A DUAL VIEW OF THE CLIFFORD THEORY OF CHARACTERS OF FINITE GROUPS, II

RICHARD L. ROTH

Introduction. This paper continues the analysis of Clifford theory for the case of a finite group G, K a normal subgroup of G and G / K abelian which was developed in [7]. In [7] the permutation actions of G / K on the characters of K and of $(G / K)^{\wedge}$ on the characters of G were studied in relation to their effects on induction and restriction of group characters. With χ an irreducible character of G, and σ an irreducible component of $\left.\chi\right|_{K}$, the chain of subgroups $K \subseteq J(\chi) \subseteq I(\sigma) \subseteq G$ was investigated, where $I=I(\sigma)$ is the usual inertial subgroup for σ and $J=J(\chi)$ is a subgroup called the dual inertial group for χ. Corresponding to the orbit of χ under $(G / K)^{\wedge}$ and of σ under G / K we investigated a tableau of characters on J. In this paper a similar tableau is developed for I. A further subgroup M, called an intermediary subgroup, is introduced with $J \leqq M \leqq I$ which has the property that σ extends to a character ρ of M and $\rho^{G}=\chi$. There are in fact $e_{K}(\chi)$ such choices for ρ forming one orbit under the actions of I / M and of $(M / J)^{\wedge}$. (Here, the two types of actions are observed on the same set of characters.) The permutations involved are in fact identical, which leads to an isomorphism of I / M and $(M / J)^{\wedge}$. Thus also $I / M \cong M / J$. M is not unique and an example is given with two intermediary subgroups M_{1}, M_{2} with $M_{1} / J \nRightarrow M_{2} / J$.

Since writing [7], the author has become aware that some of the results on "dual Clifford theory" had been previously established in [4, Section 4] and [5, Section 3]; see also the more recent article [9, (Section 1)]. It should further be remarked that Dade, using a somewhat different approach, has also investigated the special properties of Clifford theory for G / K abelian in [1, Chapter 3].

1. Background. The notation in this paper will be the same as in [7]. All groups are finite and all characters come from representations over the complex numbers. As in [7], K is a normal subgroup of G, and the paper in general is concerned with the case that G / K is abelian.

As is well-known (see for example [3, Chapter V, Section 17]), if χ is an irreducible character of G and σ an irreducible component of $\left.\chi\right|_{K}$ then the usual Clifford decomposition gives

$$
\begin{equation*}
\left.\chi\right|_{K}=e_{K}(\chi) \sum_{i=1}^{m} \sigma^{g_{i}} \tag{1}
\end{equation*}
$$

where g_{1}, \ldots, g_{m} are coset representatives for G modulo $I(\sigma)$, the inertial
Received July 11, 1972.
group of σ, and $e_{K}(\chi)$ is Clifford's index of ramification of χ with respect to K. If G / K is abelian, it follows from [7 (see Theorem 3.2, (vi) for example)] that given $\sigma, e_{K}(\chi)=e_{K}\left(\chi^{\prime}\right)$ for any irreducible character χ^{\prime} of G whose restriction to K contains σ. Hence $e=e_{K}(\chi)$ might be regarded dually as the "ramification index of σ with respect to G ", independent of choice of χ.
G / K acts by conjugation on the characters of K while $(G / K)^{\wedge}$, the dual group of one dimensional characters of G / K, acts by multiplication on the characters of G. In Section 2 of [7], the effects of these actions on induction and restriction of group characters were compared and can be summarized in the following scheme:

Theorem 1.1. Let G / K be abelian. Let χ be an irreducible character of G, σ an irreducible character of K.
I. (a) $(G / K)^{\wedge}$ operates faithfully on $\left.\chi \Leftrightarrow \chi\right|_{K}$ is irreducible.
(b) $(G / K)^{\wedge}$ fixes $\chi \Leftrightarrow$ ex is induced from an irreducible character of K. Here e is the ramification index of χ with respect to K.
II. (a) G / K operates faithfully on $\sigma \Leftrightarrow \sigma^{G}$ is irreducible.
(b) G / K fixes $\sigma \Leftrightarrow e \sigma$ is the restriction of an irreducible character of G. Here e is the ramification index of σ with respect to G.

