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Abstract. In this article we prove a Chern–Lashof inequality for immersions of manifolds withH-
spherical ends. Related to this inequality we discuss different types of tightness. In particular we shall
prove that an immersion of a manifold with at least twoH-spherical ends is tightly immersed only if
the ends are of a certain geometric type (Wintgen immersion).
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1. Introduction

The starting point for the theory of tightness was the so-calledChern–Lashof
inequality[4], [5]. This inequality gives a lower estimate (theMorse number)for
the total absolute curvatureof an immersionF :Y ! R

m , whereY denotes a
compact manifold. The Morse number itself is bounded below by thetotal Betti
number, as elementary Morse Theory shows.

One calls such an immersiontight if the Chern–Lashof inequality is in fact an
equality. This geometric condition can also be expressed in terms of homology
([3]). For two-dimensional closedY tightness is equivalent to the so-calledtwo-
piece-property(TPP), i.e. every hyperspace cuts the manifold into at most two
pieces.

The concept of tightness had been mainly restricted to immersions of compact
manifolds for a long time. In [9] this was extended to certain immersions of
noncompact manifolds, toWintgen immersionsof manifolds with finitely many
ends. For such immersions there is a hierarchy of tightness conditions:strong
tightness, tightnessandweak tightness.

In this paper we consider almost arbitrary immersions (we shall call themsemi-
Wintgen immersions) of noncompact manifolds. We restrict our consideration to
manifolds withH-spherical ends, i.e. each end is an homology sphere. The most
popular example of this type of manifolds are obtained by removing finitely many
points from a compact manifold.

We shall extend the Chern–Lashof inequality stated in [9] to immersions of such
manifolds. We shall prove in Section 3 the following inequality:
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18 MARTIN VAN GEMMEREN

tac(X;F ) > �(X) � 1; if X has one end;

and

tac(X;F ) > �(X) � 2; if X has at least two ends;

where tac(X;F ) denotes the total absolute curvature and�(X) the total Betti
number. Thus we have to distinguish the discussion by the number of ends of the
manifold.

This inequality yields to another tightness condition:total tightness, i.e. the
inequality above is an equality.

We examine these different conditions of tightness (mentioned above) in detail
in Section 4. The main result is there that a submanifold with at least twoH-
spherical ends is total tight only if the ends are of a certain geometric type:Wintgen
immersion, in other words there are only finitely many direction along which the
immersion moves to infinity. These directions are calledlimit directions. In detail,
we shall prove the following relations for an immersionF :X ! R

m of a manifold
with H-spherical ends:

In the case of exactly one end we have the following implications:

strong tight() tight() weak tight^ �n�1(X) = 0

and

total tight =) F is not a Wintgen immersion:

In the case of at least two ends the following holds:

strong tight =) total tight () tight () weak tight^ vol (C1) = cm�1

and in particular

total tight =) F is a Wintgen immersion:

(vol(C1 = Vol(Sm�1) means that the convex hull of limit directions fills in the
sphere.) In the sequel every manifold and every function is supposed to be smooth.
A manifold is an unbounded manifold with finitely many ends in the sense of
Freudenthal (see e.g. [9]). For basic results in topology we refer to [6] and [7]. For
basic results in differential topology and Morse Theory we refer to [14] resp. [13].

The related topic of tautness in the noncompact case is considered in [2].
We shall restrict our considerations to a certain type of homology at infinity of

X. For this we recall the definition of the homology at the ends [9]:
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TIGHTNESS OF MANIFOLDS WITHH-SPHERICAL ENDS 19

PROPOSITION and DEFINITION 1.1. (i)Let (U�) be a countable base of punc-
tured neighbourhoods of the end1�. Let H� be a homology theory. Then the
definition of thehomology of the end1�

H�(1�) := invlim �2NH�(U�)

does not depend on the choice of(U�).
(ii) We callX a manifold withH-spherical endsif H�(1) := ��H�(1�) is

trivial for every� 6= 0; n� 1.
Proof.See [9]. 2

EXAMPLE 1.2. If one removes finitely many points from a compact manifold one
obtains a manifold withH-spherical ends.

