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Abstract
Erdős considered the second moment of the gap-counting function of prime divisors in 1946 and proved an upper
bound that is not of the right order of magnitude. We prove asymptotics for all moments. Furthermore, we prove a
generalisation stating that the gaps between primes p for which there is no Qp-point on a random variety are Poisson
distributed.

1. Introduction

What are the typical gaps between the prime divisors of a randomly selected integer? For m ∈N, we let
ω(m) be the number of distinct prime divisors of m and pi(m) be the i-th smallest prime divisor of m, so
that

log log p1(m) < . . . < log log pω(m)(m)

is a finite sequence that depends on m. It is not difficult to show that for almost all m and almost
all 1 � i �ω(m), one has log log pi(m) ∼ i; hence, log log pi+1(m) − log log pi(m) is typically bounded.
A natural question is to count the number of gaps exceeding a fixed constant z � 0, i.e. estimate

ωz(m) := � {1 � i < ω(m) : log log pi+1(m) − log log pi(m) > z} .

Erdős [6, p. 534] was the first to study this question. He showed that for almost all m, the function ωz(m)
is well-approximated by e−zω(m) by proving an upper bound for the second moment:

1

n

∑
m∈N∩[1,n]

(
ωz(m) − e−z log log n

)2 = o((log log n)3/2), as n → +∞.

However, it turns out that this is not of the right order of magnitude. Here, we prove asymptotics not just
for the second moment, but for all moments:

Theorem 1.1. Fix any z � 0 and r � 0. Then
1

n

∑
m∈N∩[1,n]

(
ωz(m) − log log n

ez

)r

= μr((1 − 2ze−z)e−z log log n)r/2(1 + o(1)), as n → +∞,

where μr is the r-th moment of the standard normal distribution.

As a consequence, for all α < β ∈R one has

lim
n→+∞

1

n
�

{
m ∈N∩ [1, n] :

ωz(m) − e−z log log m

((1 − 2ze−z)e−z log log m)1/2
∈ (α, β]

}
= 1√

2π

∫ β

α

e−t2/2dt.
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Setting z = 0, we recover the much celebrated Erdős–Kac theorem [7]. Our method is different from that
of Erdős [6] in that it relies on Stein’s method on normal approximations [18]. This allows us to deal
with certain sums of dependent random variables that arise when modelling ωz(m). Stein’s method has
been rarely used in number theory, for example, by Harper [11].

There are many generalisations of the Erdős–Kac theorem to functions of the form
∑

p|m g(p) but
they do not cover ωz(m), as g(p) would have to be a function of m as well. Galambos [9, Theorem 2]
studied the values of a function that is somewhat related to our ωz, namely the cardinality of i < ω(m)
for which log log pi+1(m) − log log pi(m) > z + log log log m. His results and method are rather different
as they are suited to values of large gaps, while our result relates to small gaps. A function similar to
Galambos’ occurs in the recent work of Chan–Koymans–Milovic–Pagano [4, Section 4] on the negative
Pell equation.

Remark 1.2. At the cost of a non-self sufficient argument, the number theoretic part of the proof of
Theorem 1.1 (namely, Lemma 2.9) can be alternatively verified via the Kubilius model [5, Section 12].
The approximation of ω(m) by e−z log log m means that the gaps in the sequence {log log pi(m)}i�1

are Poissonian. It is worth mentioning that the occurrence of Poisson distribution in other areas of
Probabilistic Number Theory is not uncommon, see the work of de Koninck–Galambos [3], Harper [11],
Granville [10] and Kowalski–Nikeghbali [12], for example.

Remark 1.3 (Further developments). The interested reader may wonder whether one can use tools from
analysis to make explicit the term o(1) in Theorem 1.1. In the case of the Erdős–Kac theorem, this was
done by Rényi and Turán [15] using complex analysis. After seeing the first version of this paper on
arXiv, R. de la Bretèche and G. Tenenbaum proved an explicit error term using methods quite different
from ours (namely, Fourier analysis); see their preprint [4] for details.

1.1. Generalisations in Diophantine geometry

In Section 3, we provide a generalisation of Theorem 1.1, given by Theorem 3.2. In brief terms, it states
that the gaps between primes p for which a typical variety over Q has no Qp-points obey the Poisson
distribution. A statement analogous to the Erdős–Kac theorem was proved by Loughran–Sofos [14] by
using geometric input from the work of Loughran–Smeets [13].

2. The proof of Theorem 1.1
2.1. Defining the model

The letter z will denote a fixed non-negative real number throughout Section 2. As usual, we denote
exp(z) := ez. For a prime p and a positive integer m, we define

δp,z(m) :=
⎧⎨⎩1, if p | m and m is not divisible by any prime in (p, pexp(z)],

0, otherwise.

In particular, ωz(m) =∑
p δp,z(m), where the sum is over all primes. Our plan, initially, is to follow the

Kubilius model idea (see Billingsley [1, equations (1.8),(1.9)]) to define Bernoulli random variables Bp

that model the behaviour of δp,z. For this, we use the random variables Xp as follows: for every prime p
the random variable Xp is defined so that

P[Xp = 1] = 1

p
, P[Xp = 0] = 1 − 1

p
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and such that Xp are independent. In particular, the mean E[Xp] equals 1/p, thus, Xp = 1 models the event
that a random integer m is divisible by a fixed prime p. Let [·] denote the integer part. The independence
of Xp is related to the Chinese Remainder Theorem.

To model δp,z, we must also take into account the fact that each prime q in the range (p, pexp(z)] must
not divide m. Thus, we are naturally led to define

Bp := Xp

∏
q prime

p<q�pexp(z)

(1 − Xq). (2.1)

We will later prove that
∑

p Bp is a good model for ωz =∑
p δp,z in the sense that their moments agree

asymptotically.

Remark 2.1 (Independence break-down). Definition (2.1) leads to a major difference between this paper
and the proofs of the Erdős–Kac theorem, namely, the variables Bp are dependent. Indeed, for all primes
p < q with q � pexp(z), the quantity E[BpBq] vanishes while none of E[Bp], E[Bq] does.

2.2. Distribution and moments of the model via Stein’s method

For any positive N , we define

SN =
∑
p�N

Bp

and denote its expectation and variance, respectively, by

cN := E[SN] and s2
N := Var[SN] .

Our goal in this section is to prove that (SN − cN)/sN converges in law to the standard normal distribu-
tion as N → ∞ and that its moments are asymptotically Gaussian. This will be done, respectively, in
Propositions 2.5 and 2.7. We first need a few preparatory estimates.

