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Abstract
In this paper, we consider reaction-diffusion epidemic models with mass action or standard incidence mechanism
and study the impact of limiting population movement on disease transmissions. We set either the dispersal rate
of the susceptible or infected people to zero and study the corresponding degenerate reaction-diffusion model. Our
main approach to study the global dynamics of these models is to construct delicate Lyapunov functions. Our results
show that the consequences of limiting the movement of susceptible or infected people depend on transmission
mechanisms, model parameters and population size.

1. Introduction

Various differential equation epidemic models have been proposed to study the spread of infectious dis-
eases [4, 6, 7, 14, 41], and it has been recognised that population mobility [5, 52, 55] and the spatial
heterogeneity of the environment [19, 32] are key factors in disease transmissions. In order to address
these issues, many reaction-diffusion epidemic models with non-constant coefficients have been pro-
posed and studied [2, 17, 58, 59]. Specific infectious diseases modelled by diffusive models include
malaria [38, 39], rabies [23, 42], dengue fever [53], West Nile virus [27, 31], influenza [40], COVID-19
[18, 25, 51, 57], etc.

In this paper, we consider the following susceptible-infected-susceptible (SIS) diffusive epidemic
model, which is a natural extension of the classic ordinary differential equation epidemic model by
Kermack and McKendrick [24]:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tS = dS�S − f (x, S, I) + γ (x)I, x ∈ �, t > 0,

∂tI = dI�I + f (x, S, I) − γ (x)I, x ∈ �, t > 0,

∂νS = ∂νI = 0, x ∈ ∂�, t > 0,

S(x, 0) = S0(x), I(x, 0) = I0(x), x ∈ �.

(1.1)

Here, the individuals are assumed to live in a bounded domain � ⊂R
n with smooth boundary ∂�;

S(x, t) and I(x, t) are the density of susceptible and infected individuals at position x ∈ � and time t,
respectively; dS and dI are the movement rates of susceptible and recovered individuals, respectively;
γ is the disease recovery rate; f (x, S, I) describes the interaction of susceptible and infected people; ν

is the unit outward normal of ∂� and the homogeneous Neumann boundary conditions mean that the
individuals cannot cross the boundary.
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In the pioneering work by Allen et al. [2], model (1.1) with standard incidence mechanism, f (x, S, I) =
β(x)SI/(S + I), has been proposed and studied (β is called the disease recovery rate). In [2], the authors
define a basic reproduction number R0 and show that the model has a unique endemic equilibrium (EE)
(i.e. positive equilibrium) if R0 > 1. Most importantly, they show that the disease component of the EE
approaches zero as dS approaches zero if β − γ changes sign. Biologically, assuming that the population
eventually stabilises at the EE, this result indicates that the disease can be eliminated by controlling the
mobility of susceptible individuals if there are places that are of low risk (i.e. β(x) < γ (x)). In contrast,
if the dispersal rate of infected people is limited, [45] shows that the disease cannot be completely elim-
inated. In [13, 62], the authors considered model (1.1) with mass action mechanism, f (x, S, I) = β(x)SI,
which is algebraically simpler but mathematically more challenging. For this model, assuming again that
the population eventually stabilises at EE solutions, it has been shown that lowering the movement of
susceptible people can eliminate the disease only when the size of the population is below some critical
number, solely determined by γ /β [9, 62], while infected individuals may concentrate on certain hot
spots when limiting their movement [9, 47, 62]. It is important to note that stability of the EE solutions
for models with standard incidence or mass action mechanism is only known in a few cases: either the
population movement rate is uniform (i.e. dS = dI) or the ratio β/γ is constant [13, 46]. For more related
works, we refer the interested readers to [10–12, 22, 26, 28–30, 34, 35, 46, 48–50, 54, 56, 60] and the
references therein.

For the corresponding ordinary differential equation epidemic model of (1.1):

⎧⎨
⎩

S′ = −f (S, I) + γ I,

I ′ = f (S, I) − γ I,

the global dynamics is determined by the basic reproduction number, which can be interpreted as the
average number of infected individuals generated by one infectious individual in an otherwise suscep-
tible population: if it is greater than one, the solution converges to an EE and the disease persists; if
it is less than one, the solution converges to a disease free equilibrium and the infected individuals
go to extinction. Here, the basic reproduction number is R1

0 = Nβ/γ if f (S, I) = βSI and R2
0 = β/γ if

f (S, I) = βSI/(S + I).
In this paper, we revisit model (1.1) and study the impact of limiting population movement on disease

transmissions. Different from most of the aforementioned studies, we will work on the global dynam-
ics of the time-dependent model (1.1) with either dS = 0 or dI = 0 rather than consider the asymptotic
profiles of the EE as dS → 0 or dI → 0. Intuitively, if the disease evolves at a faster time scale than the
control of population movement, and the population eventually stabilises at an EE, then the asymptotic
profiles of the EE solutions may reflect the effect of the control strategy. However, if the control of pop-
ulation movement happens in a faster time scale and the solution of model (1.1) converges to that of
the corresponding degenerate system as dS → 0 or dI → 0, then the global dynamics of the degenerate
system will better tell the impact of the control strategies.

There are several recent efforts on degenerate reaction-diffusion population models (see [15, 16, 33,
36, 37, 43, 63] and the references cited therein). In particular, the two works [9, 33] have partial results
on model (1.1) with dS = 0, which was interpreted as the situation of a total lock down for the susceptible
population. Note that when either dS = 0 or dI = 0, system (1.1) becomes degenerate and hence there is
a lack of some compactness of the solution operator, which induces many challenges in the study of the
large time behaviour of the solutions.

Our main approach to study the global dynamics of the degenerate system (1.1) (i.e. dS = 0 or dI = 0)
is to construct Lyapunov functions (except for the case dS = 0 in Section 3.1) and combine these with
delicate analysis. In particular, in Section 3.2, we present a Lyapunov function that one may easily draw
a false conclusion using it and the convergence result based on it is very quite unusual (see Remark 3.8
and Figure 2). In the proof of Theorem 4.6, we construct a Lyapunov function V that does not satisfy
V̇ ≤ 0 (see Eq. 4.25), but we are still able to conclude the convergence of the solution.
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The rest of our paper is organised as follows. In Section 2, we list the assumptions and terminol-
ogy and present some useful results. In Section 3, we consider the model with mass action mechanism
with dS = 0 or dI = 0. In Section 4, we consider the model with standard incidence mechanism. In
Section 5, we run some numerical simulations to illustrate the results. In Section 6, we compare the
results from the two different mechanisms and control strategies and discuss the implications for disease
control.

2. Preliminaries

Throughout the paper, we make the following assumptions on the parameters:

(A1) The functions β, γ are positive and Hölder continuous on �̄;
(A2) The functions S0, I0 are nonnegative and continuous on �̄ with I0 �≡ 0. Moreover,

∫
�

(S0 + I0)dx =
N for some fixed positive constant N.

Integrating the first two equations of model (1.1) over � and summing up them, we find that
d

dt

∫
�

(S(x, t) + I(x, t))dx = 0,

which means the total population
∫

�
(S(x, t) + I(x, t))dx remains a constant for all t ≥ 0. By assumption

(A2), the total population is N.
For convenience, we introduce a few definitions and notations. Set r := γ /β and R := β/γ . For a

real-valued continuous function h on �, let hM := supx∈� h(x), hm := infx∈� h(x) and h̄ = ∫
�

h(x)dx/|�|.
Let {et�}t≥0 be the analytic c0-semigroup on Lp(�), 1 ≤ p < ∞, generated by the Laplace operator �

on � subject to the homogeneous Neumann boundary conditions on ∂�. Let Domp(�) be the domain
of the infinitesimal generator � of {et�}t≥0 on Lp(�). Then Domp(�) = {u ∈ W2,p(�)|∂νu = 0 on ∂�} for
p ∈ (1, ∞) and Dom1(�) ⊂ {u ∈ W2,1(�)|∂νu = 0 on ∂�} (see [3]). When {et�}t≥0 is considered as an
analytic c0-semigroup on C(�̄), the domain of its infinitesimal generator � is given by

Dom∞(�) := {
u ∈ ∩p≥1Domp(�)| �u ∈ C(�)

}
.

Let Z := {
u ∈ L1(�) :

∫
�

udx = 0
}

be a Banach subspace of L1(�). Then {et�}t≥1 leaves Z invariant
and by [61, Lemma 1.3], there is a positive real number C0 > 0 such that

‖et�u‖L1(�) ≤ C0e
−σ1 t‖u‖L1(�), ∀ u ∈Z , (2.1)

where σ1 is the first positive eigenvalue of −�, subject to the homogeneous boundary condition on ∂�.
By (2.1), the restriction �|Z of � on Z ∩ Dom1(�) is invertible. Hence, for any 0 ≤ α < 1, the fractional
power space Zα of −�|Z is well defined (see [20]). Denote by {et�|Z }t≥0, the restriction of the {et�}t≥0

on Z , then it is also an analytic c0-semigroup. The following estimates on Zα will be needed:

Lemma 2.1. [20, Theorem 1.4.3] For any 0 < α < 1, there is Cα > 0 such that

‖et�|Z z‖Zα ≤ Cαt−αe−σ1 t‖z‖L1(�), ∀ t > 0, z ∈Z , (2.2)

and ∥∥(et�|Z − id)z
∥∥

L1(�)
≤ Cαtα‖z‖Zα , ∀ z ∈Zα. (2.3)

The following well-known result will be used after the construction of Lyapunov functions, and we
provide a proof for convenience.

Lemma 2.2. Suppose that φ : R+ →R+ is Hölder continuous and
∫ ∞

0
φ(t)dt < ∞. Then

limt→∞ φ(t) = 0.

Proof. Suppose to the contrary that limt→∞ φ(t) �= 0. Then there exists ε > 0 and an increasing sequence
of nonnegative numbers {tk} converging to infinity such that φ(tk) > ε for all k ≥ 1. Restricting to a
subsequence if necessary, we assume that tk+1 − tk > 1 for each k ≥ 1. Since φ : R+ →R+ is Hölder
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continuous, there exist α ∈ (0, 1) and M > 0 such that |φ(t) − φ(s)| ≤ M|t − s|α for all t, s ≥ 0. Let δ =
min

{(
ε

2M

) 1
α , 1

}
. Then φ(t) > ε/2 for all t ∈ [tk, tk + δ] and k ≥ 1. It follows that∫ ∞

0

φ(t)dt ≥
∑
k≥1

∫ tk+δ

tk

φ(t)dt ≥
∑
k≥1

δ
ε

2
= ∞,

which is a contradiction.

We will need the following Hanack-type inequality (see [21]):

Lemma 2.3. Let u be a nonnegative solution of the following problem on � × (0, T):{
∂tu = �u + a(x, t)u, x ∈ �, t > 0,

∂νu = 0, x ∈ ∂�, t > 0,

where a ∈ L∞(� × (0, ∞)). Then for any 0 < δ < T , there exists C > 0 depending on δ and ‖a‖L∞(�×(0,∞))

such that

sup
x∈�

u(x, t) ≤ C inf
x∈�

u(x, t), for all t ∈ [δ, T).