We shall examine thetotal absolute curvatureof immersionsF :X ! R
m of

manifoldsX with H-spherical ends.

DEFINITION 1.3. LetF :X ! R
m be a proper immersion.

(i) The determinant of the shape operatorL : BX ! R is called theLipschitz–
Killing curvaturedefined as a function on theunit normal bundleBX. L is the
Gaussian curvature in the case of hypersurfaces.

In the case of orientableX the normalized Lebesgue integral

tac(X;F ) :=
1

cm�1

Z
BX

jLjdA; cm�1 := Vol(Sm�1);

where dA is the induced volume element ofBX is called thetotal absolute
curvature ofF . Sm�1 denotes the sphere of unit vectors at the origin inR

m . For
non-orientableX one defines the total absolute curvature by using the orientable
double covering. For more details of these definitions see [3], [8].

(ii) For e 2 Sm�1 we call the mapping

he : X ! R; x 7! hF (x); ei

thee-height functionhe with respect toe andF .
(iii) For f :X ! R; � 2 N the�th Morse number off; ��(f), is defined by

��(f) := fx 2 Xjx is a non� degenerate critical point forf of index�g:

The(total) Morse number off is defined by:

�(f) :=
nX
�=0

��(f):

��( ) := dim(H�( )) is called the�th Betti numberand�( ) :=
P

� ��( ) the
total Betti number.
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20 MARTIN VAN GEMMEREN

2. Morse Theory and generalized Morse inequality

In this section we generalize the Morse inequality given in [9] to a wider class
of functions. We shall considerMorse–Palais–Smale functions, i.e. functions that
obey the following definition:

DEFINITION 2.1. We call a differentiable functionf :X ! R Morse–Palais–
Smale–functionif f satisfies theMorse conditionand thePalais–Smale condition.

The Morse condition requires thatf has only finitely many critical points, in the
sense of Braess [1]. The Palais–Smale condition (or condition C, [19]) is satisfied,
if there is no sequence(x�) 2 XN such that

(x�)!1; df(x�)! 0; jf(x�)jis bounded:

E.g. the Palais–Smale condition is satisfied for properf .
If the Morse–Palais–Smale functionf has critical points we denote the smallest

critical value byrf 2 R, otherwiserf := 0. The setEf := f�1((�1; rf )) is
called thelower end off .

The Palais–Smale condition requires that there is no critical point at ‘infinity’.
Note, we do not claimf to be bounded, in contrast to [17], [18] and [19]. This will
change essentially the Morse inequalities.

Let us recall the Main Theorem for Morse–Palais–Smale functions:

THEOREM 2.2.Let f :X ! R be a Morse–Palais–Smale function. Then the
homotopy type of thesublevelsetsf�1((�1; t]), t 2 R changes exactly at the
critical levels. Indeed, at a critical value the homotopy type changes by adding a
cell of the same dimension as the index of the corresponding critical point.

Proof.See [10]. 2

Now we can state a very first version of the desired inequality:

COROLLARY 2.3.Letf :X ! R be a Morse–Palais–Smale function. Then

��(f) > ��(X;Ef ) for � 2 N:

Proof.We get by Theorem 2.2:

��(f) > ��(XnE�f ; Ef );

as in ([19] or [13]). Furthermore

H�(XnE�f ) �= H�(X):

Therefore we get by considering the exact sequence of the pairXnE�f ;X:

H�(X;XnE�f ) �= f0g:

comp4050.tex; 6/04/1998; 10:58; v.7; p.4

https://doi.org/10.1023/A:1000301702170 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000301702170


TIGHTNESS OF MANIFOLDS WITHH-SPHERICAL ENDS 21

We conclude with the exact sequence of the tripleEf , XnE�f ;X:

H�(X n E�f ; Ef ) �= H�(X;Ef ): 2

This inequality together with the following homology inequality enables us to state
the desired lower bound for tac(X;F ).