Lemma 2.2. We have

E[Bp] = e−z

p
+ O

(
1

p log p

)
, (2.2)

cN = e−z log log N + O(1) (2.3)

and

s2
N =

(
1 − 2z

ez

)
log log N

ez
+ O(1). (2.4)

Proof. Recall that Mertens’ theorem states that
∑

p�T 1/p = log log T + c + O(1/ log T) for some
constant c. The independence of Xp yields

E[Bp] = 1

p

∏
p<q�pexp(z)

(
1 − 1

q

)
,

which, by the approximation 1 − ε = exp(−ε + O(ε2)) for |ε|� 1 and Mertens’ theorem is

1

p
exp

⎛⎝−
∑

p<q�pexp(z)

1

p
+ O

⎛⎝ ∑
p<q�pexp(z)

1

p2

⎞⎠⎞⎠= exp(−log log pexp(z) + log log p + O(1/ log p))

p
.
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Since exp(O(1/ log p)) = 1 + O(1/ log p), this is sufficient for (2.2). The estimate (2.3) is directly
deduced from it and the fact that

∑
p(p log p)−1 converges. Next, denoting hp = E[Bp] we have

s2
N =

∑
p�N

E
[
(Bp − hp)2

]+ 2
∑

p<q�N

E
[
(Bp − hp)(Bq − hq)

]
.

First note that E
[
(Bp − hp)2

]= E
[
Bp

]− h2
p = hp(1 − hp). Further, if q > pexp(z) then Bp and Bq are inde-

pendent, hence, E
[
(Bp − hp)(Bq − hq)

]= 0. If p < q � pexp(z) then E[BpBq] vanishes, hence

E
[
(Bp − hp)(Bq − hq)

]= −E
[
Bp

]
hq − hpE

[
Bq

]+ hphq = −hphq.

We obtain

s2
N =

∑
p�N

hp(1 − hp) − 2
∑

p<q�min{N,pexp(z)}
hphq

= cN −
∑
p�N

h2
p − 2

∑
p�Nexp(−z)

p<q�pexp(z)

hphq − 2
∑

Nexp(−z)<p�N
p<q�N

hphq.

By (2.2) we have hp 	 1/p, hence,
∑

p h2
p = O(1) and

∑
Nexp(−z)<p�N

p<q�N

hphq 	
⎛⎝ ∑

Nexp(−z)<p�N

1

p

⎞⎠2

= O(1).

Hence, (2.3) gives

s2
N = e−z log log N − 2

∑
p�Nexp(−z)

hp

∑
p<q�pexp(z)

hq + O(1). (2.5)

Using (2.2) we see that∑
p�Nexp(−z)

hp

∑
p<q�pexp(z)

hq =
∑

p�Nexp(−z)

hp

∑
p<q�pexp(z)

(
e−z

q
+ O

(
1

q log q

))
,

which, by Mertens’ theorem and
∑

q>t (q log q)−1 	 (log t)−1, equals∑
p�Nexp(−z)

hp

(
z

ez
+ O

(
1

log p

))
=

∑
p�Nexp(−z)

(
e−z

p
+ O

(
1

p log p

))(
z

ez
+ O

(
1

log p

))

= z

e2z

⎛⎝ ∑
p�Nexp(−z)

1

p

⎞⎠+ O(1) = z

e2z
(log log N) + O(1).

Injecting this into (2.5) concludes the proof.

Lemma 2.3. For all u ∈N, r ∈Nu and primes p1, . . . , pu, we have

E

[
u∏

i=1

|Bpi − E[Bpi ]|ri

]
= Or

(
1

rad(p1 · · · pu)

)
,

where rad denotes the radical.

Proof. We write the factorisation into prime powers of
∏u

i=1 pri
i as

∏v
j=1 q

sj
j , where qj are v distinct

primes. This implies that

E

[
u∏

i=1

|Bpi − E[Bpi ]|ri

]
= E

[
v∏

j=1

|Bqj − E[Bqj ]|sj

]
.
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Using |Bqj − E[Bqj ]|� Bqj + E[Bqj ] � Xqj + E[Xqj ] = Xqj + 1/qj and the binomial theorem yields

|Bqj − E[Bqj ]|sj �
(
Xqj + 1/qj

)sj =
∑

tj∈[0,sj]

(
sj

tj

)
X

tj
qj

q
sj−tj
j

	s max
tj∈[0,sj]

X
tj
qj

q
sj−tj
j

,

hence,

E

[
v∏

j=1

|Bqj − E[Bqj ]|sj

]
	s max

t∈[0,s1]×···×[0,sv]
E

[
v∏

j=1

X
tj
qj

q
sj−tj
j

]
.

By the independence of the Xq, we infer that

E

[
v∏

j=1

X
tj
qj

q
sj−tj
j

]
=

v∏
j=1

E[X
tj
qj ]

q
sj−tj
j

=
v∏

j=1
tj=0

1

q
sj
j

v∏
j=1
tj�1

E[Xqj ]

q
sj−tj
j

�
v∏

j=1
tj=0

1

qj

v∏
j=1
tj�1

E[Xqj ] =
v∏

j=1

1

qj

.

The proof now concludes by noting that
∏v

j=1 qj is the radical of
∏u

i=1 pri
i .

The following lemma is the main tool in the proof of Theorem 1.1. It is due to Stein [18, Corollary 2,
p. 110].

Lemma 2.4 (Stein). Let T be a finite set, and for each t ∈ T , let Zt be a real random variable and Tt a
subset of T such that E[Zt] = 0, E[Z4

t ] < ∞ and E[
∑

t∈T Zt

∑
s∈Tt

Zs] = 1. Then for all real b,∣∣∣∣∣P
[∑

t∈T

Zt � b

]
− 1√

2π

∫ b

−∞
e−t2/2dt

∣∣∣∣∣� 4(	1 + 	2 + 	3), (2.6)

where the terms 	i are defined through

	1 = E

[∑
t∈T

|E[Zt|Zs, s /∈ Tt]|
]

, 	2
2 = E

⎡⎣∑
t∈T

|Zt|
(∑

s∈Tt

Zs

)2
⎤⎦

and

	2
3 = E

⎡⎣{∑
t∈T

∑
s∈Tt

(ZtZs − E[ZsZt])

}2
⎤⎦ .