We also recall the following well-known result about the elliptic eigenvalue problem.

Lemma 2.4. [8] Suppose that d > 0 and h ∈ C(�). Let σ (d, h) be the principal eigenvalue of the
following elliptic eigenvalue problem:{

d�ϕ + hϕ = σϕ, x ∈ �,

∂νϕ = 0, x ∈ ∂�.

Then σ (d, h) is simple, associated with a positive eigenfunction, and given by the variational formula

σ (d, r) = sup

{∫
�

[
hϕ2 − d|∇ϕ|2

]
dx : ϕ ∈ W1,2(�) and ‖ϕ‖L2(�) = 1

}
. (2.4)

Furthermore, the following conclusions hold:

(i) If h(x) ≡ h is a constant function, then σ (d, h) = h for all d > 0.
(ii) If h(x) is not constant, then the map (0, ∞) � d �→ σ (d, h) is strictly decreasing with

lim
d→0+

σ (d, h) = hM and lim
d→∞

σ (d, h) = h. (2.5)

3. Model with mass action mechanism
3.1. Limiting the movement of susceptible people

First, we consider the impact of limiting the movement of susceptible people on (1.1) with mass action
mechanism, that is, the long time behaviour of the following degenerate system:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂tS = −β(x)SI + γ (x)I, x ∈ �̄, t > 0,

∂tI = dI�I + β(x)SI − γ (x)I, x ∈ �, t > 0,

∂νI = 0, x ∈ ∂�, t > 0,

S(x, 0) = S0(x), I(x, 0) = I0(x), x ∈ �̄.

(3.1)

The following result states that the solution of (3.1) exists and is bounded:

Proposition 3.1. Suppose that (A1)–(A2) holds and dI > 0. Then (3.1) has a unique nonnegative global
solution (S, I), where

S ∈ C1([0, ∞), C(�)) and I ∈ C([0, ∞), C(�)) ∩ C1((0, ∞), Dom∞(�)).
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Moreover, there exists M > 0 depending on (the L∞ norm of) initial data such that
‖S(·, t)‖L∞(�), ‖I(·, t)‖L∞(�) ≤ M, ∀t ≥ 0. (3.2)

Proof. First, we suppose that the solution exists on some maximal interval [0, tmax), tmax ∈ (0, ∞] and
prove the boundedness of it. Let M1 = max{‖S0‖L∞(�), rM}. By the first equation of (3.1), S(x, t) ≤ M1

for all x ∈ �̄ and 0 ≤ t < tmax. Since
∫

�
Idx ≤ ∫

�
(S + I)dx ≤ N for all t ∈ [0, tmax), by [1, Theorem 3.1]

(or Lemma 2.3), there exists M2 > 0 depending on ‖I0‖L∞(�) and M1 such that ‖I(·, t)‖L∞(�) ≤ M2 for all
0 ≤ t < tmax. This proves (3.2).

The integral form of (3.1) is⎧⎨
⎩

S(·, t) = e−atS0 + ∫ t

0
e−a(t−s)(aS(·, s) − βS(·, s)I(·, s) + γ I(·, s))ds, t > 0,

I(·, t) = et(dI�−a)I0 + ∫ t

0
e(t−s)(dI�−a)(a + βS(·, s) − γ )I(·, s)ds, t > 0,

(3.3)

where a > 0 is chosen to be sufficiently large. Using Banach fixed point theory, one can show that
(3.3) has a unique nonnegative solution (S, I) ∈ [C([0, T], C(�))]2 for some T > 0. By the first equa-
tion of (3.3), S ∈ C1([0, T], C(�)). By [44, Theorem 4.3.1 and Corollary 4.3.3], I ∈ C([0, T], C(�)) ∩
C1((0, T], Dom∞(�)). The a priori bound (3.2) enables us to extend the solution globally.

We note that the case when the total population is small (i.e. N <
∫

�
rdx) has been addressed in the

literature:

Theorem 3.2 ([9, Theorem 2.8-(i)]). Suppose that (A1)–(A2) holds and dI > 0. Let (S, I) be the solution
of (3.1). If N <

∫
�

rdx, then (S(x, t), I(x, t)) → (S∗(x), 0) uniformly in x ∈ �̄ as t → ∞, where S∗ ∈ C(�̄)
and

∫
�

S∗dx = N.

We are ready to study the asymptotic behaviour of the solution of (3.1).

Theorem 3.3. Suppose that (A1)–(A2) holds and dI > 0. Let (S, I) be the solution of (3.1). Then
‖S(·, t) − S∗‖L∞(�) → 0 as t → ∞ for some S∗ ∈ C(�), and exactly one of the following two statements
hold:

(i) S∗ = λ∗S0 + (1 − λ∗)r for some λ∗ ∈ C(�̄) with 0 < λ∗ < 1 and σ (dI , βλ∗(S0 − r)) ≤ 0,
∫

�
S∗dx =

N, and ‖I(·, t)‖L∞(�) → 0 as t → ∞;
(ii) S∗ = r and ‖I(·, t) − I∗‖L∞(�) → 0 as t → ∞, where I∗ = (N − ∫

�
rdx)/|�| is a positive constant.

Moreover, (i) holds if N ≤ ∫
�

rdx while (ii) holds if N > N∗
S0,r, where N∗

S0,r is defined by

N∗
S0,r := sup

{∫
�

(λ∗S0 + (1 − λ∗)r)dx : λ∗ ∈ C(�̄; [0, 1]) and σ (dI , βλ∗(S0 − r)) ≤ 0

}
. (3.4)

Proof. Define

J(x, t) =
∫ t

0

I(x, τ )dτ , ∀ (x, t) ∈ �̄ × [0, ∞).

It is clear that J(x, t) is strictly monotone increasing in t for each x ∈ �̄. Hence, we can define

Ĵ(x) :=
∫ ∞

0

I(x, τ )dτ = lim
t→∞

J(x, t) ∈ (0, ∞], ∀ x ∈ �̄.

Now, we distinguish two cases.

Case 1.Ĵ(x0) < ∞ for some x0 ∈ �. By (3.2), we have supt≥0 ‖βS(·, t) − γ ‖∞ < ∞. So by Lemma 2.3,
there is a positive constant c1 such that

IM(·, t) ≤ c1Im(·, t), ∀ t ≥ 1. (3.5)
It follows that

Ĵ(x) = J(x, 1) +
∫ ∞

1

I(x, τ )dτ ≤ J(x, 1) + c1

∫ ∞

1

I(x0, τ )dτ ≤ J(x, 1) + c1J(x0), ∀ x ∈ �̄.
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This shows thatĴ(x) < ∞ for all x ∈ �̄ and ‖Ĵ‖L∞(�) < ∞. Moreover, by (3.5),

‖Ĵ − J(·, t)‖L∞(�) ≤ c1

∫ ∞

t

I(x0, τ )dτ → 0 as t → ∞.

Hence,Ĵ ∈ C(�̄). Next, observing that

∂t(S − r) = ∂tS = −β(S − r)I, ∀ (x, t) ∈ �̄ × (0, ∞),

we have

S(x, t) − r(x) = (S0(x) − r(x))e−β(x)J(x,t), ∀ (x, t) ∈ �̄ × (0, ∞). (3.6)

This implies

S(·, t) → S∗ := r + e−βĴ(S0 − r) uniformly on �̄ as t → ∞.

Let λ∗ = e−βĴ . Then 0 < λ∗ < 1, λ∗ ∈ C(�̄) and S∗ = λ∗S0 + (1 − λ∗)r. Let ϕ∗ > 0 be the eigenfunction
associated with σ (dI , β(S∗ − r)) satisfying ϕ∗

M = 1. Then it holds that
d

dt

∫
�

ϕ∗Idx = dI

∫
�

ϕ∗�Idx +
∫

�

β(S − r)ϕ∗Idx

=σ (dI , β(S∗ − r))
∫

�

ϕ∗Idx +
∫

�

β(S − S∗)ϕ∗Idx

≥
(
σ (dI , β(S∗ − r)) − βM‖S − S∗‖L∞(�)

) ∫
�

ϕ∗Idx.

Hence, we have

N ≥
∫

�

ϕ∗I(x, t)dx ≥ e
∫ t

0 (σ (dI ,β(S∗−r))−βM‖S−S∗‖L∞(�))dτ

∫
�

ϕ∗I0dx, ∀ t > 0.

This implies that
βM

t

∫ t

0

‖S(·, τ ) − S∗‖L∞(�)dτ + ln(N) − ln(‖ϕ∗I0‖L1(�))

t
≥ σ (dI , β(S∗ − r)), t > 0.

Observing that the left-hand side of this inequality tends zeo as t → ∞, we conclude that σ (dI , β(S∗ −
r)) ≤ 0.

Finally, by (3.2) and the parabolic estimates and the Sobolev emdedding theorem, I is Hölder con-
tinuous on �̄ × [1, ∞). Hence, by Lemma 2.2 and the fact that Ĵ(x0) < ∞, we obtain from (3.5) that

‖I(·, t)‖L∞(�) ≤ c1I(x0, t) → 0 as t → ∞,

which in turn implies that ∫
�

S∗dx = lim
t→∞

∫
�

Sdx = lim
t→∞

∫
�

(S + I)dx = N.

This completes the proof of (i).

Case 2. Ĵ(x) = ∞ for all x ∈ �̄. Fix x1 ∈ �̄. Then
∫ t

1
I(x1, τ )dτ → ∞ as t → ∞. This together with

(3.5)–(3.6) implies that

‖S(·, t) − r‖L∞(�) ≤ ‖S0 − r‖L∞(�)e
− βm

c1

∫ t
1 I(x1,τ )dτ → 0 as t → ∞.

As a result,

lim
t→∞

∫
�

Idx = N −
∫

�

rdx. (3.7)

This shows that, in the current case, we must have that N ≥ ∫
�

rdx. By (3.2), the parabolic estimates
and the Sobolev embedding theorem, the orbit {I(·, t)}t≥1 is precompact in C(�̄). Noticing S(·, t) → r in
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C(�̄) as t → ∞, the ω limit set ω(S0, I0) = ∩t≥1∪s≥t{(S(·, t), I(·, s))} is well defined, where the completion
is in [C(�̄)]2. Fix (S∗, I∗) ∈ ω(S0, I0). Since S(·, t) → r in C(�̄) as t → ∞, then S∗ = r∗. Next, we show
that I∗(x) = (N − ∫

�
r)/|�| for all x ∈ �. To this end, since ω(I0, S0) is invariant under the semiflow of

the solution operator induced by (3.1) and the orbit {I(·, t)}t≥1 is precompact in C(�̄), we can employ
standard parabolic regularity arguments to the equation of I(·, t), and coupled with the fact that S(·, t) → r
in C(�̄) as t → ∞, to conclude that there is a bounded entire solution (S̃(x, t), Ĩ(x, t)) of (3.1) fulfilling
Ĩ(·, 0) = I∗ and S̃(·, t) = r for all t ∈R. Hence, Ĩ(x, t) satisfies⎧⎪⎨

⎪⎩
∂t Ĩ = dI�Ĩ, x ∈ �, t ∈R,

∂ν Ĩ = 0, x ∈ ∂�, t ∈R,

Ĩ(x, 0) = I∗(x), x ∈ �̄.