LEMMA 2.4.LetX haveH-spherical ends andf :X ! R be a Morse–Palais–
Smale function. Then

1
2(�(X;Ef ) + �(X;E�f )) > �(X) � 1; if k = 1;

1
2(�(X;Ef ) + �(X;E�f )) >

nX
�=0

j��(X) � 1
2��(1)j = �(X) � 2; if k > 2:

Moreover, equality in the second case implies thatEf [ E�f is a punctured
neighbourhood of every end. (k denotes the number of ends ofX.)

Proof. In the case of a surfaceX, i.e.n = 2, we get by the exact sequence of
the pairEf , X:

�1(X;Ef ) > �1(X)� �1(Ef )� �0(X) + �0(Ef )

> �1(X)� 1+ �0(Ef )� �1(Ef );

if Ef 6= ;, otherwise

��(X;Ef ) = ��(X):

This shows the assertion.
Let nown > 3. LetU1; : : : ; Uk be disjoint connected neighbourhoods of the

ends11; : : : ;1k. We define:

Êf := Efn [U�\E�f=;
U�; Ê�f := E�fn [U�\Ef=;

U�;

whereEf [ E�f � [k�=1U�, w.l.o.g. If Êf = ; or Ê�f = ;, i.e.Ef [ E�f is a
punctured neighbourhood of every end, the proof can be finished as in [9].

SupposêEf 6= ; andÊ�f 6= ;. (That means there are ends which are cut into at
least two pieces. The homology of these end pieces is arbitrary, in general. But the
homology differs from the homology of the ends which are cut in exactly one piece
by vanishing of the(n � 1)th homology. Therefore we shall distinguish between
these two types.)
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Consider the following diagram:

- H�(Êf ) - H�(Ef ) - H�(Ef ; Êf )

?

- H��1(Êf ) -

H�(X; Êf )

?

H�(X;Ef )
?

-H��1(Êf ) - H��1(Ef ) - H��1(Ef ; Êf )

?

- H��2(Êf ) -

?

For� 6= 1;2; n� 1; n we get

H�(Ef ; Êf ) = f0g; H��1(Ef ; Êf ) = f0g;

therefore

��(X;Ef ) = ��(X; Êf ):

The diagram gives also:

�n(X; Êf ) + �n�1(Ef ; Êf ) + �n�1(X;Ef ) = �n(X;Ef ) + �n�1(X; Êf );

for this we used�n(Ef ; Êf ) = 0 (since�n�1(Êf ) = 0). By the same argument
we get by considering the next exact sequence

! Hn(Ef ; Êf )! Hn�1(Êf )! Hn�1(Ef )!

! Hn�1(Ef ; Êf )! Hn�2(Êf )
�=
! Hn�2(Ef )!;

the following equality

�n�1(Ef ) = �n�1(Ef ; Êf ):
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TIGHTNESS OF MANIFOLDS WITHH-SPHERICAL ENDS 23

Thus, since�n(X; Êf ) = 0, we obtain:

�n�1(Ef ) + �n�1(X;Ef ) = �n(X;Ef ) + �n�1(X; Êf ): (�)

In the case of three-dimensionalX the exact sequence of the pairX, Ef ; resp.
X, Êf ;

! H�(Ef )! H�(X) ! H�(X;Ef )!;

! H�(Êf )! H�(X) ! H�(X; Êf )!

shows the equalities

�(X) = �(X;Ef ) + �(Ef )

and

�(X) = �(X; Êf ) + �(Êf ):

Now:
3X

�=0

��(X;Ef ) = 2�2(X;Ef )� �(X;Ef )

= 2�2(X;Ef )� �(X; Êf )� �(Êf ) + �(Ef )

=
3X

�=0

��(X; Êf ) + 2(�2(X;Ef )� �2(X; Êf )

+�0(Ef )� �1(Ef ) + �2(Ef )� �0(Êf ) + �1(Êf )