Proposition 2.5. Fix z � 0 and b ∈R. For any N ∈N, we have∣∣∣∣P [SN � cN + bsN] − 1√
2π

∫ b

−∞
e−t2/2dt

∣∣∣∣	z (log log N)−1/4,

where the implied constant depends at most on z. In particular, (SN − cN)/sN converges in law to the
standard normal distribution as N → ∞.

Proof. We will apply Lemma 2.4 with

• T being the set of primes in [2, N],
• Tp being the set of primes in [pexp(−z), pexp(z)] ∩ [2, N],
• Zp = (Bp − E[Bp])/sN for p ∈ T .

Let Yp := Bp − E[Bp]. Note that if q /∈ Tp then Zq and Zp are independent, hence, E[YpYq] = 0. Therefore,

s2
N =

∑
p,q�N

E[YpYq] =
∑
p�N
q∈Tp

E[YpYq],
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which verifies E
[∑

p∈T Zp

∑
q∈Tp

Zq

]
= 1. We next observe that since for every q /∈ Tp, the random

variables Zq and Zp are independent; one obtains E
[
Zp|Zq, q /∈ Tt

]= E
[
Zp

]= 0, therefore

	1 = 0. (2.7)

Next, we use Lemma 2.3 to obtain

	2
2 s3

N =
∑

p�N,q∈Tp

E
[|Yp|Y2

q

]+ 2
∑

p�N,q1<q2∈Tp

E
[|Yp|Yq1 Yq2

]
	

∑
p�N,q∈Tp

1

pq
+

∑
p�N,q1,q2∈Tp

1

pq1q2

.

The sum
∑

q∈Tp
1/q is bounded only in terms of z by Mertens’ theorem. It shows that

	2
2 	 s−3

N

∑
p�N

1

p
	 (log log N)−1/2, (2.8)

owing to (2.4).
To bound 	3, we write Cp := ∑

q∈Tp

(
YpYq − E[YpYq]

)
to obtain

	2
3 s4

N =
∑
p�N

E
[
C 2

p

]+ 2
∑

p1<p2�N

E
[
Cp1Cp2

]
. (2.9)

Furthermore, E
[
C 2

p

]
can be written as∑

q∈Tp

E
[(

YpYq − E[YpYq]
)2
]
+ 2

∑
q1<q2∈Tp

E
[(

YpYq1 − E[YpYq1 ]
) (

YpYq2 − E[YpYq2 ]
)]

,

which can be seen to be

	
∑
q∈Tp

1

pq
+

∑
q1<q2∈Tp

1

pq1q2

by Lemma 2.3. Alluding to
∑

q∈Tp
1/q 	 1 shows that∑
p�N

E
[
C 2

p

]	
∑
p�N

1

p
	 log log N. (2.10)

Let us now observe that if p2 > pexp(2z)
1 then Tp1 ∩ Tp2 = ∅, therefore Cp1 and Cp2 are independent. Since

for every p we have E[Cp] = 0 by definition, we get E
[
Cp1Cp2

]=∏2
i=1 E

[
Cpi

]= 0. Thus,∑
p1<p2�N

E
[
Cp1Cp2

]=
∑

p1<p2�N

p2�pexp(2z)
1

∑
q1∈Tp1
q2∈Tp2

E
[(

Yp1 Yq1 − E[Yp1 Yq1 ]
) (

Yp2 Yq2 − E[Yp2 Yq2 ]
)]

. (2.11)

By Lemma 2.3, this is

	
∑
p1�N

∑
p1<p2�pexp(2z)

1

∑
q1∈Tp1

∑
q2∈Tp2

1

rad(p1p2q1q2)
.

For any positive integer c and prime q, we have rad(cq) = rad(c) q
gcd(q,c)

. Hence, the sum over q2 is

1

rad(p1p2q1)

∑
q2∈Tp2

q2∈{p1,p2,q1}

1 + 1

rad(p1p2q1)

∑
q2∈Tp2

q2 /∈{p1,p2,q1}

1

q2

�
3 +∑

q∈Tp2
1/q

rad(p1p2q1)
	z

1

rad(p1p2q1)
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by Mertens’ theorem. Hence, (2.11) is

	
∑
p1�N

p1<p2�pexp(2z)
1

∑
q1∈Tp1

1

rad(p1p2q1)
=

∑
p1�N

p1<p2�pexp(2z)
1

1

rad(p1p2)

⎧⎪⎨⎪⎩
∑

q1∈Tp1
q1∈{p1,p2}

1 +
∑

q1∈Tp1
q1 /∈{p1,p2}

1

q1

⎫⎪⎬⎪⎭ .

The two sums over q1 in the right-hand side are both bounded only in terms of z. This can be proved
similarly as before with the sum over q2. We obtain the bound

	
∑
p1�N

p1<p2�pexp(2z)
1

1

rad(p1p2)
=
∑
p1�N

1

p1

∑
p1<p2�pexp(2z)

1

1

p2

	
∑
p1�N

1

p1

	 log log N.

This shows that the quantity in (2.11) is 	 log log N, which, when combined with (2.10), can be fed
into (2.9) to yield 	2

3 s4
N 	 log log N. Invoking (2.4) provides us with 	3 	 1/

√
log log N. Together with

(2.7)–(2.8), it implies that∣∣∣∣P [SN � cN + bsN] − 1√
2π

∫ b

−∞
e−t2/2dt

∣∣∣∣	z (log log N)−1/4

owing to Stein’s bound (2.6). Finally, letting N → ∞ shows that (SN − cN)/sN converges in law to the
standard normal distribution.

Remark 2.6. We next prove asymptotics for the moments of (SN − cN)/sN . This is possibly the central
proof in the present paper. The argument is a modification of the one by Billingsley [1, Lemma 3.2], which
relies on a version of the dominated convergence theorem. However, the underlying random variables
are now dependent; thus, we need to introduce the notion of linked indices.

Proposition 2.7. Fix z � 0 and a positive integer r. Then we have

lim
N→∞

E

[(
SN − cN

sN

)r]
= μr,

where μr is the r-th moment of the standard normal distribution.

Proof. Take 2k to be the least strictly positive integer with r < 2k, so that Proposition 2.5 [19, Example
2.21] implies that it suffices to prove that

sup
N�1

∣∣∣∣∣E
[(

SN − cN

sN

)2k
]∣∣∣∣∣

is bounded only in terms of k and z. Equivalently, by (2.4) it suffices to show

E
[
(SN − cN)

2k
]= E

⎡⎣(∑
p�N

(Bp − E[Bp])

)2k
⎤⎦	k,z (log log N)k.

