IMMERSIONS OF METRIC SPACES INTO EUCLIDEAN SPACES

TAKEO AKASAKI

1. Introduction. In a recent paper on isotopy invariants (1), S. T. Hu defined the enveloping space $E_m(X)$ of any given topological space X for each integer m > 1. By an application of the Smith theory to the singular cohomology of the enveloping space $E_m(X)$, he obtained his immersion classes $\Psi_m^n(X)$ for every $n = 1, 2, 3, \ldots$ and proved (3) the main theorem that a necessary condition for a compact metric space X to be immersible into the *n*-dimensional Euclidean space R^n is $\Psi_2^n(X) = 0$. This theorem was proved earlier by W. T. Wu (4) for finitely triangulable spaces X using purely combinatorial methods.

The objective of the present paper is to prove the above-mentioned theorem for arbitrary metric spaces. Our treatment follows that of S. T. Hu (3) in which he considers a homotopically equivalent subspace of $E_m(X)$. By a further localization of the situation, we obtain a homotopically equivalent subspace of $E_m(X)$ for locally finite open coverings of X. This enables us to remove the compactness condition.

The reader is referred to (1) and (3) for definitions and notation.

2. The map δ and the subspace $E_m(X, \delta)$. Let \mathfrak{F} be a given locally finite open covering of an arbitrary metric space X with a distance function $d: X^m x X^m \to R$ in the topological power X^m . Define a positive real-valued function δ on X as follows. Let x be an arbitrary point of X. Since \mathfrak{F} is a locally finite open covering of X, the point x meets only a finite number of members of \mathfrak{F} , say V_1, V_2, \ldots, V_q . Then define

$$\delta(x) = \max_{1 \leq i \leq q} [d(x, X \setminus V_i)].$$

Continuity of δ is obvious. Call δ the *canonical map* of the given covering \mathfrak{F} . Next, for any path $\sigma \in E_m(x)$, $\sigma(0)$ is a point of the diagonal X of the *m*th power X^m and thus $\delta[\sigma(0)]$ is a well-defined positive real number. Let $E_m(X, \delta)$ denote the subspace of the *m*th enveloping space $E_m(x)$ which consists of all paths $\sigma \in E_m(X)$ satisfying the condition

$$d[\sigma(0), \sigma(t)] < \frac{1}{2}\delta[\sigma(0)]$$

for every $t \in I$. Since

$$d[\sigma(0), \sigma(t)] = d\{\xi[\sigma(0)], \xi[\sigma(t)]\},\$$

Received July 20, 1964. This research was supported in part by the Air Force Office of Scientific Research.

 ξ sends $E_m(X, \delta)$ onto itself. Therefore, we have the orbit space

$$E_m^*(X, \delta) = E_m(X, \delta)/G.$$

Since the canonical map δ is continuous and positive for all points of X, the following theorem holds as a result of the proof of (3, 4.1).

THEOREM 2.1. There exists a homotopy

$$h_t: E_m(X) \to E_m(X) \qquad (t \in I)$$

satisfying the following conditions:

(2.1A) h_0 is the identity map on $E_m(X)$. (2.1B) h_1 sends $E_m(X)$ into $E_m(X, \delta)$. (2.1C) For every $t \in I$, h_t sends $E_m(X, \delta)$ into itself. (2.1D) For every $t \in I$, $h_t \circ \xi = \xi \circ h_t$.

COROLLARY 2.2. The inclusion map

$$i^*: E_m^*(X, \delta) \subset E_m^*(X)$$

is a homotopy equivalence.

3. The main theorem. We are concerned here with an arbitrarily given immersion $j: X \to Y$ of a metric space X into any topological space Y.

For each point x of X, choose an open neighbourhood U_x of x in X such that $j|U_x$ is an imbedding. Since every metric space is paracompact, the open cover $\mathfrak{C} = \{U_x|x \in X\}$ has a locally finite open refinement $\mathfrak{F} = \{V_\mu|\mu \in M\}$ (M an index set) which covers X. Let δ denote the canonical map of the covering \mathfrak{F} , and consider the subspace $E_m(X, \delta)$ of the mth enveloping space $E_m(X)$ of the metric space X as defined in §2.

Let $\sigma \in E_m(X, \delta)$ be arbitrarily given. Since $\sigma: I \to X^m$ is a path in the *m*th topological power X^m of X, we may compose σ with the *m*th topological power $j^m: X^m \to Y^m$ of the given immersion $j: X \to Y$ and obtain a path $j^m \circ \sigma: I \to Y^m$.