So, Ĩ(·, t) = ∫
�

I∗(x)dx/|�| for all t ∈R. However by (3.7),
∫

�
I∗dx = (

N − ∫
�

rdx
)
/|�|. Hence, I∗ is the

constant function
(
N − ∫

�
rdx

)
/|�|. This shows that ω(S0, I0) = {

r,
(
N − ∫

�
rdx

)
/|�|} and completes

the proof of (ii).
It is easy to see that if N ≤ ∫

�
rdx, then (i) holds. Note that if (i) holds then N = ∫

�
(λ∗S0 + (1 −

λ∗)r)dx for some λ∗ ∈ C(�) satisfying 0 < λ∗ < 1 and σ (dI , βλ∗(S0 − r)) ≤ 0. Hence, we must have N ≤
N∗

S0,r. So alternative (ii) must hold whenever N > N∗
S0,r.

Proposition 3.4. Let N∗
S0,r be defined as in Theorem 3.3. The following statements hold.

(1) It holds that N∗
S0,r ≥ ∫

�
rdx.

(2) It holds that N∗
S0,r ≤ ∫

�
max{S0, r}dx. Hence, if N >

∫
�

max{S0, r}dx, then alternative (ii) of
Theorem 3.3 holds.

(3) The strict inequality N∗
S0,r <

∫
�

max{S0, r}dx holds if ‖(S0 − r)+‖L∞(�) > 0 (Therefore, in general,
the condition N > N∗

S0,r is weaker than N >
∫

�
max{S0, r}dx).

Proof. (1) Taking λ∗ ≡ 0 in (3.4), we have the desired result.
(2) For any λ∗ ∈ C(�̄; [0, 1]), we have

∫
�

(λ∗S0 + (1 − λ∗)r)dx ≤ max{S0, r}. By the definition of N∗
S0,r,

we have N∗
S0,r ≤ ∫

�
max{S0, r}dx.

(3) Suppose that ‖(S0 − r)+‖L∞(�) > 0 and we prove N∗
S0,r <

∫
�

max{S0, r}dx by contradiction. Suppose
to the contrary that there is λ∗

k ∈ C(�; [0, 1]) satisfying σ
(
dI , βλ∗

k(S0 − r)
) ≤ 0 for each k ≥ 1 such that∫

�

(
λ∗

kS0 + (
1 − λ∗

k

)
r
)
dx →

∫
�

max{S0, r}dx as k → ∞.

Since ‖λ∗
k‖L∞(�) ≤ 1, possibly after passing to a subsequence and using the Banach–Alaoglu theorem,

there is λ∗ ∈ L∞(�) satisfying 0 ≤ λ∗ ≤ 1 almost everywhere on �, such that λ∗
k → λ∗ weakly star in

L∞(�) as k → ∞. So we have∫
�

(
λ∗

kS0 + (
1 − λ∗

k

)
r
)
dx →

∫
�

(λ∗S0 + (1 − λ∗)r)dx as k → ∞.

It follows that ∫
�

(λ∗S0 + (1 − λ∗)r)dx =
∫

�

max{S0, r}dx,

which yields that max{S0, r} = λ∗S0 + (1 − λ∗)r almost everywhere on �. So, βλ∗(S0 − r) =
β
(
max{S0, r} − r

)
almost everywhere on �. Therefore, by the assumption ‖(S0 − r)+‖∞ > 0,∫

�

βλ∗(S0 − r)dx =
∫

�

β
(
max{S0, r} − r

)
dx =

∫
{S0>r}

β(S0 − r)dx > 0. (3.8)

However, since σ
(
dI , βλ∗

k(S0 − r)
) ≤ 0, we have

∫
�

βλ∗
k(S0 − r))dx ≤ 0 for any k ≥ 1 by Lemma 2.4.

Letting k → ∞, we get
∫

�
βλ∗(S0 − r)dx ≤ 0, which contradicts with (3.8).
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We complement Theorem 3.3 with a corollary:

Corollary 3.5. Suppose that (A1)–(A2) holds, N >
∫

�
rdx, and dI > 0. If either β is constant or S0 − r

has a constant sign, then alternative (ii) of Theorem 3.3 holds for any solution of (3.1).

Proof. Let N∗
S0,r be defined as in (3.4). (1) If β is constant, then for any λ∗ ∈ C(�; [0, 1]), σ (dI , βλ∗(S0 −

r)) ≤ 0 implies that
∫

�
λ∗(S0 − r)dx ≤ 0. In this case,∫

�

(λ∗S0 + (1 − λ∗)r)dx =
∫

�

λ∗(S0 − r)dx +
∫

�

rdx ≤
∫

�

rdx, ∀ λ∗ ∈ C(�; [0, 1]).

So, we have N∗
S0,r = ∫

�
rdx.

(2) If S0 ≤ r, then N∗
S0,r = ∫

�
rdx.

(3) If S0 ≥ r, then N∗
S0,r ≤ ∫

�
S0dx.

In cases (1)–(3), we have N∗
S0,r ≤ max

{∫
�

rdx,
∫

�
S0dx

}
. By hypothesis (A2), we always have N >∫

�
S0dx. Therefore, if either of these scenarios holds, N >

∫
�

rdx implies N > N∗
S0,r. The conclusion now

follows from Theorem 3.3.

Remark 3.6. Let N∗
S0,r be defined as in (3.4). Alternative (ii) of Theorem 3.3 always holds when N >∫

�
rdx if N∗

S0,r ≤ max
{∫

�
S0dx,

∫
�

rdx
}
. Sufficient conditions ensuring the validity of the latter inequality

are given in Corollary 3.5. It remains an open problem to know whether alternative (i) of Theorem 3.3
may hold for some initial data satisfying max

{∫
�

S0dx,
∫

�
rdx

}
< N < N∗

S0,r. Note that it is possible to
construct examples of positive and continuous functions S0 satisfying max

{∫
�

S0dx,
∫

�
rdx

}
< N∗

S0,r.
Whenever such S0 is fixed, we can always select I0 to be small enough such that N = ∫

�
(S0 + I0)dx

satisfies max
{∫

�
S0dx,

∫
�

rdx
}

< N < N∗
S0,r.

3.2. Limiting the movement of infected people

We consider the impact of limiting the movement of infected people on (1.1) with mass action
mechanism, that is, the long time behaviour of the following degenerate system:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂tS = dS�S − β(x)SI + γ (x)I, x ∈ �, t > 0,

∂tI = β(x)SI − γ (x)I, x ∈ �̄, t > 0,

∂νS = 0, x ∈ ∂�, t > 0,

S(x, 0) = S0(x), I(x, 0) = I0(x), x ∈ �̄.

(3.9)

In the following result, we show the global existence of the solution of (3.9). We remark that the S
component of the solution is globally bounded while the I component may blow up at t = ∞.

Proposition 3.7. Suppose that (A1)–(A2) holds and dS > 0. Then (3.9) has a unique nonnegative global
solution (S, I), where

S ∈ C([0, ∞), C(�)) ∩ C1((0, ∞), Dom∞(�)) and I ∈ C1([0, ∞), C(�)).

Moreover, ‖S(·, t)‖L∞(�) ≤ max{‖S0‖L∞(�), rM} for all t ≥ 0.

Proof. Suppose that a nonnegative solution exists. Let M1 = max{‖S0‖L∞(�), rM}. By the first equation
of (3.9) and the comparison principle, 0 ≤ S(x, t) ≤ M1 for all x ∈ �̄ and t > 0, which implies that

0 ≤ I(x, t) = I0(x)e
∫ t

0 (β(x)S(x,s)−γ (x))ds ≤ I0(x)eβM M1t, ∀x ∈ �̄, t ≥ 0.

This gives ‖I(·, t)‖L∞(�) ≤ ‖I0‖L∞(�)eβM M1t for all t ≥ 0. The local existence of the solution of (3.9) can
be proved similar to Proposition 3.1. The a prior bound of the solution ensures the global existence
of it.
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To study the asymptotic behaviour of the solutions of (3.9), we use the following Lyapunov function

V(S, I) =
∫

�

(
1

2
S2 + rI

)
dx.

If (S, I) is the solution of (3.9), it is easy to check that

d

dt
V(S, I) = −dS

∫
�

|�S|2dx −
∫

�

β(S − r)2Idx. (3.10)

Remark 3.8. We point out that it is very easy to draw a false conclusion using the above Lyapunov
function: first by the term

∫
�

β(S − r)2Idx in (3.10), one may conclude that either S → r or I → 0 as
t → ∞; then by the term

∫
�

|�S|2dx, �S → 0 and so I → 0 if r is not constant. We will show that this
intuition is indeed false in Theorem 3.11. Actually, it is possible that S converges to some constant S̄
with rm ≤ S̄ ≤ rM and I converges to some measure supported at {x ∈ �̄ : r(x) = S̄}.

To conclude that
∫

�
|�S|2dx → 0 or

∫
�

β(S − r)2Idx → 0 as t → ∞, we will need the following
lemma.

Lemma 3.9. Suppose that (A1)–(A2) holds and dS > 0. Let (S, I) be the solution of (3.9). Then the
following conclusions hold:

(i) The mapping [1, ∞) � t �→ S(·, t) − S(·, t) ∈ L1(�) is Hölder continuous. Furthermore, if n = 1,
then the mapping [1, ∞) � t �→ S(·, t) − S(·, t) ∈ W1,2(�) is also Hölder continuous.

(ii) If n = 1, the mapping [1, ∞) � t �→ ∫
�

β(S − r)2Idx is Hölder continuous.

Proof. Setting Z = S(·, t) − S(·, t) and F(·, t) = β(r − S(·, t))I(·, t) − β(r − S(·, t))I(·, t), it holds that
Z(·, t), F(·, t) ∈Z for all t ≥ 0 and{

∂tZ = dS�Z + F(·, t), t > 0, x ∈ �,

∂νZ = 0, t > 0, x ∈ ∂�.

Hence by the variation of constant formula, we have

Z(·, t) = etdS�|Z Z(·, 0) +
∫ t

0

e(t−τ )�|Z F(·, τ )dτ , ∀ t > 0.