The left side equals
2k∑

u=1

∑
r∈Nu

2k=∑u
i=1 ri

(2k)!
r1! · · · ru!

∑
p1<...<pu�N

E

[
u∏

i=1

(Bp − E[Bp])ri

]
.

Using Lemma 2.3, we see that the contribution of the terms with u � k is

	k max
1�u�k

(∑
p�N

1

p

)u

	k (log log N)k.
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Therefore,

E
[
(SN − cN)

2k
]	 max

u∈[k+1,2k]
r∈Nu :=∑

i ri=2k

∑
p1<...<pu�N

E

[
u∏

i=1

(Bp − E[Bp])ri

]
+ (log log N)k, (2.12)

with an implied constant that is independent of N .
For given u ∈N, z � 0 and primes p1 < . . . < pu, we say that two consecutive integers i, i + 1 in

[1, u] are linked if and only if pi+1 � pexp(z)
i . In particular, pi+1 lies in a relatively small interval; hence,

its contribution will be small. Denote the number of linked pairs (i, i + 1) by 
(p). By Lemma 2.3, we
obtain ∑

p1<...<pu�N

E

[
u∏

i=1

(Bp − E[Bp])ri

]
	z

(∑
p�N

1

p

)u−
(p)

	 (log log N)u−
(p),

where we used the estimate
∑

pi<pi+1<pexp(z)
i

1/pi 	z 1 whenever i and i + 1 are linked. Hence, the
contribution of all prime vectors (p1, . . . , pu) with at least 
(p) � u − k linked pairs is at most

	 (log log N)u−
(p) 	 (log log N)k,

which is acceptable. By (2.12), we obtain

E
[
(SN − cN)

2k
]	 max

u∈[k+1,2k]
r∈Nu :=∑

i ri=2k

∑
p1<...<pu�N


(p)<u−k

E

[
u∏

i=1

(Bp − E[Bp])ri

]
+ (log log N)k, (2.13)

We will now show that every sum over pi in (2.13) vanishes. Denoting the cardinality of 1 � i � u with
ri = 1 by a, we see that the number of i with ri � 2 is u − a. Since 2k =∑u

i=1 ri, we get 2k � a + 2(u − a).
Equivalently, 2(u − k) � a, hence, by 
(p) < u − k one gets

2
(p) < �{i ∈ [1, u] : ri = 1}. (2.14)

We now partition the integers in [1, u] into disjoint subsets A1, . . . , Ar using the following rules:

• if i and i + 1 are in Sj then they are linked,
• if i ∈ Sa and i + 1 ∈ Sb for some a �= b then i and i + 1 are not linked.

The inequality s � 2(−1 + s) for s � 2 gives

�{i ∈ [1, u] : i linked to some index} =
∑

1�j�r
2��Aj

�Aj �
∑

1�j�r
2��Aj

2(−1 + �Aj).

This equals 2
(p) since each Aj has −1 + �Aj linked pairs and the total number of links is 
(p). By
(2.14), we infer that there exists an index j for which rj = 1 and that is not linked to any other index. This
implies that the following random variables are independent:∏

1�i�u
i �=j

(Bpi − E[Bpi ])
ri and (Bpj − E[Bpj ])

rj = Bpj − E[Bpj ].

Since E
[
Bpj − E[Bpj ]

]= 0, we infer that every expectation in the right-hand side of (2.13) vanishes. This
concludes the proof.

2.3. Justifying the model

Let n be a positive integer and denote by �n the uniform probability space N∩ [1, n]. Our goal now
becomes to show that, as n → ∞, the moments of ωz(m) for m in �n are asymptotically the same as
the moments of SN for some parameter N = N(n) → ∞. Recall (2.1). For technical reasons, we will first

https://doi.org/10.1017/S0017089522000398 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089522000398


Glasgow Mathematical Journal S137

work with a truncated version of ωz, namely,

ωz,N(m) =
∑
p�N

δp,z(m), (2.15)

where N = N(n). The function δp,z imposes simultaneous coprimality conditions of m with several
primes in large intervals, and to deal with this, we shall need the Fundamental Lemma of Sieve Theory
[8, Corollary 6.10].

Lemma 2.8 (Fundamental Lemma of Sieve Theory). Let P be a set of primes. Given any sequence
am � 0 for m ∈N and any square-free d � x that is only divisible by primes in P , we assume that∑

m�x
m≡0(mod d)

am = Xg(d) + rd

for some real numbers X, rd and a multiplicative function g. Assume that 0 � g(p) < 1 and that there
exist constants K > 1, κ > 0 such that∏

w�p<y
p∈P

(1 − g(p))−1 � K

(
log y

log w

)κ

holds for all 2 � w < y. Then for all D � y � 2, we have

∑
m�x

p∈P,p<y⇒p�m

am = X

⎛⎜⎝∏
p<y

p∈P

(1 − g(p))

⎞⎟⎠ {1 + O(e−s)} + O

⎛⎜⎝ ∑
d<D

p|d⇒p∈P

μ2(d)|rd|
⎞⎟⎠ , (2.16)

where s = log D/ log y and the implied constants depend at most on κ and K.

Lemma 2.9. Assume that there exists a function N : [1, ∞) → [1, ∞) satisfying

lim
n→∞

N(n) = +∞, (2.17)

lim sup
n→∞

(log N(n))(log log log N(n))

log n
�= +∞. (2.18)

Fix z � 0 and k ∈N. Then we have

lim
n→∞

Em∈�n

[(
ωz,N − cN

sN

)k
]

= μk,

where μk is the k-th moment of the standard normal distribution.

Proof. By Proposition 2.7 and (2.17), it is sufficient to prove

lim
n→∞

(
Em∈�n

[(
ωz,N(m) − cN

sN

)k
]

− E

[(
SN − cN

sN

)k
])

= 0. (2.19)

Let r ∈N. By (2.15), the fact that δp,z ∈ {0, 1} and the binomial theorem, we obtain

Em∈�n

[
ωz,N(m)r

]= r∑
u=1

∑
r1,...,ru∈N

r1+...+ru=r

r!
r1! · · · ru!