=
3X

�=0

��(X; Êf ) + 2(�2(X;Ef )� �2(X; Êf ) + 2�2(Ef )

(�)
=

3X
�=0

��(X; Êf ) + 2�3(X;Ef ): (��)

Let nown > 4. We get again by the diagram above:

�1(Ef ; Êf )� �0(Êf ) + �0(Ef )� �0(Ef ; Êf ) = 0;

�0(Ef ; Êf ) + �1(X; Êf ) + �2(X;Ef ) = �2(X; Êf ) + �1(Ef ; Êf ) + �1(X;Ef );

therefore

�1(X; Êf ) + �2(X;Ef ) + �0(Ef ) = �2(X; Êf ) + �1(X;Ef ) + �0(Êf )
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Altogether forn > 4
nX
�=0

��(X;Ef ) =
nX
�=0

��(X; Êf )� �1(X; Êf )� �2(X; Êf )� �n�1(X; Êf )

+�1(X;Ef ) + �2(X;Ef ) + �n�1(X;Ef ) + �n(X;Ef )

=
nX
�=0

��(X; Êf ) + 2�n(X;Ef ) + 2(�2(X;Ef )� �2(X; Êf )):

The five Lemma applied to the following diagram:

-H2(Êf ) - H2(X) - H2(X; Êf ) - H1(Êf ) - H1(X) -

-H2(Ef )
?

�=

- H2(X)
?

�=

- H2(X;Ef )
?

- H1(Ef )
?

�=

- H1(X)
?

�=

-

gives�2(X; Êf ) = �2(X;Ef ). Thus

nX
�=0

��(X;Ef ) =
nX
�=0

��(X; Êf ) + 2�n(X;Ef ); (� � �)

which is valid for� > 3 (see(��)).
We denote the ends which have a nonvoid intersection withÊf or Ê�f by 1̂,

i.e.

1̂ = [U�\Ef 6=;
U� [U�\E�f 6=;

U�:

Consider the next diagram:

- H�+1(X; 1̂) - H�(1̂)
i1
- H�(X) - H�(X; 1̂) -

- H�+1(X; 1̂)
?

�=

- H�(1̂; Êf )

?

j1

i2
- H�(X; Êf )

?

j2

- H�(X; 1̂)
?

�=

-

Diagram chasing ([7]) shows:

ker(j2) = i1(ker(j1)):

We receive

��(X) 6 ��(X; Êf ) for � 6= n� 1;0;
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TIGHTNESS OF MANIFOLDS WITHH-SPHERICAL ENDS 25

becausei1 = j1 = 0 for � 6= n� 1;0.
We conclude:

nX
�=0

��(X;Ef ) +
nX
�=0

��(X;E�f )� 2
nX
�=0

��(X) + 2

=
nX
�=0

��(X; Êf ) +
nX
�=0

��(X; Ê�f )

+2�n(X;Ef ) + 2�n(X;E�f )� 2
nX
�=0

��(X) + 2

(���)

> �n�1(X; Êf ) + �n�1(X; Ê�f )� 2�n�1(X)

+2�n(X;Ef ) + 2�n(X;E�f )

(�)

> �n�1(Ef )� �n�1(X) + �n�1(X;Ef )

+�n�1(E�f )� �n�1(X) + �n�1(X;E�f )

> 0;

at the last step we used the exact sequence of the pairEf , X resp.E�f , X. This
shows the assertion fork = 1. For the casek > 2 we finish by showing the
following inequality:

�(X)� 1 >
nX
�=0

j��(X) � 1
2��(1)j = �(X)� 2:

(Thus equality in the desired inequality may only appear if every end is cut in
exactly one piece.)