Proof. I (a) is Corollary 2.6, I (b) is Theorem 2.1, and II (a) is Theorem 2.7 (these references being to [7]). II (b) is seen as follows: Let χ be an irreducible character of G such that σ is a component of $\left.\chi\right|_{K}$. Then in Equation (1), G / K fixes $\sigma \Leftrightarrow m=\left.1 \Leftrightarrow \chi\right|_{K}=\sigma$.

Remark. If G / K is cyclic, then it is known that $e=1$ ([7, Lemma 1.1]; see [2, Theorem 9.12] for proof). Thus Theorem 1.1 in this case becomes precisely the "summary for G / K cyclic" given in [7, bottom of p. 260].

The following lemma will be useful later in the article.
Lemma 1.2. Let G / K be abelian, L any subgroup between G and K. Let $\lambda \in(L / K)^{\wedge}$ and $g \in G$. Then $\lambda^{g}=\lambda$.

Proof. If $x \in L$ and $g \in G$, then $g x g^{-1}=k x, k \in K$ and $\lambda^{g}(x)=\lambda\left(g x g^{-1}\right)=$ $\lambda(k x)=\lambda(k) \lambda(x)=\lambda(x)$.

In [7], the dual inertial group $J(\chi)$ with respect to K was defined as follows: Let $H(\chi)=\left\{\lambda \in(G / K)^{\wedge} \mid \lambda \chi=\chi\right\}$. Then

$$
J(\chi)=\cap\{\operatorname{Ker} \lambda: \lambda \in H(\chi)\} .
$$

Various theorems concerning $J=J(\chi)$ were established in [7]. For example, $(I: J)=e^{2}$ where $I=I(\sigma)$ and $e=e_{K}(\chi)=e_{J}(\chi)$. There is a unique irreducible character ψ of J which is a component of $\left.\chi\right|_{J}$ and such that $\left.\psi\right|_{K}=\sigma$ and $\psi^{G}=e \chi$. This notation will be used throughout this paper.
2. The lower and upper tableaux. Let G / K be abelian, $\chi, \psi, \sigma, I=I(\sigma)$, $J=J(\chi)$ be as described in Section 1. In [7, Theorem 3.2 (i)] it was observed
that $I(\sigma)=I(\psi)$, the inertial subgroup of ψ in G. The following theorem gives a similar result for J.

Theorem 2.1. Let τ be any irreducible component of $\left.\chi\right|_{I}$. Let $J(\tau)$ be the dual inertial group of τ (defined with respect to the groups I and K). Then $J(\tau)=$ $J(\chi)$.

Proof. By [2, Theorem 9.11] applied to χ on G and ψ on J there exists an irreducible character θ on $I=I(\psi)$ such that $\theta^{G}=\chi$ and ψ is a component of $\left.\theta\right|_{J}$. Further $e_{J}(\chi)=e_{J}(\theta)$. Denote this as e, as usual. Then $\left.\theta\right|_{J}=e \psi$ (Formula (1) of Section 1). And, $\left(\psi^{I}, \theta\right)=\left(\psi,\left.\theta\right|_{J}\right)=e, \operatorname{sodeg} \psi^{I}=[I: J] \operatorname{deg} \psi=e^{2}$ $\operatorname{deg} \psi=e \operatorname{deg} \theta$, so that $\psi^{I}=e \theta$.

This means that $(I / J)^{\wedge}$ fixes θ (by Theorem 1.1, $\mathrm{I}(\mathrm{b})$). Letting $\mathrm{H}(\theta)=$ subgroup of $(I / K)^{\wedge}$ which fixes θ, we have $(I / J)^{\wedge} \subseteq H(\theta)$. Then

$$
J(\theta)=\cap\{\operatorname{Ker} \lambda: \lambda \in H(\theta)\} \subseteq \cap\left\{\operatorname{Ker} \lambda: \lambda \in(I / J)^{\wedge}\right\}=J(\chi)
$$

But $[I: J(\chi)]=e^{2}=[I: J(\theta)]$ by $[7$, Theorem 3.2 (iii)] so $J(\theta)=J(\chi)$.
Any irreducible component τ of $\left.\chi\right|_{I}$ is of the form $\theta^{g}, g \in G$ and $J(\theta)=$ $J\left(\theta^{g}\right)$ is seen, using Lemma 1.2, as follows:

If $\lambda \in(I / K)^{\wedge}, \lambda \theta=\theta \Leftrightarrow(\lambda \theta)^{g}=\theta^{g} \Leftrightarrow \lambda^{g} \theta^{g}=\theta^{g} \Leftrightarrow \lambda \theta^{g}=\theta^{g}$. So $H(\theta)=H\left(\theta^{g}\right)$ and $J(\theta)=J\left(\theta^{g}\right)$.

Corollary 2.2. With the same notation as above we have:
(a) there exists an irreducible character θ such that $\psi^{I}=e \theta,\left.\theta\right|_{J}=e \psi$ and $\theta^{G}=\chi$;
(b) $J(\lambda \theta)=J(\theta)=J\left(\theta^{g}\right)=J(\chi)$ for any $\lambda \in(I / K)^{\wedge}$ and $g \in G$.

Proof. For the first part of (b) note that if $\lambda^{\prime} \in(I / K)^{\wedge}$, then $\lambda^{\prime} \theta=\theta \Leftrightarrow \lambda^{\prime} \lambda \theta=\lambda \theta$ so $H(\lambda \theta)=H(\theta)$ and $J(\lambda \theta)=J(\theta)$. The rest of the corollary was seen in the course of the proof of Theorem 2.1.

In [7] an m by r tableau (henceforth to be called the lower tableau) of distinct characters of J was described. Let g_{1}, \ldots, g_{m} be a set of coset representatives of G modulo I. Then $\left\{\sigma_{i}=\sigma^{g_{i}}: i=1, \ldots m\right\}$ is the orbit of σ under G / K (we may assume that $\sigma_{1}=\sigma$). Let $\tau_{1}, \ldots, \tau_{r}$ be elements of $(G / K)^{\wedge}$ such that $\left\{\chi_{i}=\tau_{i} \chi: i=1, \ldots, r\right\}$ is the set of (distinct) elements of the orbit of χ under $(G / K)^{\wedge}$ (we may assume $\chi_{1}=\chi$). Let $\left.\tau_{i}\right|_{J}=\lambda_{i}, i=1, \ldots, r$. Then to each pair $\left(\chi_{j}, \sigma_{i}\right)$ is associated the unique character $\psi_{i j}$ in the i th row and j th column of the lower tableau (this is a small change in notation from [7]) such that $\left.\psi_{i j}\right|_{K}=\sigma_{i}$ and $\left(\psi_{i j}\right)^{G}=e \chi_{j}(i=1, \ldots, m ; j=1, \ldots, r)$. In fact $\psi_{i j}=\left(\lambda_{j} \psi\right)^{g_{i}}=\lambda_{j} \psi^{g_{i}}$ (note Lemma 1.2). There is considerable symmetry concerning this tableau; for example $J=J(\chi)=J\left(\chi_{j}\right)$ for $j=1, \ldots, r$; $I=I(\sigma)=I\left(\sigma_{i}\right) i=1, \ldots, m ; I=I(\psi)=I\left(\psi_{i j}\right)$ for all $i, j ; e=e_{K}(\chi)=$ $e_{K}\left(\chi_{j}\right)=e_{J}\left(\chi_{j}\right) j=1, \ldots, r$ etc. And clearly, Theorem 2.1 and Corollary 2.2 apply with respect to any χ_{i}, σ_{j}, and the corresponding $\psi_{i j}$. Hence there corresponds to $\psi_{i j}$ an irreducible character $\theta_{i j}$ on such that $\left(\psi_{i j}\right)^{I}=e \theta_{i j}$,
$\left.\theta_{i j}\right|_{J}=e \psi_{i j}$ and $\left(\theta_{i j}\right)^{G}=\chi_{i}$. The $r m$ distinct characters of $I, \theta_{i j}, i=1, \ldots, m$, $j=1, \ldots, r$ form the upper tableau. Its properties, similar to those of the lower tableau, are described in the next theorem.