∑
p1<···<pu�N

Em∈�n

[
δp1,z(m) · · · δpu ,z(m)

]
. (2.20)
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Let P be the set of all primes in
⋃u

i=1(pi, pexp(z)
i ] and let am be the indicator function of integers divisible

by p1 · · · pu. In particular,

Em∈�n

[
δp1,z(m) · · · δpu ,z(m)

]= 1

n

∑
1�m�n

p∈P⇒p�m

am.

We assume that pi+1 > pexp(z)
i for all i = 1, 2, . . . , u − 1 since otherwise the sum clearly vanishes. We will

now use Lemma 2.8 with X = n/(p1 · · · pu), g(d) = 1/d, D = √
n, y = N2 exp(z). If d is divisible only by

primes in P , then it is coprime to p1 · · · pu, hence,∑
m�n

m ≡ 0(mod d)

am =
[

n

p1 · · · pud

]
,

thus, |rd|� 1 because rd is the fractional part of X/d. Furthermore, we can take K to be any large fixed
positive constant and κ = 1, owing to∏

w�p<y
p∈P

(1 − g(p))−1 =
∏

w�p<y
p∈P

(1 − 1/p)−1 �
∏

w�p<y

(1 − 1/p)−1 	 log y

log w
.

The bound |rd|� 1, means that
∑

d�D μ2(d)|rd|� D = √
n. Since pu � N, every prime in P is strictly

smaller than y, hence, (2.16) gives

Em∈�n

[
δp1 · · · δpu

]=
⎧⎨⎩

u∏
i=1

1

pi

∏
pi<q�pexp(z)

i

(1 − 1/p)

⎫⎬⎭{1 + O
(
e− log n

4 exp(z) log N

)}
+ O(n−1/2), (2.21)

where the implied constant depends at most on r and z.
By the binomial theorem, we get

E
[
Sr

N

]= E

[(∑
p�N

Bp

)r]
=

r∑
u=1

∑
r1,...,ru∈N

r1+...+ru=r

r!
r1! · · · ru!

∑
p1<···<pu�N

E
[
Bp1 · · · Bpu

]
and we note that we can restrict the sum over pi to the terms with pi+1 > pexp(z)

i for all i, since otherwise
E
[
Bp1 · · · Bpu

]= 0. Under this restriction, the random variables Bpi are independent, hence,
u∏

i=1

1

pi

∏
pi<q�pexp(z)

i

(1 − 1/p) = E
[
Bp1 · · · Bpu

]
.

We infer from (2.20) and (2.21) that∣∣Em∈�n

[
ωz,N(m)r

]− E
[
Sr

N

]∣∣	r E
[
Sr

N

]
e− log n

4 exp(z) log N + n−1/2

r∑
u=1

∑
p1<...<pu�N

1.

By (2.3), this is 	 (log log N)r exp(− log n
4 exp(z) log N

) + n−1/2Nr. Thus, the difference in (2.19) is

	s−k
N

k∑
r=0

(
k

r

)
(−cN)k−r

(
E�n

[
ωr

z,N

]− E
[
Sr

N

])
	s−k

N

{
e− log n

4 exp(z) log N (cN + log log N)k + n−1/2(N + cN)k
}

.

We need to show that this vanishes asymptotically, and by (2.4) and (2.17), it suffices to show

(2 log log N)k � exp

(
log n

4 exp(z) log N

)
and (2N)k � n1/2.

Both of these inequalities can be directly inferred from (2.17) to (2.18).
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Lemma 2.10. Assume that there exists a function N : [1, ∞) → [1, ∞) satisfying

lim
n→∞

log log N(n)

log log n
= 1, (2.22)

lim sup
n→∞

(log N(n))
√

log log n

log n
= +∞. (2.23)

Fix z � 0. Then sN((1 − 2ze−z)e−z log log n)−1/2 → 1 as n → ∞ and

lim
n→∞

max
{∣∣(ωz − e−z log log n) − (ωz,N − cN)

∣∣ : m ∈N∩ [1, n]
}

√
log log n

= 0.

Proof. Combining (2.4) and (2.22) one immediately gets

lim
n→∞

sN

((1 − 2ze−z)e−z log log n)1/2
= 1.

For any m ∈ [1, n], we have∣∣(ωz − e−z log log n) − (ωz,N − cN)
∣∣�∑

p>N

δp,z(m) + |e−z(log log n) − cN |.

Since δp,z takes only values in {0, 1} and δp,z(m) = 1 implies that p divides m, we see that∑
p>N

δp,z(m) � �{p | m : p > N}� log m

log N
� log n

log N
.

Furthermore, (2.3) gives

e−z(log log n) − cN 	 1 + log
log n

log N
	 log n

log N
.

The proof now concludes by using (2.23).

2.4. Proof of Theorem 1.1

The function

N(n) := n1/ log log n

fulfills (2.17)–(2.18)–(2.22)–(2.23). Hence, we can apply Lemmas 2.9–2.10.
For any r ∈N, c ∈C any probability space �n and any two sequences of random variables Xn, Yn

satisfying limn→∞ supm∈�n
|Xn(m) − Yn(m)| = 0 and limn→∞ Em∈�n [Xn(m)r] = c it is easy to see by the

binomial theorem that limn→∞ Em∈�n [Yn(m)r] = c. Using this with �n =N∩ [1, n],

Xn(m) = ωz,N(m) − cN

sN

and Yn(m) = ωz(m) − e−z log log n

sN

,

in combination with Lemmas 2.9–2.10, shows that for every k ∈N one has

lim
n→∞

Em∈�n

[(
ωz(m) − e−z log log n

sN

)k
]

= μk.

Given any sequence an ∈R having limit 1 and any sequence of random variables Xn with E[Xn] having
limit c, it is clear that anE[Xn] has limit c. Using this with

an = sN

((1 − 2ze−z)e−z log log n)1/2
and Xn(m) = ωz(m) − e−z log log n

sN
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and invoking Lemma 2.10 shows that for every k ∈N one has

lim
n→∞

Em∈�n

[(
ωz(m) − e−z log log n

((1 − 2ze−z)e−z log log n)1/2

)k
]

= μk. (2.24)

This proves Theorem 1.1 whenever r is a positive integer and this is sufficient. To see that, take any
r ∈ [0, ∞) and note that (2.24) implies that

Tn = ωz(m) − e−z log log n

((1 − 2ze−z)e−z log log n)1/2

converges in law to the standard normal distribution. Taking p to be the least even integer strictly exceed-
ing r in [19, Example 2.21] shows that the r-th moment of Tn converges to the r-th moment of the
standard normal distribution.