The exact sequence of the pair1,X:

f0g ! Hn(X;1) ! Hn�1(1)! Hn�1(X)! Hn�1(X;1)!

together with�n(X;1) = 1 proves:

1+ �n�1(X) � �n�1(1):

Thus we get fork > 2

�n�1(X) >
�n�1(1)

2
:

This completes the proof. 2
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26 MARTIN VAN GEMMEREN

COROLLARY 2.5.Let X haveH-spherical ends andf :X ! R be a Morse–
Palais–Smale function. Then the following Morse inequality holds:

�(f) � �(X)� 1; if k = 1;

and

�(f) >
nX
�=0

j��(X)� 1
2��(1)j = �(X) � 2; if k > 2:

Proof.Combine Lemma 2.4 and Corollary 2.3. 2

3. Total absolute curvature and tightness

We are interested in a lower bound of the total absolute curvature of an immersion
F :X ! R

m . The total absolute curvature is equal to the expectation value of
critical points of a random non-degenerate height function. Therefore, we need an
lower bound of the number of critical points of such an height function. For this we
shall use the inequalities of Section 2. Thus we have to guarantee that almost every
height function is a Morse–Palais–Smale function, i.e. we shall consider only those
immersions that corresponding height functions are Morse-Palais-Smale functions:

DEFINITION 3.1. We call an immersionF :X ! R
m semi-Wintgen immersion if

almost every height function with respect toF is a Morse–Palais–Smale function.
F is called Wintgen immersion if there are only finitely many limit direction

corresponding toF . (A limit direction is a directionv 2 Sm�1 such that there
exists a sequence(x�) 2 XN with lim�!1

F (x�)

kF (x�)k
= v [9], [21].)

In a geometric sense semi-Wintgen immersion are immerions whose corre-
sponding normal vectors at infinity have measure zero as a subset ofSm�1. Rather
odd example show that this does not have to be the case in general, however for
our purpose this will be the case,see below.

Every Wintgen immersion is a semi-Wintgen immersion.

PROPOSITION 3.2.LetF :X ! R
m be a proper immersion.F is a semi-Wintgen

immersion if� is almost everywhere continuous.
Proof. For the definition of� see Definition 1.3(iii).� is almost everywhere

continuous if and only if� is almost everywhere locally constant, i.e. if for almost
everye 2 Sm�1 there is a neighbourhood inSm�1 where� is constant. This is
equivalent to the situation that there is a closed zero setA � Sm�1 such that� is
local constant in the complement ofA.

The Gauss map is regular outside a closed zero setA0 � Sm�1 (Sard’s Theo-
rem). Thus for everye in the complement ofA0 there is a neighbourhoodU � Sm�1

such that the preimage ofU under the Gauss map consists of�(he) diffeomorphic
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TIGHTNESS OF MANIFOLDS WITHH-SPHERICAL ENDS 27

subsets of the unit normal bundle which are disjoint toU . Now, if � is almost
everywhere constant we may assume� to be constant inU . That means all the
height functions corresponding toU satisfy the Palais–Smale condition. (For this
lete 2 U such thathe fails the Palais–Smale condition. Thus there exists to" 2 R+

andR 2 R+ another directione0 2 Sm�1 such that the corresponding height func-
tion possesses a singularity outside the ball of radiusR andke0 � ek < ", i.e. the
singularity lies outside the preimage ofU but e0 2 U , w.l.o.g. Thushe0 possesses
more than�(he) singularities. Contradiction.) 2

We are interested in the concept of tightness of noncompact submanifolds. Obvi-
ously tightness implies at least that almost every height function has the same
number of critical points (see [3]), i.e.� is almost everywhere constant. Thus the
restriction to semi-Wintgen immersions is redundant for our purpose.

THEOREM 3.3.LetF :X ! R
m be a semi-Wintgen immersion. Then

tac(X;F ) > �(X) � 1; if k = 1;

and

tac(X;F ) >
nX
�=0

j��(X) � 1
2��(1)j = �(X) � 2; if k > 2;

with equality in the second case only ifF is a Wintgen immersion.
Proof.The integral of total absolute curvature is equal to the expectation value

of the number of critical points of a random non-degenerate height function [3],
[8]. Thus with the Morse inequality in Corollary 2.5 in turn we get the stated
inequalities, where in the second case equality holds only if for almost every height
function the corresponding (lower and upper) ends are neighbourhoods of every
end ofX. The last is only the case if almost every direction is not perpendicular
to the set of limit directions, i.e. if there is only one limit direction w.r.t. each end.
ThusF has to be a Wintgen immersion. 2

According to the compact case we define in the next sectiontotal tightnessas the
case of equality.