By Proposition 3.7 with M := max{‖S0‖L∞(�), rM}, it holds that

‖F(·, t)‖L1(�) ≤ 2βMM‖I(·, t)‖L1(�) ≤ M1 := 2NMβM , ∀ t ≥ 0. (3.11)

(i) Fix 0 ≤ α̃ < α̃ + α < 1. For any t ≥ 1 and h > 0, by (2.1)–(2.3) and (3.11),

‖Z(t + h) − Z(t)‖Z α̃

≤ ∥∥(
ehdS�|Z − id

)
etdS�|Z Z0

∥∥
Z α̃ +

∫ t

0

∥∥(
ehdS�|Z − id

)
e(t−τ )dS�|Z F(·, τ )

∥∥
Z α̃ dτ

+
∫ h

0

∥∥e(h−τ )dS�|Z F(·, t + τ )
∥∥
Z α̃ dτ

≤ Cαdα

S hα

(∥∥etdS�|Z Z0

∥∥
Z α̃+α +

∫ t

0

∥∥e(t−τ )dS�|Z F(·, τ )
∥∥
Z α̃+α dτ

)

+ Cα̃

∫ h

0

(
dS(h − τ )

)−α̃
e−dSσ (h−τ )‖F(·, t + τ )‖L1(�)dτ
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≤ CαCα̃+αd−α̃

S hα

(
t−(α̃+α)e−σ tdS‖Z0‖L1(�) +

∫ t

0

(t − τ )−(α̃+α)e−dSσ (t−τ )‖F(·, τ )‖L1(�)dτ
)

+ Cα̃d−α̃

S M1

∫ h

0

τ−α̃e−dSστ dτ

≤ CαCα+α̃d−α̃

S hα

(
‖Z0‖L1(�) + M1

∫ ∞

0

τ−(α̃+α)e−dSστ dτ
)

+ Cα̃d−α̃

S M1

∫ h

0

τ−α̃dτ

≤ Mα,α̃

(
hα + h1−α̃

)
. (3.12)

In particular, if α̃ = 0, we get that

‖Z(t + h) − Z(t)‖L1(�) ≤ Mα,α̃(hα + h), ∀ t ≥ 1, h > 0,

which yields the first assertion of (i). On the other, if n = 1, choosing α ∈ ( 3
4
, 1), it follows from [20,

Theorem 1.6.1] thatZα is continuously embedded in W1,2(�). Hence, the last assertion of (i) also follows
from (3.12).

(ii) Suppose n = 1. Let G(t) := ∫
�

β(S − r)2Idx for t ≥ 0. Since n = 1, W1,2(�) is compactly embbed-
ded in C(�). Since the mapping [1, ∞) � t �→ Z(·, t) ∈ W1,2(�) is Hölder continuous by (i), the mapping
[1, ∞) � t �→ Z(·, t) ∈ C(�) is also Hölder continuous. This together with the fact that

sup
t>0

∣∣∣∣ d

dt

∫
�

S(x, t)dx

∣∣∣∣ = sup
t>0

∣∣∣∣
∫

�

β(S(x, t) − r(x))I(x, t)dx

∣∣∣∣ ≤ MNβM

implies that the mapping [1, ∞) � t �→ S(·, t) ∈ C(�) is also Hölder continuous. Thus, there exist 0 <

τ < 1 and c > 0 such that

‖S(·, t + h) − S(·, t)‖L∞(�) ≤ c|h|τ , t ≥ 1.

So for any t ≥ 1 and h > 0, we have

|G(t + h) − G(t)| ≤βM‖(S(·, t + h) − r)2 − (S(·, t) − r)2‖∞

∫
�

I(x, t + h)dx

+ βM‖(S(·, t) − r)2‖L∞(�)

∫
�

|I(x, t + h) − I(x, t)|dx

≤2cMNhτβM + M2βM

∫
�

∫ h

0

β|S(x, t + s) − r(x)|I(x, t + s)dsdx

≤2cMNhτβM + M3β2
M

∫
�

∫ h

0

I(x, t + s)dsdx

=2cMNhτβM + M3β2
M

∫ h

0

∫
�

I(x, t + s)dxds

≤2cMNhτβM + M3β2
MNh ≤ (

c + M2βM

)
M1(h

τ + h),

which yields the desired result.

Lemma 3.10. Suppose that n = 1, (A1)–(A2) holds and dS > 0. Let (S, I) be the solution of (3.9). Then,
‖�S(·, t)‖L2(�) → 0 and

∫
�

β(S(x, t) − r)2I(x, t)dx → 0 as t → ∞.

Proof. Integrating (3.10) over (0, ∞) and by
∫

�
Idx ≤ N and Proposition 3.7, we have∫ ∞

0

‖�S(·, t)‖2
L2(�)dt < ∞ and

∫ ∞

0

∫
�

β(S(x, t) − r)2I(x, t)dxdt < ∞. (3.13)

Then the claim follows from Lemmas 2.2 and 3.9.
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We are ready to state the main result concerning the global dynamics of (3.9). Motivated by the
biological meaning and expression of R1

0, as in [2, 62], we call H+ and H− as the high-risk and low-risk
sites, respectively, where

H+ =
{

x ∈ �̄ :
N

|�|β(x) − γ (x) > 0

}
and H− =

{
x ∈ �̄ :

N

|�|β(x) − γ (x) < 0

}
.

Define r̃m = infx∈{I0>0} r(x) and M := {
x ∈ {I0 > 0} : r(x) = r̃m

}
. Biologically, M consists with all the

points of the highest risk relative to I0. We will show that the infected people will concentrate on M
when limiting their movement.

Theorem 3.11. Suppose that (A1)–(A2) holds and dS > 0. Let (S, I) be the solution of (3.9). Then, we
have

lim
t→∞

‖S(·, t) − S(·, t)‖Lp(�) = 0, ∀ p ∈ [1, ∞). (3.14)

If in addition n = 1, then the limit in (3.14) also holds for p = ∞,

lim
t→∞

‖I(·, t)‖L∞(K∪{I0=0}) = 0 (3.15)

for any compact set K ⊂ H− if H− is not empty, and the following conclusions hold:

(i) If H+ ∩ {I0 > 0} = ∅, then ‖S(·, t) − N/|�|‖L∞(�) → 0 and
∫

�
I(x, t)dx → 0 as t → ∞;

(ii) If H+ ∩ {I0 > 0} �= ∅, then there is a sequence {tk}k≥1 converging to infinity such that ‖S(·, tk) −
r̃m‖L∞(�) → 0,

∫
�

I(x, tk)dx → N − |�|r̃m and I(·, tk) → 0 as k → ∞ almost everywhere on {x ∈
� : r(x) �= r̃m}. In particular, ifM= {x1, · · · , xL} ⊂ {I0 > 0}, then I(·, tk) → (N − |�|r̃m)

∑L
i=1 ciδxi

weakly as k → ∞, where 0 ≤ ci ≤ 1,
∑L

i=1 ci = 1, and δxi is the Dirac measure centred at xi.

Proof. By the Poincaré inequality, there is a positive constant λ0 > 0 such that

‖S(·, t) − S(·, t)‖L2(�) ≤ λ0‖∇S(·, t)‖L2(�), ∀ t > 0. (3.16)

Hence using Hölder’s inequality and recalling (3.10), we get that∫ ∞

0

‖S(·, t) − S(·, t)‖2
L1(�)dt ≤|�|

∫ ∞

0

‖S(·, t) − S(·, t)‖2
L2(�)dt

≤λ2
0|�|

∫ ∞

0

‖∇S(·, t)‖2
L2(�)dt < ∞.

Therefore, by Lemmas 2.2 and 3.9, we obtain ‖S(·, t) − S(·, t)‖2
L1(�) → 0 as t → ∞. By supt≥1

‖S(·, t)‖∞ < ∞ and Hölder’s inequality, (3.14) holds.
From this point, we shall suppose that n = 1 and complete the proof of the theorem. In view of

Lemma 3.10 and inequality (3.16), we have

lim
t→∞

‖S(·, t) − S(·, t)‖W1,2(�) = 0.

Since n = 1, W1,2(�) is compactly embedded into C(�̄). Therefore,

lim
t→∞

∥∥S(·, t) − S(·, t)
∥∥

L∞(�)
= 0. (3.17)

Fix ε > 0. By N = ∫
�

(S + I)dx for all t ≥ 0 and (3.17), there is tε > 0 such that

S(x, t) ≤ 1

|�|
(

N + ε −
∫

�

I(x, t)dx
)

, ∀ (x, t) ∈ �̄ × [tε, ∞). (3.18)

Let K ⊂ H− be a compact set if H− is not empty. By the definition of H−, we have minx∈K r(x) > N/|�|.
If 0 < ε � 1 is chosen such that ηε := (N + ε)/|�| − minx∈K r(x) < 0, then

∂tI(x, t) ≤ β(x)

(
N + ε

|�| − min
x∈K

r(x)

)
I(x, t) ≤ βmηεI(x, t), (x, t) ∈ K × [tε, ∞).
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It follows that

‖I(·, t)‖L∞(K) ≤ e(t−tε )βmηε‖I(·, tε)‖L∞(K) → 0, as t → ∞.

This together with the fact that I(x, t) = 0 for all t ≥ 0 and x ∈ {I0 = 0} completes the proof of (3.15).
To prove (i)–(ii), we claim that

lim sup
t→∞

‖I(·, t)‖L1(�) ≤ (N − |�|r̃m)+ . (3.19)

Since
∫

{I0=0} I(x, t)dx = 0 for all t ≥ 0, it suffices to show lim supt→∞ ‖I(·, t)‖L1({I0>0}) ≤ (N − |�|r̃m)+. To
see this, observe from (3.18) that

∂tI ≤ β

|�|
(
(N − |�|r̃m)+ + ε − ‖I(·, t)‖L1({I0>0})

)
I, ∀ t ≥ tε, x ∈ {I0 > 0}, (3.20)

where r̃m = infx∈{I0>0} r(x). Let

F(t) :=
∫

{I0>0} βI(x, t)dx∫
{I0>0} I(x, t)dx

, ∀ t ≥ 1. (3.21)

Then F(t) : [1, ∞) →R+ is Locally Lipschitz continuous with βm ≤ F(t) ≤ βM, t ≥ 1. Integrating (3.20)
over {I0 > 0}, for any t > tε, we get

d

dt
‖I‖L1({I0>0}) ≤ 1

|�|
(
(N − |�|r̃m)+ + ε − ‖I‖L1({I0>0})

) ∫
{I0>0}

βIdx

=F(t)

|�|
(
(N − |�|r̃m)+ + ε − ‖I‖L1({I0>0})

) ‖I‖L1({I0>0}),

where F is defined by (3.21). Let v(t) be the solution of⎧⎪⎨
⎪⎩

v′(t) = F(t)

|�| ((N − |�|r̃m)+ + ε − v(t)) v(t), t > tε,

v(tε) = ‖I(·, tε)‖L1({I0>0}).

By the comparison principle, we know that

‖I(·, t)‖L1({I0>0}) ≤ v(t), ∀t ≥ tε.

Since v(t) → (N − |�|r̃m)+ + ε as t → ∞ (because F ≥ βm > 0 and v(tε) > 0) and ε is arbitrarily chosen,
(3.19) holds.

