface in the OCaml manual3 and in the book Developing Applications with

Objective Caml4 .

• Florent Monnier maintains an excellent online tutorial5 that provides examples of

how to call OCaml functions from C. This covers a wide variety of OCaml data

types and also more complex callbacks between C and OCaml.

23.6.1 Struct Memory Layout

The C language gives implementations a certain amount of freedom in choosing how

to lay out structs in memory. There may be padding between members and at the end of

the struct, in order to satisfy the memory alignment requirements of the host platform.

Ctypes uses platform-appropriate size and alignment information to replicate the struct

layout process. OCaml and C will have consistent views about the layout of the struct

as long as you declare the �elds of a struct in the same order and with the same types

as the C library you're binding to.

However, this approach can lead to di�culties when the �elds of a struct aren't fully

speci�ed in the interface of a library. The interface may list the �elds of a structure

without specifying their order, ormake certain �elds available only on certain platforms,

or insert undocumented �elds into struct de�nitions for performance reasons. For

example, the struct timeval de�nition used in this chapter accurately describes the

layout of the struct on common platforms, but implementations on some more unusual

architectures include additional padding members that will lead to strange behavior in

the examples.

The Cstubs subpackage of Ctypes addresses this issue. Rather than simply assuming

that struct de�nitions given by the user accurately re�ect the actual de�nitions of structs

used in C libraries, Cstubs generates code that uses the C library headers to discover

the layout of the struct. The good news is that the code that you write doesn't need

to change much. Cstubs provides alternative implementations of the field and seal

functions that you've already used to describe struct timeval; instead of computing

member o�sets and sizes appropriate for the platform, these implementations obtain

them directly from C.

The details of using Cstubs are available in the online documentation6 , along with

instructions on integration with autoconf platform portability instructions.

3 https://ocaml.org/manual/intfc.html
4 http://caml.inria.fr/pub/docs/oreilly-book/ocaml-ora-book.pdf
5 http://decapode314.free.fr/ocaml/ocaml-wrapping-c.html
6 https://ocamllabs.github.io/ocaml-ctypes

https://doi.org/10.1017/9781009129220.027 Published online by Cambridge University Press

https://ocaml.org/manual/intfc.html
http://caml.inria.fr/pub/docs/oreilly-book/ocaml-ora-book.pdf
http://decapode314.free.fr/ocaml/ocaml-wrapping-c.html
https://ocamllabs.github.io/ocaml-ctypes
https://doi.org/10.1017/9781009129220.027