4. Different types of tightness

We discuss different types of tightness: strong tightness, tightness, weak tightness
andtotal tightness:

DEFINITION 4.1. LetX haveH-spherical ends. We call a semi-Wintgen immer-
sionF :X ! R

m total tight if the Chern–Lashof inequality of Theorem 3:3 is in
fact an equality forF .
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28 MARTIN VAN GEMMEREN

From ([9]) we recall:

DEFINITION 4.2.LetF :X ! R
m be a Wintgen immersion.

(i) F is calledweak tightif for � 2 N for almost everye 2 Sm�1

Hi(X
r
e ; Ehe)! Hi(X;Ehe)

is injective forr 2 R.
(ii) F is calledtight if for � 2 N for almost everye 2 Sm�1

Hi(X
r
e )�Hi(X

r
�e)! Hi(X

r0

e )�Hi(X
r0

�e)

is injective for everyr; r0 2 R; r < r0 or is surjective for everyr; r0 2 R; r < r0.
(iii) F is calledstrong tightif for � 2 N for almost everye 2 Sm�1

Hi(X
r
e )! Hi(X)

is injective forr 2 R.

Note, that in this definitionF is required to be a Wintgen immersion in contrast
to Definition 4.1.

In accord to Theorem 3.3 we have to distinguish the discussion between the
cases of exactly one end and at least two ends.

THEOREM 4.3.LetX haveH-spherical ends andF :X ! R
m be a semi-Wintgen

immersion. Then in the case of only one end:

– if F is total tightF cannot be a Wintgen immersion,
– F is tight if and only ifF is strong tight, this is only the case if the(n� 1)-th

Betti number ofX vanishes. If�n�1(X) = 0 then (strong) tightness and weak
tightness are equivalent.

In the case of at least two endsF is total tight if and only ifF is tight. Thus in this
case total tightness impliesF is a Wintgen immersion.

Proof. The first part follows by comparing the Chern–Lashof inequality for
Wintgen immersions in [9] and the Chern–Lashof inequality in Section 3. The
second part follows from the second part of Theorem 3.3. 2

We give some examples for the first part of the theorem:

EXAMPLE 4.4. (i) Rn � R
m is total tight but no Wintgen immersion. Despite

there exists a tight immersion.
(ii) Consider the projective spaceCP n as the subset of the euclidean space given

by the hermitian mappings ofC n+1. (CP n is the subset given by the orthogonal
projection with respect to a direction). The stereographic projection with respect to
an element ofCP n gives a total tight immersion of the punctured projective space,
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since every height function possesses only singularities of even index. Evidently,
this is no Wintgen immersion.

(iii) Consider the two-dimensional Clifford-torus immersed inS3. Stereo-
graphic projection w.r.t. an element of the torus gives a total tight immersion
of the punctured torus. But the punctured torus cannot be tightly immersed since
�1 6= 0. For a visualization see [11].

(iv) One can generalize the examples above by taking a compact taut mani-
fold. We may assume that such a submanifold is a subset of a Euclidean sphere.
Stereographic projection yields to a total tight immersion.