Theorem 2.3. (a) Let $\lambda_{j}{ }^{\prime}=\left.\tau_{j}\right|_{I}, j=1, \ldots, r$. Then $\theta_{i j}=\left(\lambda_{j}{ }^{\prime} \theta\right)^{g_{i}}=\lambda_{j}{ }^{\prime} \theta^{g_{i}}$ where $\theta=\theta_{11}$ corresponds to χ and σ.
(b) The elements of the jth column of the upper tableau are the distinct irreducible components of $\left.\chi_{j}\right|_{I}$ and they form a faithful orbit under the action of G / I.
(c) The rows of the upper tableau are the orbits under the action of $(I / K)^{\wedge}$.

Proof. (a) Since $\psi^{I}=e \theta$ and $\left.\theta\right|_{J}=e \psi,\left.\left(\lambda_{j} \theta^{\theta_{i}}\right)\right|_{J}=\lambda_{j}\left(e \psi^{g_{i}}\right)=e \psi_{i j}$, so by Frobenius Reciprocity $\left(\psi^{I}{ }_{i j}, \lambda_{j}{ }^{\prime} \theta^{g_{i}}\right)=e$. Since $\psi^{I}{ }_{i j}=e \theta_{i j}$ clearly $\theta_{i j}=\lambda_{j}{ }^{\prime} \theta^{g_{i}}$. This equals $\left(\lambda_{j}{ }^{\prime} \theta\right)^{g_{i}}$ by Lemma 1.2.
(b) Since $\theta^{G}=\chi,\left.\chi\right|_{I}=\sum_{i=1}^{m} \theta^{g_{i}}$ and hence $\left.\chi_{j}\right|_{I}=\left.\tau_{j} \chi\right|_{I}=\lambda_{j} \sum \theta^{g_{i}}=\sum_{i} \theta_{i j}$.
(c) The $r=[J: K]$ elements in any row clearly belong to an orbit under $(I / K)^{\wedge}$. Applying [7, Theorem 3.2] to $\theta^{g_{i}}$ and I (in place of χ and G) we see that $\left[J\left(\theta^{g^{i}}\right): K\right]$ equals the size of the orbit under $(I / K)^{\wedge}$. This equals $[J: K]$ by Corollary 2.2 so the i th row forms the complete orbit.

3. The intermediary subgroups.

Definition. Let G be any finite group, K a normal subgroup, χ an irreducible character of G, and σ an irreducible component of $\left.\chi\right|_{K}$. Let M be a subgroup such that $K \subseteq M \subseteq G$ with a character ρ such that $\left.\rho\right|_{K}=\sigma$ and $\rho^{G}=\chi$. We call M an intermediary subgroup for χ and σ, with intermediary character ρ.

Theorem 3.1. Let G / K be abelian, χ an irreducible character of G and σ an irreducible component of $\left.\chi\right|_{K}$. Then there exists an intermediary subgroup M for χ and σ.

Proof. By induction on $[G: K]$. As noted earlier, we have $K \subseteq J \subseteq I \subseteq G$ and an irreducible character ψ on J such that ψ is an extension of σ and $\psi^{G}=e \chi$. By Corollary 2.2 (or directly from [2, Theorem 9.11]) there exists an irreducible character θ on I such that $\psi^{I}=e \theta,\left.\theta\right|_{J}=e \psi$ and $\theta^{G}=\psi$. If either $I \neq G$ or $J \neq K$, then $[I: J]<[G: K]$ and by induction there exists a subgroup M, $J \subseteq M \subseteq I$ and character ρ on M such that ρ extends ψ and $\rho^{I}=\theta$. Then clearly ρ also extends σ and $\rho^{G}=\left(\rho^{I}\right)^{G}=\theta^{G}=\chi$.