(i) Suppose that H+ ∩ {I0 > 0} = ∅. Then we have (N − |�|r̃m)+ = 0. By (3.19), ‖I(·, t)‖L1(�) → 0 as
t → ∞. This together with the fact that

∫
�

Sdx = N − ∫
�

Idx for all t > 0, yields
∫

�
S(x, t)dx → N as

t → ∞. It then follows from (3.17) that ‖S(·, t) − N/|�|‖L∞(�) → 0 as t → ∞.
(ii) Suppose that H+ ∩ {I0 > 0} �= ∅. Then we have N/|�| > r̃m. Since

∫
�

Sdx = N − ∫
�

Idx, we
conclude from (3.19) that

lim inf
t→∞

∫
�

S(x, t)dx ≥ |�|r̃min,

which in view of (3.17) implies that

lim inf
t→∞

min
x∈�

S(x, t) ≥ r̃m. (3.22)

Now, we claim that

lim inf
t→∞

min
x∈�

S(x, t) = r̃m. (3.23)

We proceed by contradiction. Suppose to the contrary that (3.23) is false. Thanks to (3.22), there exist
0 < ε̃ � 1 and t̃0 > 0 such that

S(x, t) ≥ r̃m + ε̃, ∀ t ≥ t̃0.
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Since r is continuous on �̄ and r̃m = infx∈{I0>0} r(x), there is an open set O ⊂ {I0 > 0} such that r(x) <

r̃m + ε̃/2 for all x ∈O. Hence, we have

∂tI(x, t) = β(S − r)I ≥ ε̃

2
βmI(x, t), t > t̃0, x ∈O.

An integration of this inequality yields

N ≥
∫
O

I(x, t)dx ≥ e
ε̃
2 βm(t−t̃0)

∫
O

I(x, t̃0)dx, t > t̃0.

This is clearly impossible since
∫
O I(x, t̃0)dx > 0. Therefore, (3.23) must hold.

By (3.23), there is a sequence {tk}k≥1 converging to infinity such that minx∈� S(x, tk) → r̃m as k → ∞.
Hence, since

‖r̃m − S(·, tk)‖L∞(�) ≤|r̃m − S(·, tk)| + ‖S(·, tk) − S(·, tk)‖L∞(�)

≤|r̃m − min
x∈�

S(x, tk)| + | min
x∈�

S(x, tk) − S(·, tk)| + ‖S(·, tk) − S(·, tk)‖L∞(�)

≤|r̃m − min
x∈�

S(x, tk)| + 2‖S(·, tk) − S(·, tk)‖L∞(�), ∀ k ≥ 1,

we conclude from (3.17) that ‖S(·, tk) − r̃m‖L∞(�) → 0 as k → ∞. This in turn implies that
∫

�
I(x, tk)dx →

N − |�|r̃m as k → ∞. However, by Lemma 3.10, we know that
∫

{I0>0} (S(x, tk) − r)2I(x, tk)dx =∫
�

(S(x, tk) − r)2I(x, tk)dx → 0 as k → ∞. Therefore, possibly after passing to a subsequence, I(·, tk) → 0
as k → ∞ almost everywhere on {x ∈ � : r(x) �= r̃m}. Finally, since {I(·, tk)} is bounded in L1(�) and by
Riesz representation theorem, passing to a subsequence if necessary, I(·, tk) → (N − |�|r̃m)μ weakly as
k → ∞ for some probability Radon measure μ. Since∫

{I0>0}
β(S(x, tk) − r)2I(x, tk)dx → (

N − |�|r̃m

) ∫
{I0>0}

β(rm − r)2dμ = 0 as k → ∞,

μ is supported in {I0 > 0} ∩M. In particular if M= {x1, · · · , xL} ⊂ {I0 > 0}, then μ = ∑L
i=1 ciδxi for

some 0 ≤ ci ≤ 1 with
∑L

i=1 ci = 1.

Remark 3.12. We conjecture that Theorem 3.11 holds for any n ≥ 1 and ‖S(·, t) − r̃m‖L∞(�) → 0 as
t → ∞ in (ii).

4. Model with standard incidence mechanism
4.1. Limiting the movement of susceptible people

First, we consider the impact of limiting the movement of susceptible people on (1.1) with standard
incidence mechanism by setting dS = 0, i.e.⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂tS = −β(x)
SI

S + I
+ γ (x)I, x ∈ �̄, t > 0,

∂tI = dI�I + β(x)
SI

S + I
− γ (x)I, x ∈ �, t > 0,

∂νI = 0, x ∈ ∂�, t > 0,

S(x, 0) = S0(x), I(x, 0) = I0(x), x ∈ �̄.

(4.1)

Proposition 4.1. Suppose that (A1)–(A2) holds and dI > 0. Then (4.1) has a unique nonnegative global
solution (S, I), where

S ∈ C1([0, ∞), C(�)) and I ∈ C([0, ∞), C(�)) ∩ C1((0, ∞), Dom∞(�)).

Moreover, there exists M > 0 depending on (the L∞ norm of) initial data such that

‖I(·, t)‖L∞(�) ≤ M, ∀t ≥ 0. (4.2)
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Proof. If we define SI/(S + I) = 0 when (S, I) = (0, 0), then SI/(S + I) is Lipschitz in the first quadrant.
So the existence and uniqueness of nonnegative local solution (S, I) can be proved using the Banach fixed
point theorem, where S ∈ C1([0, T), C(�)) and I ∈ C([0, T), C(�)) ∩ C1((0, T), Dom∞(�)) for some
T > 0.

Since the right-hand side of the second equation of (4.1) has linear growth rate (i.e. βSI/(S +
I) − γ I ≤ CI for some constant C > 0) and

∫
�

Idx ≤ N for all t > 0, by [1, Theorem 3.1], there exists
M > 0 such that ‖I(·, t)‖L∞(�) ≤ M for all t > 0. By the first equation of (4.1), we have ∂tS ≤ γ I, which
implies

‖S(·, t)‖L∞(�) ≤ ‖S0‖L∞(�) + MγMt, t ≥ 0.

Hence, we can extend the solution globally.

We define H+, H0, and H− as the high-risk, moderate-risk and low-risk sites, respectively, where
H+ = {

x ∈ �̄ : β(x) − γ (x) > 0
}
, H0 = {

x ∈ �̄ : β(x) − γ (x) = 0
}

and H− = {
x ∈ �̄ : β(x) − γ (x) < 0

}
.

The following result has appeared in the literature.

Theorem 4.2 ([34, Theorem 2.5, Lemma 5.6]). Suppose that (A1)–(A2) holds and dI > 0. Let (S, I) be
the solution of (4.1). Then the following conclusions hold:

(i) If H− is nonempty, then limt→∞ ‖S(·, t) − S∗‖L∞(�) = 0 and limt→∞ ‖I(·, t)‖L∞(�) = 0, where S∗ ∈
C(�̄) satisfies S∗ > 0 on H− ∪ H0.

(ii) If β(x) > γ (x) for all x ∈ �̄, then limt→∞ ‖S(t, ·) − γ I∗/(β − γ )‖L∞(�) = 0 and limt→∞ ‖I(t, ·) −
I∗‖L∞(�) = 0, where I∗ is a constant given by

I∗ := N∫
�

β

β−γ
dx

. (4.3)

Remark 4.3. The only case not covered by Theorem 4.2 is when β ≥ γ and H0 is not empty, which we
will deal with later in this section. In the case H− �= ∅ and R0 > 1, it has been shown in [34, Theorem
2.5] that J∗ := {x ∈ �̄ : S∗(x) = 0} is a subset of H+ such that both J∗ and �\J∗ have positive measure,
where R0, defined as

R0 = sup

{ ∫
�

βφ2dx∫
�

(dI|�φ|2 + γφ2)dx
: φ ∈ H1(�)\{0}

}
, (4.4)

is the basic reproduction number of the diffusive epidemic model (1.1) with standard infection incidence
mechanism and diffusion rates dS > 0 and dI > 0.

Theorem 4.4. Suppose that (A1)–(A2) holds and dI > 0. Let (S, I) be the solution of (4.1). If β(x) ≥ γ (x)
for all x ∈ �̄ and H0 is nontrivial, then the following conclusions hold:

(i) If H0 has positive measure, then there exists M > 0 depending on (the L∞ norm of) initial data
such that

‖S(·, t)‖L∞(�) ≤ M, for all t ≥ 0. (4.5)

Moreover, there is S∗ ∈ L∞(�) satisfying S∗
|H0 ∈ C(H0) and S∗

|H0 > 0 on H0 such that
limt→∞ ‖S(·, t) − S∗‖L∞(H0) = 0, limt→∞ ‖S(·, t) − S∗‖L1(H+) = 0, and limt→∞ ‖I(·, t)‖L∞(�) = 0. In
addition, if H+ �= ∅, then meas({x ∈ H+ | S∗(x) = 0}) > 0.

(ii) If H0 has zero measure and
∫

�
1/(β − γ )dx = ∞, then there exists {tk} converging to infinity such

that I(·, tk) → 0 in C(�̄) and
∫

�
S(·, tk)dx → N as k → ∞.

Proof. (i) By Lemma 2.3, there exists C > 1 such that

max
x∈�̄

I(x, t) ≤ C min
x∈�̄

I(x, t), x ∈ �̄, t ≥ 1. (4.6)
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Fix x0 ∈ H0. Let x ∈ �̄. Then ∂tS = (−β+γ )S+γ I
S+I

I ≤ γ I2/(S + I). We consider the following problem:⎧⎪⎨
⎪⎩

S̄′ = γ (x)
I2(x, t)

S̄ + I(x, t)
, t > 1,

S̄(1) = S(x, 1).

(4.7)

Then we have S(x, t) ≤ S̄(t) for all t ≥ 1. We claim that KS(x0, t) is an upper solution of (4.7) if K > 0 is
large enough. To see it, it suffices to check

K∂tS(x0, t) = Kγ (x0)
I2(x0, t)

S(x0, t) + I(x0, t)
≥ γ (x)

I2(x, t)

KS(x0, t) + I(x, t)
.

Noticing (4.6), we only need to check

Kγ (x0)
I2(x, t)/C2

S(x0, t) + I(x,t)
C

≥ γ (x)
I2(x, t)

KS(x0, t) + I(x, t)
,

which is equivalent to (K2γ (x0) − C2γ (x))S(x0, t) + (Kγ (x0) − Cγ (x))I(x, t) ≥ 0. So we can choose K
large independent of x ∈ �̄ such that the inequality holds. Hence, we have KS(x0, t) ≥ S̄(t) ≥ S(x, t) for
all t ≥ 1. Moreover, interchanging the role of x0 and x, we have

S(x0, t)/K ≤ S(x, t) ≤ KS(x0, t), ∀x ∈ H0, t ≥ 1. (4.8)

By (4.8), N ≥ ∫
�

S(x, t)dx ≥ ∫
H0 S(x, t)dx ≥ ∫

H0 S(x0, t)/Kdx = |H0|S(x0, t)/K for all t ≥ 1. Therefore, we
have S(x0, t) ≤ KN/|H0| and S(x, t) ≤ K2N/|H0| for all x ∈ �̄ and t ≥ 1.