3. Poissonian gaps for local solubility in families of varieties

Serre’s problem [16] on the probability that a random variety over Q has a Q-rational point has recently
received a lot of attention due to its extension by Loughran–Smeets [13] to a very general setting, namely,
for any dominant morphism f : V → Pn, where, V is a smooth projective variety over Q and f has a
geometrically integral generic fibre. The fibres of f form an infinite family of varieties and typically one
is interested in how often they have a Q-rational point. Imposing the harmless condition that the generic
fibre of f is geometrically integral, it is easy to see that for every x outside of some proper Zariski closed
set the function

ωf (x) := �
{
p prime : (f −1(x))(Qp) = ∅} ,

is bounded due to the Lang–Weil estimates and Hensel’s lemma. This function helps us in understanding
the density of fibres with a Q-rational point. Ordering Pn(Q) by the standard Weil height H on Pn(Q)
and assuming that a certain invariant (π ) is non-vanishing, Loughran and Sofos [14] recently proved
the analogue of Erdős–Kac’s theorem for ωf (x), namely that

ωf (x) − (π ) log log H(x)

((π ) log log H(x))1/2

converges in law to the standard normal distribution. This was the first instance of an Erdős–Kac law in
Diophantine geometry.

Our goal in this section is to go further and study the gaps between the primes p counted by ωf (x).
For x ∈ Pn(Q) with f −1(x) smooth, we let pi(x) be the i-th smallest prime number for which f −1(x) has
no Qp-point. We then define for all z � 0,

ωf ,z(x) := �{i � 1 : log log pi+1(x) − log log pi(x) > z}.
Before stating our theorem, we must recall the definition of the invariant (f ) that is due to Loughran
and Smeets [13].

Definition 3.1. Let f : V → X be a dominant proper morphism of smooth irreducible varieties over
a field k of characteristic 0. For each point x ∈ X with residue field κ(x), the absolute Galois group
Gal(κ(x)/κ(x)) of the residue field acts on the irreducible components of

f −1(x)κ(x) := f −1(x) ×κ(x) κ(x)

of multiplicity 1. Choose some finite group �x through which this action factors and define

δx(f ) =
�

{
γ ∈ �x :

γ fixes an irreducible component

of f −1(x)κ(x) of multiplicity 1

}
��x
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and

(f ) =
∑

D∈X(1)

(1 − δD(f )),

where X(1) denotes the set of codimension 1 points of X.

Theorem 3.2. Let V be a smooth projective variety over Q equipped with a dominant morphism f : V →
Pn with geometrically integral generic fibre and (f ) �= 0. Let H be the usual Weil height on Pn. Fix any
z � 0 and r � 0. Then∑

x∈Pn(Q),H(x)�B
f −1(x) smooth

(
ωf ,z(x) − (f ) exp(−z(f )) log log B√

(f ) exp(−z(f )) log log B

)r

= μr

(
1 − 2(f )z

exp((f )z)

)r/2

� {x ∈ Pn(Q) : H(x) � B} (1 + o(1)),

as B → ∞, where μr is the r-th moment of the standard normal distribution.

The case z = 0 recovers Theorems 1.2–1.3 of Loughran–Sofos [14].
Taking r = 2 in Theorem 3.2 and [14, Theorem 1.2] shows the following after a use of Chebychev’s

inequality:

Corollary 3.3. Let f : V → Pn be a morphism as in Theorem 3.2. Fix any z � 0. Ordering Pn(Q) by the
usual Weil height, 100% of fibres f −1(x) satisfy∣∣∣∣ωf ,z(x)

ωf (x)
− (f )

ez(f )

∣∣∣∣� (log log H(x))−1/4.

Remark 3.4. As the right-hand side vanishes asymptotically, the corollary means that for almost all
fibres f −1(x), the proportion of gaps in the sequence {log log pi(x)}i�1 exceeding z is roughly constant,
independently of the fibre!

In our proof, we use the arguments from Section 2, where the uniform probability space N∩ [1, n]
is replaced by {x ∈ Pn(Q) : H(x) � B}. The main number–theoretic we use is Proposition 3.6. In sieve
theory language, this is a level of distribution result for the fibres of f . The level of distribution it provides
is less than Bε for any constant ε > 0, which is well-known to be a problematic regime for any sieve theory
problem; we overcome this by extirpating small primes p � t0(B) from ω̃f ,z, see (3.5).

3.1. Proof of Theorem 3.2

For a prime p, we define

σp := �
{
x ∈ Pn(Fp) : f −1(x) is non-split

}
�Pn(Fp)

,

where we use the term “non-split” in the sense of Skorobogatov [17, Def. 0.1]. We then introduce the
random variable X̃p so that

P[X̃p = 1] = σp, P[X̃p = 0] = 1 − σp

and such that X̃p are independent. We then define

B̃p := X̃p

∏
q prime

p<q�pexp(z)

(1 − X̃q).
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Furthermore, for any positive N , we define

S̃N =
∑
p�N

B̃p, c̃N := E
[̃
SN

]
and s̃2

N := Var
[̃
SN

]
.

Using [14, Proposition 3.6] instead of Mertens’ theorem and the estimate σp 	 1/p from [14, Lemma
3.3], the arguments in Lemma 2.2 can be modified to yield

E[̃Bp] = exp(−z(f ))σp + O

(
1

p log p

)
, (3.1)

c̃N = (f ) exp(−z(f )) log log N + O(1) (3.2)

and

s̃2
N =

(
1 − 2(f )z

exp((f )z)

)
(f ) log log N

exp((f )z)
+ O(1). (3.3)

Next, the proof of Lemma 2.3 goes through easily upon replacing Bp by B̃p owing to the inequality
E[̃Bp] � E[X̃p] = σp 	 1/p. Replacing SN by S̃N in the statement of Proposition 2.5, we see that the proof
goes through by replacing Zp by Z̃p := (̃Bp − E[̃Bp])/̃sN . Finally, using all the analogues of results in
Section 2 that we mentioned so far allows one to modify the arguments of the proof of Proposition 2.7
to obtain the following result:

Proposition 3.5. Fix z � 0 and a positive integer r. Then we have

lim
N→∞

E

[(
S̃N − c̃N

s̃N

)r
]

= μr,

where μr is the r-th moment of the standard normal distribution.