Suppose now that $G=I$ and $K=J$. If $(I / J)^{\wedge}$ were cyclic, then I / J would also be cyclic and hence $I=J$ by [7, Theorem 3.4] and the case is trivial. Otherwise, let H be a non-trivial proper cyclic subgroup of $(I / J)^{\wedge}$ and let N be the subgroup of I such that $(N / J)^{\perp}=H$. Then $(I / N)^{\wedge} \cong H$ (see [7, Lemma 1.2]). Thus I / N is cyclic and $e_{N}(\chi)=1$ (see "Remark" in section 1). Since $(I / N)^{\wedge} \subseteq(I / J)^{\wedge}$ and the elements of $(I / J)^{\wedge}$ all fix χ, we have that $\gamma^{G}=e_{N}(\chi) \chi=\chi$ where γ is an irreducible component of $\left.\chi\right|_{N}$, by Theorem 1.1, I(b). Now $\left.\chi\right|_{J}=e \sigma$ where $e=e_{J}(\chi)$ so σ is also a component of $\left.\gamma\right|_{J}$. By
induction, there exists a subgroup $M, J \subseteq M \subseteq N$, and an irreducible character ρ on M such that σ extends to ρ and $\rho^{N}=\gamma$. Hence $\rho^{I}=\gamma^{I}=\chi$.

Remark. Independently of the author, it has recently been shown by I. M. Isaacs and David Price that Theorem 3.1 (the existence of intermediary subgroups) in fact holds for a considerably wider class of groups G / K, including the case that G / K is supersolvable (see [6]).

Theorem 3.2. Let G / K be abelian with notation as above. Let M be any intermediary subgroup (with character ρ) for χ and σ. Then $J(\chi) \subseteq M \subseteq I(\sigma)$. Further if ψ is the unique irreducible character of J with $\psi^{G}=e \chi$ and $\left.\psi\right|_{J}=\sigma$, and $\psi^{I}=e \theta$ (i.e., ψ and θ are the elements of the lower and upper tableaux corresponding to χ and σ as in Section 2) then M is an intermediary subgroup for θ and ψ with character ρ.

Proof. Since ρ extends σ to M, if $g \in M, \rho^{g}=\rho$ so $\sigma^{g}=\sigma$, and $M \subseteq I(\sigma)=I$. Since $\rho^{G}=\chi$, if $\lambda \in(G / M)^{\wedge}, \lambda \chi=\chi$ hence
$M=\cap\left\{\operatorname{Ker} \lambda: \lambda \in(G / M)^{\wedge}\right\} \supseteq \bigcap\left\{\operatorname{Ker} \lambda: \lambda \in(G / K)^{\wedge}\right.$ and λ fixes $\left.\chi\right\}=J(\chi)$.
Since ρ extends σ to $M,\left.\rho\right|_{J}$ is an extension of σ to J, hence equals one of the characters in the top line of the lower tableau: i.e. $\left.\rho\right|_{J}=\psi_{1 j}$, say. Since $\rho^{G}=\chi,\left.\chi\right|_{M}$ contains ρ, hence also $\psi_{1 j}$. By [7, Theorem 3.1] $j=1$ and $\psi_{1_{j}}=$ $\psi_{11}=\psi$, so $\left.\rho\right|_{f}=\psi$. Since $\rho^{G}=\chi$ is irreducible, ρ^{I} is an irreducible character of I whose restriction to I contains ψ, hence $\rho^{I}=\theta$.

Lemma 3.3. Under the same hypotheses as in Theorem 3.2, $[I: M]=$ $[M: J]=e$.

Proof. $[I: J]=e^{2}$ by [7, Theorem 3.2 (iii)]. Since $\left.\rho\right|_{J}=\psi, \rho^{I}=\theta, \psi^{I}=e \theta$ and $\left.\theta\right|_{J}=e \psi$, we have $e \operatorname{deg} \psi=\operatorname{deg} \theta=\operatorname{deg} \rho^{I}=[I: M] \operatorname{deg} \psi$. Thus $[I: M]=e$ and $[M: J]=[I: J] /[I: M]=e$.

Theorem 3.4. Let G / K be abelian, χ an irreducible character on K, σ an irreducible component of $\left.\chi\right|_{\kappa}$. Let M be an intermediary subgroup for χ and σ. Then there exist precisely e intermediary characters $\rho_{1}, \ldots, \rho_{e}$ for χ and σ on M. They form an orbit under both the actions of I / M by conjugation and $(M / J)^{\wedge}$ by multiplication. Under these actions I / M and $(M / J)^{\wedge}$ are represented faithfully by the same regular permutation group; thus $I / M \cong(M / J)^{\wedge}$.