The convergence of (S, I) can be proved similar to [34, Lemma 5.6], and we include it for complete-
ness. By Proposition 4.1, we have 0 ≤ S(x, t), I(x, t) ≤ M for all x ∈ �̄ and t ≥ 0. It follows from the
equation of S that

∂tS = γ I2

S + I
≥ γm

2M
min
y∈H0

I2(y, t), ∀ x ∈ H0, t > 0.

Integrating the above inequality over H0 × (0, ∞) and noticing that H0 has positive measure, we see that∫ ∞
0

minx∈H0 I2(x, t)dx < ∞. By (4.6), it holds that∫ ∞

0

‖I(·, t)‖2
L∞(�)dt < ∞. (4.9)

By (4.2) and the Lp estimate, I is Hölder continuous on �̄ × [1, ∞). Therefore, Lemma 2.2 and (4.9)
imply that I(x, t) → 0 uniformly on �̄ as t → ∞.

Since ∂tS = γ I2/(S + I), S(x, t) is strictly increasing in t ∈ (0, ∞) for every x ∈ H0 and∫ ∞

1

‖St(·, t)‖L∞(H0)dt ≤ γM

∫ ∞

1

‖I(·, t)‖2
L∞(�)

minx∈H0 S(x, t)
dt

≤ γM

minx∈H0 S(x, 1)

∫ ∞

1

‖I(·, t)‖2
L∞(�)dt < ∞. (4.10)

Whence, S(·, t) → S∗
|H0 := S(·, 0) + ∫ ∞

0
St(·, t)dt ∈ C(H0) uniformly on H0 as t → ∞.

Next, we discuss the convergence of S(x, t) as t → ∞ for x ∈ H+. To this end, let κ := (β − γ )/β and
define

V(S, I) = 1

2

∫
�

(
κS2 + I2

)
dx.

It is easy to check that

d

dt
V(S, I) = −dI

∫
�

|�I|2dx −
∫

�

γ
(κS − I)2

S + I
Idx. (4.11)
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Integrating (4.11) over (0, t) and taking t → ∞, we obtain
∫ ∞

0

∫
�

γ
(κS − I)2

S + I
Idxdt < ∞. (4.12)

On the other hand, we have

1

2

(
κS2

)
t
= γ

(I − κS)κSI

S + I
= γ

(I − κS)(κS − I + I)I

S + I
= −γ

(I − κS)2I

S + I
+ γ

(I − κS)

S + I
I2.

Hence, by (4.9) and (4.12), we have that

∫ ∞

1

∥∥∥
(
κS2

)
t

2

∥∥∥
L1(H+)

dt ≤
∫ ∞

1

∫
�

γ
(I − κS)2I

S + I
dxdt +

∫ ∞

1

∫
�

γ
|I − κS|

S + I
I2dxdt

≤
∫ ∞

1

∫
�

γ
(I − κS)2I

S + I
dxdt + γM(1 + ‖κ‖∞)|�|

∫ ∞

1

‖I‖2
L∞(�)dt

<∞.

Therefore, there is a measurable subset N ⊂ H+ with meas(N ) = 0 such that
∫ ∞

1

∣∣∣
(
κS2

)
t

2

∣∣∣dt < ∞, ∀ x ∈ H+ \N .

As a result, we have that κ(x)S2(x, t) → κ(x)(S2
0(x) + ∫ ∞

0
(S2)tdt) as t → ∞ for x ∈ H+ \N . So, S(x, t) →

S∗
H+ (x) :=

√
S2

0(x) + ∫ ∞
0

(S2)tdt as t → ∞ for x ∈ H+ \N . Since ‖S(·, t)‖L∞(�) ≤ M for all t ≥ 1, then
S∗

|H+ ∈ L∞(H+), and by the Lebesgue dominated theorem and the fact that meas(N ) = 0, ‖S(·, t) −
S∗

|H+‖L1(H+) → 0 as t → ∞. Now, taking S∗ := S∗
|H0χH0 + S∗

|H+χH+ , then S∗ ∈ L∞(�), S∗ ∈ C(H0), S∗ > 0
on H0, and ‖S(·, t) − S∗‖L∞(H0) + ‖S(·, t) − S∗‖L1(H+) → 0 as t → ∞.

Finally, we suppose that H+ �= ∅ and proceed by contradiction to show that

meas({x ∈ H+ | S∗(x) = 0}) > 0. (4.13)

So, suppose to the contrary that (4.12) does not hold. Consider the function

F(x, t) = 1

t

∫ t

0

I(x, s)

S(x, s) + I(x, s)
ds, ∀ x ∈ �, t > 0.

It is clear that

0 ≤ F(x, t) ≤ 1, ∀ x ∈ �, t > 0.

Moreover, for each x ∈ � satisfying S∗(x) > 0, it holds that

lim
t→∞

F(x, t) = lim
t→∞

I(x, t)

S(x, t) + I(x, t)
= 0.

Hence, since S∗ > 0 on H0 and meas({x ∈ H+ | S∗(x) = 0}) = 0, it follows from the Lebesgue dominated
convergence theorem that

lim
t→∞

∫
�

F(x, t)dx = 0. (4.14)
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Let ϕ be the positive eigenfunction associated with σ (dI , β − γ ) satisfying maxx∈�̄ ϕ(x) = 1. By the
second equation of (4.1) and (4.6), we have

d

dt

∫
�

ϕIdx =
∫

�

dIϕ�Idx +
∫

�

(
βS

S + I
− γ

)
ϕIdx

=dI

∫
�

I(·, t)�ϕdx +
∫

�

(
βS

S + I
− γ

)
ϕIdx

=σ (dI , β − γ )
∫

�

ϕIdx +
∫

�

β

(
S

S + I
− 1

)
ϕIdx

=σ (dI , β − γ )
∫

�

ϕIdx −
∫

�

β
I

S + I
ϕIdx

≥σ (dI , β − γ )
∫

�

ϕIdx − βMϕM‖I‖L∞(�)

∫
�

I

S + I
dx

≥
(

σ (dI , β − γ ) − βMCϕM

ϕm

∫
�

I

S + I
dx

) ∫
�

ϕIdx.

By the comparison principle for the ODE, we obtain that∫
�

ϕ(x)I(x, t)dx ≥ et(σ (dI ,β−γ )−M∗ ∫
� F(x,t)dx)

∫
�

ϕ(x)I0(x)dx, t > 0, (4.15)

where M∗ := βMCϕM/ϕm. Note that σ (dI , β − γ ) > 0, since β ≥ γ and H+ �= ∅. Hence, it follows from
(4.14)–(4.15) that

∫
�

ϕI(·, t)dx → ∞ as t → ∞. This contradicts the fact that supt≥1 ‖I(·, t)‖L∞(�) < ∞.
Therefore, (4.13) holds.

(ii) Integrating (4.11) over (0, t) and taking t → ∞, we find that∫ ∞

0

∫
�

|�I|2dxdt < ∞. (4.16)

By (4.2), the parabolic estimates and the Sobolev embedding theorem, I ∈ C1+α,1+α/2(�̄ × [1, ∞)]). So
by (4.16) and Lemma 2.2, ‖�I(·, t)‖L2(�) → 0 as t → ∞. Moreover, let ωI := ∩t≥1∪s≥tI(·, s)), where the
completion is in C(�̄). Then ωI is well defined, compact and consists with constants.

Suppose to the contrary that 0 �∈ ωI . By the compactness of ωI , there exists ε0 > 0 such that

lim inf
t→∞

min
x∈�̄

I(x, t) > ε0. (4.17)

By the first equation of (4.1), we have

∂tS = (γ I − (β − γ )S)I

S + I
. (4.18)

This combined with (4.17) implies that lim inft→∞ S(x, t) ≥ ε0γ /(β − γ ) pointwise for x ∈ �\H0 as t →
∞. By Fatou’s Lemma, we have∫

�\H0

(
ε0γ

β − γ
+ ε0

)
dx ≤

∫
�

lim inf
t→∞

(S + I)dx ≤ lim inf
t→∞

∫
�

(S + I)dx = N.

Since H0 has measure zero and
∫

�
1/(β − γ )dx = ∞, the first term in the above inequality equals infinity.

This is a contradiction, and therefore 0 ∈ ωI . Hence, there exists {tk} converging to infinity such that
I(·, tk) → 0 in C(�̄) as k → ∞. Thus,

∫
�

S(·, tk)dx = N − ∫
�

I(·, tk)dx → N as k → ∞.
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4.2. Limiting the movement of infected people

Then, we consider the impact of limiting the movement of infected people on (1.1) with standard
incidence mechanism by setting dI = 0, i.e.⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂tS = dS�S − β(x)
SI

S + I
+ γ (x)I, x ∈ �, t > 0,

∂tI = β(x)
SI

S + I
− γ (x)I, x ∈ �̄, t > 0,

∂νS = 0, x ∈ ∂�, t > 0,

S(x, 0) = S0(x), I(x, 0) = I0(x), x ∈ �̄.

(4.19)

We will establish a prior bound for the solution of (4.19) first.

Proposition 4.5. Suppose that (A1)–(A2) holds and dS > 0. Then (4.19) has a unique nonnegative global
solution (S, I), where

S ∈ C([0, ∞), C(�)) ∩ C1((0, ∞), Dom∞(�)) and I ∈ C1([0, ∞), C(�)).

Moreover, there exists M > 0 depending on (the L∞ norm of) initial data such that

‖S(·, t)‖L∞(�), ‖I(·, t)‖L∞(�) ≤ M, for all t ≥ 0. (4.20)

Proof. Similar to Proposition 4.1, (4.19) has a unique local nonnegative solution (S, I), where S ∈
C([0, T), C(�)) ∩ C1((0, T), Dom∞(�)) and I ∈ C1([0, T), C(�)) for some T > 0. It remains to show the
boundedness of the solution.

We claim that for any nonnegative integer k there exists C > 0 depending on initial data such that
‖S(·, t)‖L2k (�), ‖I(·, t)‖L2k (�) ≤ C for all t ≥ 0. We prove this claim by induction. It is easy to see that the
claim holds for k = 0. Now we assume that the claim holds for k and will show that it holds for k + 1.
To see it, multiplying both sides of the second equation of (4.19) by I2k+1−1 and integrating over �, we
obtain

1

2k+1

d

dt

∫
�

I2k+1
dx ≤ βM

∫
�

SI2k+1−1I

S + I
dx − γm

∫
�

I2k+1
dx

≤ C0

∫
�

S2k+1
dx − γm

2

∫
�

I2k+1
dx, (4.21)

where we have used Young’s inequality in the last step.
Multiplying both sides of the first equation of (4.19) by S2k+1−1 and integrating over �, we obtain

1

2k+1

d

dt

∫
�

S2k+1
dx = −2k+1 − 1

2k+1
dS

∫
�

|�S2k |2dx −
∫

�

βS2k+1
I

S + I
pdx +

∫
�

γ S2k+1−1Idx

≤ −C1

∫
�

|�S2k |2dx + C2

(∫
�

S2k+1
dx +

∫
�

I2k+1
dx

)
, (4.22)

where we have used Young’s inequality in last step.
Multiplying (4.22) by C3 := γm

4C2

and summing up with (4.21), we have

d

dt

∫
�

(
C3S2k+1 + I2k+1

)
dx ≤ −C4

∫
�

|�S2k |2dx + C5

∫
�

S2k+1
dx − C6

∫
�

I2k+1
dx.