In the case of one end the types tight and total tight are excluding each other
on the other end tightness, weak tightness and strong tightness only differ by the
topology ofX. This situation is completely different ifX has at least two ends.
Then tightness and total tightness are the same and there is a hierarchy of strong
tightness, tightness and weak tightness. The difference between strong tightness
and tightness only depends on the topology ofX ([9]). The difference between
tightness and weak tightness is more subtle. In order to describe this difference we
need the convex cone of limit directions, mentioned by [21]:

DEFINITION 4.5. LetF :X ! R
m be a Wintgen immersion. We call the set

C1(F ) := fe 2 Sm�1jthere is one limit directionv such thathe; vi > 0;

there is another limit directionw such thathe; wi 6 0g

theconvex cone of limit directions.
The volume of this convex cone is a useful measure for the grade of tightness

of a weak tight immersion:

PROPOSITION 4.6.LetX haveH-spherical ends andF :X ! R
m be a Wintgen

immersion.ThenF is weak tight if and only if

tac(X;F ) = �(X) �
2

cm�1
vol(C1):

Proof.In the case of weak tightness a bounded height function possesses exactly
�(X) singularities since in this case the condition of weak tightness becomes
the ‘common’ condition for height function on compact manifolds. We close the
proof by proving that an unbounded height function possesses exactly�(X) �
2 singularities. For this lethe be an unbounded height function. Consider the
following homology sequence:

! H�+1(Ehe) ! H�+1(X)! H�+1(X;Ehe)!

! H�(Ehe)! H�(X)! H�(X;Ehe)!

comp4050.tex; 6/04/1998; 10:58; v.7; p.13

https://doi.org/10.1023/A:1000301702170 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000301702170


30 MARTIN VAN GEMMEREN

Thus

��(X) = ��(X;Ehe) for � 2 N;1 < � < n� 1; (�)

sinceH�(Ehe) = f0g.
X is noncompact, therefore�n(X) = 0. This together with�n�2(Ehe) = 0

shows:

�n(X;Ehe)� �n�1(Ehe) + �n�1(X) = �n�1(X;Ehe): (��)

In addition:

�(X;Ehe) + �(Ehe) = �(X): (� � �)

(�) and(� � �) prove:

�0(X)� �1(X) + (�1)n�1�n�1(X) + (�1)n�n(X)

��0(Ehe)� (�1)n�1�n�1(Ehe)

= �0(X;Ehe)� �1(X;Ehe)

+(�1)n�1�n�1(X;Ehe) + (�1)n�n(X;Ehe):

Ehe 6= ; gives�0(X;Ehe) = 0 (X is supposed to be connected).
Now with (��):

�1(X;Ehe) = �1(X) + �0(Ehe)� �0(X);

i.e.

�(X;Ehe) = �(X) � 2+ �0(Ehe) + 2�n(X;Ehe)� �n�1(Ehe):

The ends ofX areH-spherical. This implies�0(Ehe) = �n�1(Ehe). Therefore:

�(X;Ehe) = �(X) � 2+ 2�n(X;Ehe):

We conclude by proving�n(X;Ehe) = 1 if he is unbounded below and�n(X;Ehe)
= 0 if he is unbounded above.

We may assume thathe has exactly one maximum ifhe is bounded above andhe
has no maximum, otherwise. For this consider the double of the bounded manifold

Y := h�1
e ([rhe � t;�rh

�e
+ t]) (t 2 R+)

and apply [15].
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Now, we get by the discussion of Linking-Type and Non-Linking-Type singu-
larities [16]

�n(X;Ehe) = 0

if he is unbounded above.
If he is bounded abovewe get�n(X;Ehe) 6 1 since there is only one maximum.

By Theorem 2.2:

H�(X;Ehe)
�= H�(Y; @Y ):

And for the doubleY [@ Y of Y

H�(Y; @Y ) �= H�(Y [@ Y; Y );

by the Excision axiom.
The double ofY is a compactn-dimensional manifold. Therefore

Hn(Y [@ Y ) 6= f0g;

by the Poincaŕe duality.
The exact sequence of the pairY; Y [@ Y

! Hn(Y )! Hn(Y [@ Y )! Hn(Y [@ Y; Y )!

givesHn(Y [@ Y; Y ) 6= f0g. This proves the assertion. 2

COROLLARY 4.7.A weak tight immersion is (total) tight if and only if the convex
cone of limit directions fills in the unit sphere. (X is supposed to have at least two
H-spherical ends).

Proof. Follows by the proposition above and the Chern–Lashof inequality in
Section 3. 2
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