Proof. Let ρ be an intermediary character for χ and σ on M. By Theorem 3.2 we may regard M as intermediary subgroup for ψ and θ where ψ is an irreducible character of $J=J(\chi)=J(\theta)$ (by Theorem 2.1) and θ is an irreducible character of $I=I(\sigma)=I(\psi)$. Also $\left.\rho\right|_{J}=\psi, \rho^{I}=\theta$. Since ρ^{I} is irreducible, I / M operates faithfully on ρ yielding the orbit $\left\{\rho_{1}, \ldots, \rho_{e}\right\}$ with $e=[I: M]$ elements and these are the only characters which induce to θ. Since ρ is an extension of $\psi,(M / J)^{\wedge}$ operates faithfully on ρ, forming an orbit of $e=[M: J]$ elements which are precisely the extension of ψ to M. Let $\gamma \in(M / J)^{\wedge}$. Then
$\gamma \rho$ is an element of the latter orbit. Extend γ to $\gamma^{\prime} \in(I / J)^{\wedge}$. Then $(\gamma \rho)^{I}=$ $\gamma^{\prime} \rho^{I}=\gamma^{\prime} \theta=\theta$ (by definition of $J=J(\theta)$). Hence $\gamma \rho=\rho^{h}$ some $h \in I$. We label the elements of $(M / J)^{\wedge}$ here $\gamma_{1}, \ldots, \gamma_{e}$ (so that $\gamma_{i} \rho=\rho_{i}$). Then choose coset representatives h_{1}, \ldots, h_{e} of I modulo M such that $\gamma_{i} \rho=\rho^{h_{i}}$, $i=1,2, \ldots, e$. That this bijective correspondence of $(M / J)^{\wedge}$ with I / M is an isomorphism is seen as follows: Suppose that $h_{i} h_{j}=h_{k}$ modulo M. Since $\left(\gamma_{i}\right)^{h_{i}}=\left(\gamma_{i}\right)$ by Lemma 1.2, we have

$$
\gamma_{k} \rho=\rho^{h_{k}}=\rho^{\left(h_{i} h_{j}\right)}=\left(\rho^{h_{i}}\right)^{h_{j}}=\left(\gamma_{i} \rho\right)^{h_{i}}=\left(\gamma_{i}\right)^{h_{i}} \rho^{h_{j}}=\gamma_{i} \rho^{h_{j}}=\gamma_{i} \gamma_{j} \rho
$$

Hence $\gamma_{k}=\gamma_{i} \gamma_{j}$, since $(M / J)^{\wedge}$ acts faithfully on ρ. (Note: the initial choice of terminology in [7], i.e. that $\sigma^{g}(x)=\sigma\left(g x g^{-1}\right)$ causes I / M apparently to act here as a permutation group on the right, but since I / M is abelian it may also be interpreted as affording permutations on the left).

Corollary 3.5. $I / M \cong M / J$.
Theorem 3.6. Let G / K be abelian and M an intermediary subgroup for χ and σ. Then for each χ_{j} in the orbit of χ under $(G / K)^{\wedge}$ and each σ_{i} in the orbit of σ under $G / K, M$ is an intermediary subgroup with e intermediary characters. M is an intermediary subgroup for each corresponding pair $\theta_{i j}$ and $\psi_{i j}$ from the upper and lower tableaux.

Proof. Let ρ be a character on M which is intermediary for χ and σ. Then by Theorem 3.2 it is also intermediary for θ and ψ. Following the notation of Theorem 2.3, we let $\lambda_{j}{ }^{\prime}=\left.\tau_{j}\right|_{I}, j=1, \ldots, r$. Further let $\lambda_{j}{ }^{\prime \prime}=\left.\lambda_{j}{ }^{\prime}\right|_{M}$, $j=1, \ldots, r .\left.\rho\right|_{J}=\psi$ so $\left.\lambda_{j}{ }^{\prime \prime} \rho^{g_{i}}\right|_{J}=\lambda_{j} \psi^{g_{i}}=\psi_{i j}$. It may be verified that $\left(\rho^{g_{i}}\right)^{I}=\left(\rho^{I}\right)^{g_{i}}$. Then since $\rho^{I}=\theta,\left(\lambda_{j}^{\prime \prime} \rho^{g_{i}}\right)^{I}=\lambda_{j}{ }^{\prime}\left(\rho^{g_{i}}\right)^{I}=\lambda_{j}{ }^{\prime}\left(\rho^{I}\right)^{g_{i}}=$ $\lambda_{j}{ }^{\prime} \theta^{g_{i}}=\theta_{i j}$. Thus $\lambda_{j}{ }^{\prime \prime} \rho^{g_{i}}$ is an intermediary character for $\theta_{i j}$ and $\psi_{i j}$. It follows that it is also an intermediary character for χ_{j} and σ_{i}.