This concludes the probabilistic part of the proof of Theorem 3.2. The number–theoretic part requires
the Fundamental lemma of sieve theory and the following:

Proposition 3.6. Keep the setting of Theorem 3.2. Then there exist constants δ > 1, A > 0 that depends
on V and f with the following property. Let Q ∈Nwith p � Q for all p � A. Then for all ε > 0 and Q � B1/6,
we have

�

{
x ∈ Pn(Q) :

H(x) � B, f −1(x) smooth

f −1(x)(Qp) = ∅ ∀ p | Q

}
= cnBn+1

∏
p|Q

σp + O

(
δω(Q)Bn+1

Q min{p | Q}
)

,

where the implied constant is independent of B and Q.

Proof. By [14, Proposition 3.4], there exist α > 0, d ∈N such that the left-hand side is at most

cnBn+1
(∏

p|Q
(σp + α/p2)

)
+ O

(
(4d)ω(Q)(Q2n+1B + QBn(log B)[1/n])

)
.

while, it exceeds a similar quantity with α replaced by −α. As shown in [14, Lemma 3.7], we have∏
p|Q

(σp + α/p2) =
∏
p|Q

σp + O

(
(2αd)ω(Q)

Q min{p : p | Q}
)

.

This is satisfactory by defining δ = 2 + max{4d, 2αd}. Finally,

Q2n+1B + QBn log B 	 Bn+1

Q2
� Bn+1

Q min{p | Q}
owing to Q � B1/6.
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Our next task is to show that the moments of a truncated version of ωf ,z are asymptotically Gaussian.
For this we shall follow the arguments in Section 2.3, where �n =N∩ [1, n] is replaced by the uniform
discrete probability space

�̃B = {x ∈ Pn(Q) : H(x) � B, f −1(x) smooth}
for B > 0. The condition that f −1(x) smooth is included in the definition of �̃B to make ωf ,z(x) well-
defined for each x ∈ �̃B. Choosing a polynomial which vanishes on the singular locus of f , we see that

�{x ∈ Pn(Q) : H(x) � B, f −1(x) not smooth} = O(Bn).

Then the standard result

�{x ∈ Pn(Q) : H(x) � B} = cnBn+1 + O(Bn(log B)[1/n]),

where cn = 2n/ζ (n + 1), shows that

��̃B = cnBn+1 + O
(
Bn(log B)[1/n]

)
.

We furthermore let for x ∈ Pn(Q),

δ̃p,z(x) :=
⎧⎨⎩1, if f −1(x)(Qp) = ∅ and f −1(x)(Qq) �= ∅ for every prime q ∈ (p, pexp(z)],

0, otherwise.

We shall choose any two functions t0, t1 : (0, ∞) → (0, ∞) satisfying

1 < t0(B) < t1(B) < B, lim
B→∞

t0(B) = lim
B→∞

t1(B) = ∞. (3.4)

They will be chosen optimally later. The analogue of (2.15) in our setting is defined as

ω̃z,B(x) =
∑

t0(B)<p�t1(B)

δ̃p,z(x). (3.5)

We obtain for r ∈N,

Ex∈�̃B

[
ω̃z,B(x)r

]= r∑
u=1

∑
r1,...,ru∈N

r1+...+ru=r

r!
r1! · · · ru!

∑
t0(B)<p1<···<pu�t1(B)

pi+1>pexp(z)
i ∀i

Ex∈�̃B

[̃
δp1,z(x) · · · δ̃pu ,z(x)

]
, (3.6)

where we added the assumption pi+1 > pexp(z)
i ∀i since otherwise the expectation in the right-hand side

vanishes.
Let us now define the function mB : Pn(Q) →N given by

mB(x) :=
∏

t0(B)<p�t1(B)
f −1(x)(Qp)=∅

p.

Letting x̃ be the product of all primes p � t1(B) we note that mB(x) � x̃. Now let P be the set of all
primes in

⋃u
i=1(pi, pexp(z)

i ] and for m ∈N let

ãm :=
⎧⎨⎩�{x ∈ �̃B : mB(x) = m}/��̃B, if m ≡ 0 (mod p1 · · · pu) ,

0, otherwise.

This gives

Ex∈�̃B

[̃
δp1,z(x) · · · δ̃pu ,z(x)

]= ∑
m�̃x

p∈P⇒p�m

ãm.
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We shall use Lemma 2.8 with am := ãm, κ = (f ),

X =
u∏

i=1

σpi , g(d) =
∏
p|d

σp, D = B1/10, y = t1(B)2 exp(z).

The assumption 0 � g(p) < 1 is satisfied here due to σp 	 1/p and p > t0(B) → ∞. Note that for square-
free d that is only divisible by primes in P , we have

rd = −g(d)X +
∑
m�̃x

m ≡ 0(mod d)

ãm.

Assuming that
log t1(B) = o(log B) (3.7)

we see that when d � D, one has

dp1 · · · pu � dt1(B)u � Dt1(B)u = B
1

10 + log t1(B)
log B � B1/6 (3.8)

for all large B. This allows us to employ Proposition 3.6 with Q = dp1 · · · pu to obtain∑
m�̃x

m≡0(mod d)

ãm = cnBn+1Xg(d)

��̃B

+ O

(
δu+ω(d)Bn+1

��̃Bdp2
1p2 · · · pu

)
= Xg(d) + Ou

(
(log B)[1/n]

B
+ δω(d)

dp2
1

∏u
i=2 pi

)
,

where we used ��̃B = cnBn+1 + O(Bn(log B)[1/n]) and Xg(d) 	 1. The inequality (3.8) shows that

dp2
1

∏u
i=2 pi

δω(d)
�
(

d
u∏

i=1

pi

)2

� B1/3 � B

log B
,

hence,

rd = −Xg(d) +
∑

m�̃x,m≡0(mod d)

ãm 	 δω(d)

dp2
1

∏u
i=2 pi

.

This shows that the error term occurring in (2.16) is

	 X

es

∏
p<y

p∈P

(1 − σp) +
∑
d�B

p|d⇒p∈P

|μ(d)|δω(d)

dp2
1

∏u
i=2 pi

� X

es
+ 1

p2
1

∏u
i=2 pi

∏
p∈P

(
1 + 1

p

)δ

.

The product over p ∈ P equals
u∏

i=1

∏
pi<p�pexp(z)

i

(
1 + 1

p

)δ

	
u∏

i=1

(
log(pexp(z)

i )

log pi

)δ

	 1.

Furthermore, the estimates p1 > t0(B) and X 	 1/(p1 · · · pu) show that

X

es
+ 1

p2
1

∏u
i=2 pi

∏
p∈P

(
1 + 1

p

)δ

	 1

p1 · · · pu

1

min{es, t0(B)} .