LEMMA 3.1. For every $\sigma \in E_m(X, \delta)$, we have

 $j^m \circ \sigma \in E_m(Y).$

Proof. Let σ be an arbitrary path from $E_m(X, \delta)$. We must show that $j^m[\sigma(t)]$ is a point on the diagonal Y of Y^m if and only if t = 0. If t = 0, the result follows immediately. On the other hand, suppose that $j^m[\sigma(t)]$ is a point on the diagonal Y for some $t \in I$. In order to conclude that t = 0, it suffices to show that $\sigma(t)$ is a point on the diagonal X of X^m . Let

$$\sigma(t) = (x_1, x_2, \ldots, x_m) \in X^m$$
 and $j^m[\sigma(t)] = (y, y, \ldots, y)$

where y is a point of the space Y. Then

$$j(x_1) = j(x_2) = \ldots = j(x_m) = y_1$$

1016

Let V_1, V_2, \ldots, V_q be the members of \mathfrak{F} which contain the point $\sigma(0)$. Since $\sigma \in E_m(X, \delta)$, it follows that

$$d[\sigma(0), \sigma(t)] < \frac{1}{2}\delta[\sigma(0)] = \frac{1}{2} \max_{1 \le i \le q} \left[d(\sigma(0), X \setminus V_i) \right]$$
$$= \frac{1}{2}d[\sigma(0), X \setminus V_k]$$

for some k = 1, 2, ..., q, and thus the set of points $\{x_1, x_2, ..., x_m\}$ is in V_k . Since \mathfrak{F} is a refinement of \mathfrak{S} , there is an open neighbourhood U of \mathfrak{S} containing V_k . But the restriction j|U is an imbedding, and hence $x_1 = x_2 = ... = x_m$. This completes the proof.

According to 3.1, j^m defines an imbedding

$$E_m(j): E_m(X, \delta) \to E_m(Y).$$

By means of the induced isomorphism

$$i^{**}: H^n[E_m^*(X); G] \to H^n[E_m^*(X, \delta); G]$$

of the homotopy equivalence i^* in (2.2) and the map $E_m(j)$, one can define a homomorphism

$$E_m^{**}(j): H^n[E_m^*(Y);G] \to H^n[E_m^*(X);G]$$

for each dimension n and every abelian coefficient group G using methods analogous to (3). Routine verification shows that $E_m^{**}(j)$ is independent of the choice of the locally finite open refinement \mathfrak{F} of \mathfrak{S} ; that is to say, if \mathfrak{F}' is another locally finite open refinement of \mathfrak{S} and δ' is the canonical map of \mathfrak{F}' , then the diagram

$$H^{n}[E_{m}^{*}(Y);G] \xrightarrow{E_{m}^{**}(j,\delta)} H^{n}[E_{m}^{*}(X,\delta);G]$$

$$\downarrow E_{m}^{**}(j,\delta') \qquad \qquad \downarrow (i^{**})^{-1}$$

$$H^{n}[E_{m}^{*}(X,\delta');G] \xrightarrow{(i'^{**})^{-1}} H^{n}[E_{m}^{*}(X);G]$$

is commutative. Furthermore, one obtains the following proposition.

PROPOSITION 3.2. For each $n = 1, 2, \ldots$, we have

$$E_m^{**}(j)[\Psi_m^n(Y)] = \Psi_m^n(X).$$

Because of (3, 5.1), (3.2), and the fact that $\Phi_2^n(\mathbb{R}^n) = 0$ (3; 4), we are able to state the main theorem.

THEOREM 4.3. If a metric space X can be immersed in the n-dimensional Euclidean space \mathbb{R}^n , then $\Psi_2^n(X) = 0$

TAKEO AKASAKI

References

- 1. S. T. Hu, Isotopy invariants of topological spaces, Proc. Roy. Soc. London, Ser. A, 255 (1960), 331-366.
- Smith invariants in singular cohomology, Hung-Ching Chow 60th Anniversary Vol. (1962), Inst. of Math., Acad. Sinica, Taipei, 1–17.
- 3. Immersions of compact metric spaces into Euclidean spaces, Illinois J. Math., 7 (1963), 415–424.
- 4. W. T. Wu, On the realization of complexes in Euclidean spaces 11, Acta Math. Sinica, 7 (1957), 79–101.

University of California, Los Angeles Rutgers, The State University

1018