By the following interpolation inequality

‖u‖2
L2(�) ≤ ε‖�u‖2

L2(�) + Cε‖u‖2
L1(�), ∀u ∈ H1(�),

we obtain
d

dt

∫
�

(
C3S2k+1 + I2k+1

)
dx ≤ C7

(∫
�

S2k
dx

)2

− C8

∫
�

(
C3S2k+1 + I2k+1

)
dx. (4.23)
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By the assumption that the claim holds for k and (4.23) there exists C > 0 such that
‖S(·, t)‖L2k+1 (�), ‖I(·, t)‖L2k+1 (�) ≤ C. This proves the claim.

Fixing p > N + 2, by the claim and the parabolic Lp estimate, there exists C > 0 such that
‖S‖W2,1

p (�×(τ ,τ+1)) < C for any τ > 0. Since W2,1
p (� × (τ , τ + 1)) can be embedded into C(�̄ × [τ , τ + 1]),

we obtain the boundedness of S. We rewrite the equation of I as

∂tI = ((β − γ )S − γ I)I

S + I
. (4.24)

Hence, ‖I(·, t)‖L∞(�) ≤ max0≤s≤t{‖I0‖L∞(�), ‖(β + γ )S(·, s)‖L∞(�)/γm} for any t ≥ 0. This proves the
boundedness of I.

We are ready to study the asymptotic behaviour of the solution of (4.19). Let

κ = γ

(β − γ )
χH+∩{I0>0}

and define

V(S, I) = 1

2

∫
�

(
S2 + κI2

)
dx.

It is easy to check that

V̇(S, I) = − dS

∫
�

|�S|2dx +
∫

H−∪H0∪{I0=0}
S

(
−β

SI

S + I
+ γ I

)
dx

−
∫

H+∩{I0>0}
(β − γ )+

(S − κI)2

S + I
Idx. (4.25)

The function V does not satisfy V̇ ≤ 0 (the second term on the right-hand side of (4.25) is positive), but
it still enables us to conclude the convergence of the solution.

Theorem 4.6. Suppose that (A1)–(A2) holds and dS > 0. Let (S, I) be the solution of (4.19). Then the
following statements hold:

(i) There is a positive number S such that

sup
t≥0

(‖S(·, t)‖L∞(�) + ‖I(·, t)‖L∞(�)

) ≤ S. (4.26)

Furthermore, there exist t1 > 0 and S > 0, independent of initial data, such that

S ≤ min
x∈�

S(x, t) ≤ max
x∈�

S(x, t) ≤ S, ∀ t ≥ t1, (4.27)

and

(R − 1)+Sχ{I0>0} ≤ lim inf
t→∞

I(x, t)

≤ lim sup
t→∞

I(x, t) ≤ (R − 1)+Sχ{I0>0}, ∀ x ∈ �̄, (4.28)

where R := β/γ .
(ii) If 1/(β − γ ) ∈ L1(H+ ∩ {I0 > 0}), then

lim
t→∞

(S(x, t), I(x, t) = (S∗, I∗)), uniformly for x ∈ �̄,

where

I∗ = (β − γ )+S∗

γ
χH+∩{I0>0}

and S∗ is a positive constant given by

S∗ = N

|�| + ∫
H+∩{I0>0}

(β−γ )+
γ

dx
. (4.29)
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Proof. (i) Note that (4.26) follows from Proposition 4.5. Next, observe that
d

dt

∫
�

Sdx =
∫

�

γ Idx −
∫

�

β
I

I + S
Sdx

≥γm

∫
�

Idx − βM

∫
�

Sdx

=γm

(
N −

∫
�

Sdx

)
− βM

∫
�

Sdx

=γmN − (βM + γm)
∫

�

Sdx.

Therefore, by
∫

�
S0dx ≥ 0 and the comparison principle, we have that∫

�

S(x, t)dx ≥ γmN

βM + γm

(
1 − e−t(βM+γm)

)
, ∀ t ≥ 0. (4.30)

Next by (4.19), we see that ⎧⎨
⎩

∂tS ≥ dS�S − βMS, x ∈ �, t > 0,

∂νS = 0, x ∈ ∂�, t > 0.

For any t0 > 0, it follows from the comparison principle for parabolic equations that

S(·, t + t0) ≥ e−tβM etdS�S(·, t0), ∀ t > 0. (4.31)

Thanks to the Harnack’s inequality (see Lemma 2.3), there is a positive constant c0 such that

etdS�S(·, t0)(x) ≥ c0etdS�S(·, t0)(y), ∀ tdS ≥ 1, x, y ∈ �̄, t0 > 0. (4.32)

This in turn together with (4.30) implies that

min
x∈�

edSt�S(·, t0)(x) ≥ c0

|�|
∫

�

etdS�S(·, t0)(y)dy

= c0

|�|
∫

�

S(y, t0)dy

≥ γmNc0

|�|(βM + γm)

(
1 − e−t0(βM+γm)

)
, t ≥ 1

dS

, t0 > 0.

As a result, it follows from (4.31) that

S

(
x,

1

dS

+ t0

)
≥ γmNc0e− βM

dS

|�|(βM + γm)

(
1 − e−t0(βM+γm)

)
, x ∈ �̄, t0 > 0.

Therefore, taking t1 = 1
dS

+ ln (2)
βM+γm

, (4.27) holds with S := γmNc0e
− βM

dS

2|�|(βM+Nγm)
> 0, where S and t1 are independent

of the initial data.
Next, we show that (4.28) holds. To this end, we first note that

It = β
(

(1 − r) − I

I + S

)
I ≤β

(
(1 − r) − I

I + S

)
I

=γ
(

(R − 1)S − I
) I

I + S
, t > 0,

which in view of the comparison principle for ordinary differential equations implies that
lim supt→∞ I(x, t) ≤ (R − 1)+S. Recalling that I(x, t) = 0 for all t > 0 whenever I0(x) = 0, we then
conclude that lim supt→∞ I(x, t) ≤ (R − 1)+Sχ{I0>0}.
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Similarly, observing that

It = β

((
1 − γ

β

)
− I

I + S

)
I ≥β

(
(1 − r) − I

I + S

)
I

=γ
(
(R − 1)S − I

) I

I + S
, t > t1,

we can proceed as in the previous case to establish that lim inft→∞ I(x, t) ≥ (R − 1)+Sχ{I0>0}, which
completes the proof of (i).

(ii) By the equation of I, we have∫ t

0

∫
H−∪H0∪{I0=0}

(
β

SI

S + I
− γ I

)
dxds =

∫
H−∪H0∪{I0=0}

I(x, t)dx −
∫

H−∪H0∪{I0=0}
I0dx.

Note that

β
SI

S + I
− γ I = ((β − γ )S − γ I)I

S + I
≤ 0, ∀x ∈ H− ∪ H0 ∪ {I0 = 0}.

We have

0 ≤
∫ ∞

0

∫
H−∪H0∪{I0=0}

(
−β

SI

S + I
+ γ I

)
dxds < ∞,

which together with (4.26) yields that

0 ≤
∫ ∞

0

∫
H−∪H0∪{I0=0}

S

(
−β

SI

S + I
+ γ I

)
dxdt < ∞.

Hence, integrating (4.25) over (0, ∞), we obtain that∫ ∞

0

∫
�

|�S|2dxdt < ∞ (4.33)

and ∫ ∞

0

∫
H+∩{I0>0}

(β − γ )+I
(S − κI)2

S + I
dxdt < ∞. (4.34)

By (4.26), we have

sup
t≥0

∥∥∥∥ βSI

S + I
− γ I

∥∥∥∥
L∞(�)

< ∞.

So by the regularity theory for parabolic equations and Sobolev embedding theorem, the map-
pings ∇S(x, t) and S are Hölder continuous on � × [1, ∞), and {S(·, t)}t≥1 is precompact in C1+α(�),
0 < α < 1. Then by (4.33) and Lemma 2.2,

∫
�

|∇S|2dx → 0 as t → ∞. Hence, the set wS :=
∩t≥1∪s≥t{S(·, s)} consists of positive constant functions. Furthermore, since supt≥0 ‖∂tI(·, t)‖L∞(�) < ∞
and S is Hölder continuous on � × [1, ∞), the mapping

t �→
∫

H+∩{I0>0}
(β − γ )+

(S − κI)2

S + I
Idx

is Hölder continuous on [1, ∞). Therefore, by Lemma 2.2 and (4.34), we have

lim
t→∞

∫
H+∩{I0>0}

(β − γ )+
(S − κI)2

S + I
Idx = 0. (4.35)

Now, let S∗ ∈ wS. Then there is a sequence tk → ∞ such that S(·, tk) → S∗ uniformly on �̄ as k → ∞.
Since (4.35) holds, after passing to a subsequence if necessary, we may suppose that

lim
k→∞

I(x, tk)
(S∗ − κ(x)I(x, tk))2

S∗ + I(x, tk)
= 0 a.e. on H+ ∩ {I0 > 0}. (4.36)
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However, when x ∈ H+ ∩ {I0 > 0}, we have from (4.28) that lim inft→∞ I(x, t) ≥ S(β(x) − γ (x)) > 0.
Therefore, we conclude from (4.36) that

lim
k→∞

I(x, tk) = S∗

κ(x)
= (β(x) − γ (x))S∗

γ (x)
a.e. on H+ ∩ {I0 > 0}.

By (4.28) again, limt→∞ I(x, t) = 0 almost everywhere for x ∈ � \ (H+ ∩ {I0 > 0}). So by the dominated
convergence theorem, we have

N = lim
k→∞

∫
�

(S(·, tk) + I(·, tk))dx

= |�|S∗ + S∗
∫

H+∩{I0>0}

1

κ
dx =

(
|�| +

∫
H+∩{I0>0}

β − γ

γ
dx

)
S∗.

This yields that

S∗ = N

|�| + ∫
H+∩{I0>0}

β−γ

γ
dx

.

Since S∗ is independent of the chosen subsequence, we have

wS =
{

N

|�| + ∫
H+∩{I0>0}

β−γ

γ
dx

}
,

and therefore (4.29) holds. Since S(·, t) → S∗ uniformly on � as t → ∞, we obtain from (4.24) that
I(·, t) → S∗(β−γ )+

γ
χH+∩{I0>0} uniformly on �̄ as t → ∞.

5. Simulations

In this section, we run numerical simulations to illustrate the results. Let � = [0, 1], S0 = 2 + cos(πx)
and I0 = 1.5 + cos(πx). Then the total population is N = ∫

�
(S0 + I0)dx = 3.5.

5.1. Mass action mechanism

We first simulate the models with mass action mechanism.