The main term occurring in Lemma 2.8 is

X
∏
p∈P

(1 − σp) =
u∏

i=1

⎛⎝σpi

∏
pi<p�pexp(z)

i

(1 − σp)

⎞⎠ ,

hence, the expectation Ex∈�̃B

[̃
δp1,z(x) · · · δ̃pu ,z(x)

]
in the right-hand side of (3.6) equals

u∏
i=1

⎛⎝σpi

∏
pi<p�pexp(z)

i

(1 − σp)

⎞⎠+ O

(
1

p1 · · · pu

1

min{es, t0(B)}
)

.
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Injecting this into (3.6) produces the error term

	r

1

min{es, t0(B)}
r∑

u=1

∑
p1<···<pu�t1(B)

1

p1 · · · pu

	r

(log log t1(B))r

min{es, t0(B)} .

Following arguments similar to the ones in the proof of Lemma 2.8, the main term is
r∑

u=1

∑
r1,...,ru∈N

r1+...+ru=r

r!
r1! · · · ru!

∑
t0(B)<p1<···<pu�t1(B)

pi+1>pexp(z)
i ∀i

u∏
i=1

σpi

∏
pi<p�pexp(z)

i

(1 − σp) = E
[
Tr

B

]
,

where

TB :=
∑

t0(B)<p�t1(B)

B̃p.

We have shown that for all r ∈N one has∣∣Ex∈�̃B

[
ω̃z,B(x)r

]− E
[
Tr

B

]∣∣	r

(log log t1(B))r

min{es, t0(B)} .

Noting that TB = S̃t1(B) − S̃t0(B) gives

E
[
Tr

B

]= E
[̃
Sr

t1(B)

]+ Or

(
max

0�k�r−1
E
[̃
Sr−k

t0(B)̃S
k
t1(B)

])
.

and the Cauchy–Schwarz inequality shows that

E
[
Tr

B

]= E
[̃
Sr

t1(B)

]+ Or

(
max

0�k�r−1
E
[̃
S2(r−k)

t0(B)

]1/2
E
[̃
S2k

t1(B)

]1/2
)

.

Since 0 � B̃p � X̃p, we infer that 0 � S̃N �
∑

p�N X̃p, hence,

E
[̃
Sr

N

]
� E

[(∑
p�N

X̃p

)r]
=

r∑
u=1

∑
r1,...,ru∈N

r1+...+ru=r

r!
r1! · · · ru!

∑
p1<···<pu�N

u∏
i=1

E[X̃ri
p ].

But E[X̃ri
p ] = E[X̃p] = σp 	 1/p, hence, E

[̃
Sr

N

]	 (log log N)r. Hence,

max
0�k�r−1

E
[̃
S2(r−k)

t0(B)

]1/2
E
[̃
S2k

t1(B)

]1/2 	 max
0�k�r−1

(log log t0(B))r−k(log log t1(B))k,

which is 	 (log log t0(B))(log log t1(B))r−1. Hence,∣∣Ex∈�̃B

[
ω̃z,B(x)r

]− E
[̃
Sr

t1(B)

]∣∣	r

(log log t1(B))r

min
{

log log t1(B)
log log t0(B)

, es, t0(B)
} .

Therefore, ∣∣∣∣∣E�̃B

[(
ω̃z,B(x) − c̃t1(B)

s̃t1(B)

)k
]

− E

[(
SN − c̃t1(B)

s̃t1(B)

)k
]∣∣∣∣∣

is

	 (̃st1(B))
−k

k∑
r=0

∣∣̃ct1(B)

∣∣k−r (
E�̃B

[
ω̃r

z,B

]− E
[
Sr

t̃1(B)

])
,

which, by (3.2)–(3.3) is

	 (log log t1(B))−r (log log t1(B))r

min
{

log log t1(B)
log log t0(B)

, es, t0(B)
} 	 1

min
{

log log t1(B)
log log t0(B)

, es, t0(B)
} .
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This vanishes asymptotically as long as we assume that

log log t0(B) = o(log log t1(B)). (3.9)

This is due to (3.7) which implies that

s = log D

log y
= 1

20 exp(z)

log B

log t1(B)
→ +∞.

We have therefore shown that, subject to (3.4)–(3.7)–(3.9), one has

E�̃B

[(
ω̃z,B(x) − c̃t1(B)

s̃t1(B)

)k
]

→ μk.

The concluding arguments follow those in Lemma 2.10, the only difference being dealing with primes
p � t0(B). Recall from [14, Lemma 3.2, part (2)] that there exists a constant A > 0 and a homogeneous
F ∈Z[x0, . . . , xn] (both of which depend only on f ) with the property that for all primes p and x ∈ Pn(Q)
with f −1(x) smooth and f −1(x)(Qp) = ∅, one has p | F(x). Then

0 �ωf ,z(x) − ω̃z,B(x) �
∑

p�t0(B)

1 +
∑

p>t1(B)
f −1(x)(Qp)=∅

1 � t0(B) + �{p | F(x) : p > t1(B)}.

For z > 1 and m ∈N, we have �{p | m : p > z}� (log m)/(log z). For x ∈ �̃B, we have H(x) � B, thus,
log |F(x)| 	 log B. In particular,

ωf ,z(x) = ω̃z,B(x) + O

(
t0(B) + log B

log t1(B)

)
,

where the implied constant is independent of B, z and x. Combined with arguments similar to the ones
in Lemma 2.10, we obtain

lim
B→∞

max
{∣∣(ωf ,z(x) − (f )e−z(f ) log log B) − (ω̃z,B(x) − c̃t1(B))

∣∣ : x ∈ �̃B

}
√

log log B
= 0,

as long as

t0(B) = o
(√

log log B
)

and
log B

log t1(B)
= o

(√
log log B

)
. (3.10)

The proof of Theorem 3.2 concludes by adapting the arguments in Section 2.4 to the current setting.
This can be achieved as long as we assume that

log log t1(B)

log log B
→ 1 and log log B − log log t1(B) = o(

√
log log B) (3.11)

and it now remains to find functions t0(B) and t1(B) that satisfy all assumptions (3.4)–(3.7)–(3.9)–(3.10)–
(3.11). This can be done by choosing t0(B) and t1(B) so that

t0(B) = log log log B and
log t1(B)

log B
= log log log B√

log log B
.
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