
LETTER TO THE EDITOR

Dear Editor,

In the December 1988 issue of the Journal ofApplied Probability the paper [1] by
V. Sharma about stability of slotted ALOHA systems was published. The same result
was published in my paper [2] in March 1988 issue of the Siberian Mathematical
Journal. Although the results of these papers are identical, the methods are different. In
[2] general theorems due to Borovkov [3] are used, whereas in [1] in fact the author
proves these general theorems in a very special situation. The approach used in [2]
allows the result to be established in a shorter and more natural way. I think that this is of
interest to the readership of JAP, and so I shall describe this approach briefly here.

Let Mbe the number of users, a;(t) the number of new packets generated in the slot
(t, t + 1) at the ith station, b;(t) the control variable of the ith user in the slot (t, t + 1)
(if b;(t) = 1 then the ith user can transmit one packet in the slot (t, t + 1); if b;(t) = 0
then it cannot do this). As the main process I study a vector-valued queue length process
q(t) = (ql(t),· · ., qM(t», where q;(t) is the number of packets in the queue at the ith
station at time t (including new packets generated in the slot (t - 1, t».

It is easy to see that the following recursive relation is valid (t5(n) is the indicator ofthe
set of positive integers):

(1) q;(t + 1) = q;(t) + a;(t) - b;(t) •t5(q;(t»· II [1 - bj(t) •t5(qj(t»].
j+;

With an initial condition q(O) = (ql(O),· · ., qM(O», this formula allows us to obtain q(t)
for all t ~ 1. It should be noted that (1) is a pure algebraic relation and does not depend
on assumptions about the probabilistic structure of the sequences a(t) and b(t).

Now suppose that a;(t) and b;(t), i = 1,· · ., M (t = 0, 1,2,· · .) are random variables
on some probability space. Suppose also that the vectors (a(t), b(t», t ~ 0, form a
stationary and metrically transitive sequence. Without loss of generality we can assume
that this sequence is defined for t < 0 as well.

Theorem 1. Ifq(O)=O then a stationary sequence Q(t), tEZ, exists (perhaps not
proper) such that

1. Q( t) satisfies Equation (1).
2. Distribution ofq(t) monotonically converges to the distribution of Q(O) as t ~ 00.

Proof. Let x = (X.,· · ., xM),Y = (Yl'· · ., YM), Z = (Z.,· · ., ZM)EZ~ (and Z; = 0 or 1)
and the function f(x,y,z)=(ft,···,fM)EZ~ is given by the formula Ii>
X; +Y; - z;t5(x;) TIj + ; (1 - ~t5(Xj»' It is easy to show that f does not decrease with
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respect to x, i.e.f(x', Y, z) ~ f(x", Y, z) ifx' ~ x" (all vectors are compared component
wise). Becausefis continuous with respect to x our statement follows immediately from
Lemma 1, §26 [3].

Theorem 2. If Eaj(t) < E[bj(t) "j+j (1 - bj(t)) for all i = 1,· · ., M then Q(t) < 00

with probability 1.

Proof. Let us define a new sequence r(t) = (rt(t),· · ., rM(t)) by the formulas (writing
(a) + = max(a, 0)): rj(O) = 0, rj(t + 1) = [ri(t) - bj(t) "j+i (1 - bj(t))] + ai(t), t ~ O. By
means of induction with respect to t we can show that q(t) ~ r(t) for all t ~ O. If
ui(t) = rj(t) - ai(t - 1), then this new sequence satisfies the relations: uj(l) = 0,
uj(t + 1) = [uj(t) + aj(t - 1) - bj(t) "j+j (1 - bj(t))] +, t ~ 1. Thus uj(t) is identical to
the waiting time of the call #t arriving in the classical G/G/l/oo queueing system.

The interval between arrivals of the calls # t and # t + 1 in this Queueing system is
equal to bi(l) IIj+ i (1 - bj(l)), and the service time of the call # t is equal to ai(l - 1).
Using a well-known result for the ergodicity of this simplest queue we can guarantee that
uj(t) as well as rj(t) converge to proper random variables (i.e. finite a.s.). This implies
that Qj(t) < 00 a.s.

In a similar way one can use general theorems due to Borovkov [3] in order to consider
general initial conditions, establish continuity theorems, estimations of speed of con
vergence to stationary regime, etc.
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Yours sincerely,
GENNADIJ FALIN
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