5.1.1. Simulation 1: control the movement of susceptible people
Let dS = 0, dI = 1, and γ = 4 − π sin (πx). First, choose β = 0.5, and so N <

∫
�

γ /βdx = 4, i.e. the total
population is small. By Theorem 3.3, we have I(·, t) → 0 as t → ∞ and the infected population will be
eliminated, which is confirmed by Figure 1a. Then, choose β = 2, and so N >

∫
�

γ /βdx = 1, i.e. the total
population is large. Now Corollary 3.5 predicts that S(·, t) → γ /β and I → I∗ = (N − ∫

�
rdx)/|�| = 2.5,

which is confirmed by Figure 1b. Finally, choose γ = 0.5(1 + x) such that
∫

�
rdx = ∫

�
γ /βdx ≈ 2.82

and S0 − r changes sign on � (By Theorem 3.3 and Corollary 3.5, we have already known that N =∫
�

rdx is a threshold value for the two alternatives in Theorem 3.3 if β is a constant or S0 − r does
not change sign on �). Replace the initial condition by I0 = a + cos (πx) and then N = ∫

�
(S0 + I0)dx =

a + 2. Figure 1c shows
∫

�
I(x, 40)dx as a function of N, which indicates that a bifurcation appears at

N ≈ 2.82, i.e. N ≈ ∫
�

rdx is a threshold value for alternative (i) vs (ii) in Theorem 3.3. It is still an
open problem to rigorously show whether N = ∫

�
rdx is the threshold value for the two alternatives in

Theorem 3.3 without the additional assumptions in Corollary 3.5. From the simulations, we can see that
the disease can be eliminated only when the total population is small by controlling the movement of
susceptible people.
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Figure 1. Simulations of the model with mass action mechanism and dS = 0. Parameters: dI = 1,
γ = 4 − π sin (πx). Left figure: β = 0.5 and N <

∫
�

γ /βdx; middle figure: β = 2 and N >
∫

�
γ /βdx;

right figure: β = 0.5(1 + x) and I0 is replaced by a + cos(πx) with a ∈ [0.2, 1.2].
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Figure 2. Simulations of the model with mass action mechanism and dS = 1, dI = 0. Left figure: β = 0.2,
γ = 4 − π sin (πx), and H+ = ∅; middle figure: β = 1, γ = 4 − π sin (πx), H+ �= ∅, and the minimum
of γ /β is attached at x = 0.5; right figure: β = 2, γ = 14 − 4π sin (4πx), H+ �= ∅, and the minimum of
γ /β is attached at x = 1/8, 5/8.

5.1.2. Simulation 2: control the movement of infected people
Let dS = 1 and dI = 0. First, choose β = 0.2 and γ = 4 − π sin (πx) such that H+ = ∅. By Theorem 3.11,
S(·, t) converges to N/|�| = 3.5 and I(·, t) converges to 0, which is confirmed by Figure 2a. Then, choose
β = 1 and γ = 4 − π sin (πx) such that H+ �= ∅ and the minimum of γ /β is attached at x = 0.5. By
Theorem 3.11, the infected people will concentrate at x = 0.5, which is confirmed by Figure 2b. Finally,
we choose β = 2 and γ = 14 − 4π sin (4πx) such that H+ �= ∅. The minimum of γ /β is attached at
x = 1/8, 5/8, and the infected people concentrate at these two points as shown in Figure 2c. From the
simulations, we can see that the infected people may not be eliminated by controlling the movement of
infected people if H+ �= ∅. Instead, the infected people will concentrate at certain points that are of the
highest risk.

5.2. Standard incidence mechanism

We then simulate the models with standard incidence mechanism.

5.2.1. Simulation 3: control the movement of susceptible people.
Let dS = 0 and dI = 1. First, choose β = 1 + sin (πx) and γ = 1.5 such that

∫
�

(β − γ )dx = 2/π −
0.5 > 0, the high-risk sites are H+ = (1/6, 5/6), the low-risk sites are H− = [0, 1/6) ∪ (5/6, 1] and
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Figure 3. Simulations of the model with standard incidence mechanism and dS = 0, dI = 1.
Left figure: β = 1 + sin (πx) and γ = 1.5 such that H+ = (1/6, 5/6), H− = [0, 1/6) ∪ (5/6, 1] and
H0 = {1/6, 5/6}; right figure: β = 2.5 + sin (πx) and γ = 1.5 + sin (πx) such that β > γ and
I∗ = N/

∫
�

(β/(β − γ ))dx ≈ 1.1159.
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Figure 4. Simulations of the model with standard incidence mechanism and dS = 0, dI = 1. Parameters:
β = 2 − sin (πx) and γ = 1 such that

∫
�

1/(β − γ )dx = ∞.

moderate-risk sites are H0 = {1/6, 5/6}. Since H− �= ∅, Theorem 4.2-(i) predicts that infected popu-
lation will be eliminated and susceptible people occupy H− ∪ H0. Moreover, since

∫
�

(β − γ ) > 0, then
R0 > 1 and Remark 4.3 suggests that the local size of the susceptible population maybe significantly low
on some portion of the high-risk area, which is confirmed by Figure 3a. Then choose β = 2.5 + sin (πx)
and γ = 1.5 + sin (πx) such that β > γ and I∗ = N/

∫
�

(β/(β − γ ))dx ≈ 1.1159. Theorem 4.2-(ii) pre-
dicts that I(·, t) → I∗ as t → ∞, which is confirmed by Figure 3b. Finally, choose β = 2 − sin (πx) and
γ = 1 such that β ≥ γ , H0 = {0.5}, and

∫
�

1/(β − γ )dx = ∞. As shown in Figure 4, infected people are
eliminated which agrees with Theorem 4.4. Moreover, susceptible people seem to concentrate near H0,
which we cannot prove. Our theoretical results and simulations show that the disease may be controlled
by limiting the movement of susceptible people if there exist low-risk or moderate-risk sites.

5.2.2. Simulation 4: control the movement of infected people.
Let dS = 1 and dI = 0. First, choose β = 2 − |x − 0.5|0.5 and γ = 1.5 such that the high-risk sites are
H+ = (0.25, 0.75) and

∫
�

1/|β − γ |dx < ∞. As shown in Figure 5a, S(·, t) converges to a positive con-
stant and I(x, t) is positive when x ∈ H+. Then we choose β = 2 − sin (πx) and γ = 1.5 such that the
high-risk sites are H+ = (0, 1/6) ∪ (5/6, 1) and

∫
�

1/|β − γ |dx = ∞. The infected people will live in
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Figure 5. Simulations of the model with standard incidence mechanism and dS = 1, dI = 0. Left
figure: β = 2 − |x − 0.5|0.5 and γ = 1.5 such that the high-risk sites are H+ = (0.25, 0.75) and∫

�
1/|β − γ |dx < ∞; right figure: β = 2 − sin (πx) and γ = 1.5 such that the high-risk sites are

H+ = (0, 1/6) ∪ (5/6, 1) and
∫

�
1/|β − γ |dx = ∞.

H+ as shown in Figure 5b. From the simulations, we can see that the infected people may be elimi-
nated exactly at the low-risk sites by controlling the movement of infected people, which is predicted by
Theorem 4.6.

6. Conclusions

We studied the impact of limiting population movement on disease outbreak by examining the large time
behaviour of classical solutions of a class of epidemic models with mass action or standard incidence
transmission mechanism. To this end, we set the diffusion rate of the population subgroups (suscepti-
ble or infected) to zero separately and presented detailed mathematical analysis of the corresponding
degenerate epidemic models. First, we established the existence and uniqueness of global classical solu-
tions (see Propositions 3.1, 3.7, 4.1 and 4.5). Next, we discussed the global dynamics of the solutions
(Theorems 3.3, 3.11, 4.4, and 4.6). Finally, we conducted some numerical simulations to complement
and illustrate our theoretical results (see Figures 1–5). Our results revealed the intricate effects of restrict-
ing population movement on disease dynamics and how predictions may depend on the choices of
transmission mechanisms and spatially heterogeneous parameters.

First, we considered the global dynamics of the model with mass action transmission mechanism.
We defined a risk function r := γ /β as the ratio of the recovery and transmission rates. When the
susceptible population movement is restricted, Theorem 3.3 indicates that the average population size,
N/|�|, compared to that of the risk function,

∫
�

rdx/|�|, largely determines the disease outcome. In
particular, regardless of the magnitude of the movement rate of the infected population, the disease may
be eradicated only if the average population size is smaller than the average risk function. Moreover, if
the disease persists, the infected population would eventually be uniformly distributed across the whole
habitat. On the other hand, when the movement of the infected population is restricted, Theorem 3.11
suggests that the disease could be eradicated only if the habitat does not have a high-risk area. Moreover,
whether the magnitude of the movement rate of the susceptible population affects the results depends
on whether the average size of the population is larger than the risk function in at least one location.
Furthermore when the disease persists, the infected population would concentrate on the highest-risk
area of the habitat. Our simulations in Figures 1 and 2 illustrated the above theoretical results.
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Next, we studied the global dynamics of the model with standard incidence mechanism. Theorems 4.2
and 4.4 indicate that restricting the susceptible population’s movement could completely eradicate the
disease only if the habitat accommodates either a low-risk or moderate-risk area. These requirements
are achieved if the local distribution of the risk function is less than or equal to one. However when
the habitat consists of only high-risk areas, the disease would persist with the infected population being
uniformly distributed across the whole habitat. On the other hand, when the movement of the infected
population is restricted, Theorem 4.6 indicates that the disease may persist if the habitat has a nonempty
high-risk area. Moreover, the infected population precisely occupy the high-risk sites, and the magnitude
of the movement of the susceptible subgroup does not influence the disease persistence. Our simulations
in Figures 3–5 illustrated these theoretical results.

Our above theoretical results suggest that the transmission mechanisms play an important role when
the population movement of one subgroup is restricted. Indeed, when mass action mechanism is used,
the persistence of the disease depends on the average population size compared to either the average
of the risk function (when dS = 0) or its local distribution (when dI = 0). However, when standard inci-
dence mechanism is adopted, the disease persistence prediction depends on whether the habitat has only
high-risk areas (when dS = 0) or has a nonempty high-risk area (when dI = 0). Interestingly, our results
suggest that for either mass action or standard incidence mechanism disease control strategies which
focus on limiting the movement of the susceptible population should be preferred over those focusing
on restricting the movement of the infected population.

Finally, we point out that most of the previous works (e.g. [2, 9, 13, 45, 62]) considered the asymptotic
profiles of the EE solutions to understand the effects of limiting population movements on the dynamics
of infectious diseases, under the assumptions that the evolution of the disease happens on a fast scale
compared to control strategies and populations ultimately stabilise at the EE solutions. In this work, we
study the effects of limiting population movement by focusing on the global dynamics of the degenerate
systems with either dS = 0 or dI = 0, assuming instead that the control strategies happen on much faster
scale than the evolution of the disease. We remark that some of our results depend on the initial value.
Other than that, the biological implications from these two approaches seem to align well (e.g. both
approaches predict that the effectiveness of controlling the movement of susceptible people with mass
action mechanism depends on the size of the total population).
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