Remark. If $S_{i j}$ denotes the set of e intermediary characters on M for $\theta_{i j}$ and $\psi_{i j}$ then the union of the $S_{i j}$ is a set S of erm characters on M corresponding to the entire tableaux. Each character σ_{i} has exactly er extensions to M $\left(\cup S_{i j}: i=1, \ldots, r\right)$ while there are precisely $e m$ characters on M $\left(\cup S_{i j}: i=1, \ldots, m\right)$ which give χ_{j} when induced to G.
4. An Example. It is known that $I / J \cong H_{1} \times H_{2}$ (direct product) with $H_{1} \cong H_{2}$ (see [5, p. 126]) and since $I / M \cong M / J$, where M is an intermediary subgroup, this suggests that I / J might be expressed as a direct product $(M / J) \times H_{2}$ with $H_{2} \cong M / J$. That this is not true in general is shown by the following example.

Let G be a group of order 64 , generated by elements a, b, c with $a c=c a$. $b c=c b, a^{4}=c^{2}, b^{4}=1, b^{-1} a b=a c$ (group number 180 in [8]). Let $J=\langle c\rangle$, the subgroup generated by c. Let ψ be the linear character of $\langle c\rangle$ given by $\psi(c)=i$ and extend ψ to ρ on $M_{1}=\left\langle a^{2}, b^{2}, c\right\rangle$ by setting $\rho\left(b^{2}\right)=1, \rho\left(a^{2}\right)=-i$.

Then it can be checked that $\rho^{G}=\theta$ is irreducible, $G=I(\psi)=I, M_{1}$ is an intermediary subgroup for θ and ψ and I / J is not the direct product of M_{1} / J with any other subgroup. However if $M_{2}=\langle a, c\rangle$, then it is now easily seen that if ρ^{\prime} is any extension of ψ to M_{2}, we will have $\left(\rho^{\prime}\right)^{G}=\theta$ so that M_{2} is also an intermediary subgroup. In this case, $I / J=\left(M_{2} / J\right) \times H / J$ with $H=\langle b, c\rangle$. Further, $M_{1} / J \nsupseteq M_{2} / J$ (the first being the Klein Four-group, while the second one is cyclic). [Added in proof: $c^{4}=1 ; J=J(\theta)$]

References

1. E. C. Dade, Characters and solvable groups (preprint), University of Illinois, Urbana, Illinois (1967).
2. Walter Feit, Characters of finite groups (Benjamin, New York, 1967).
3. B. Huppert, Endliche Gruppen. I (Springer-Verlag, Berlin-Heidelberg-New York, 1967).
4. N. Iwahori and H. Matsumoto, Several remarks on projective representations of finite groups, J. Fac. of Sci. Univ. Tokyo Sect. I A Math. 10 (1964), 129-146.
5. G. J. Janusz, Some remarks on Clifford's theorem and the Schur index, Pacific J. Math. 32 (1970), 119-129.
6. David T. Price, A generalization of M groups, Ph.D. dissertation, University of Chicago, 1971.
7. Richard L. Roth, A dual view of the Clifford theory of characters of finite groups, Can. J. Math. 23 (1971), 857-865.
8. M. Hall and J. K. Senior, The groups of order $2^{n}(n \leqq 6)$ (Macmillan, New York, 1964).
9. M. Takeuchi, A remark on the character ring of a compact Lie group, J. Math. Soc. Japan 23 (1971), 662-675.

University of Colorado,
Boulder, Colorado

