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Abstract—Studies of insect herbivory on fossilized leaves tend to focus on a few, relatively simple metrics
that are agnostic to the distribution of insect damage types among host plants. More complex metrics that
link particular damage types to particular host plants have the potential to address additional ecological
questions, but such metrics can be biased by sampling incompleteness due to the difficulty of distinguish-
ing the true absence of a particular interaction from the failure to detect it—a challenge that has been raised
in the ecological literature. We evaluate a range of methods for characterizing the relationships between
damage types and host plants by performing resampling and subsampling exercises on a variety of data-
sets. We found that the components of beta diversity provide a more valid, reliable, and interpretable
method for comparing component communities than do bipartite network metrics and that the rarefaction
of interactions represent a valid, reliable, and interpretable method for comparing compound communi-
ties. Both beta diversity and rarefaction of interactions avoid the potential pitfalls of multiple comparisons.
Finally, we found that the host specificity of individual damage types is challenging to assess. Whereas
bipartite network metrics are sufficiently biased by sampling incompleteness to be inappropriate for fossil
herbivory data, alternatives exist that are perfectly suitable for fossil datasets with sufficient sample
coverage.
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Introduction 1999) and the intensity of insect damage as

Insect herbivory on fossilized leaves (here-
after “fossil herbivory”) has been noted inci-
dentally for more than 100 years (Potonié
1893). However, the systematic collection of
herbivory data only came with the advent of
the Damage Type system (Wilf and Labandeira
1999), in which each type of insect damage—
for example, circular holes below 1mm in
diameter, circular holes between 1 and 5 mm
in diameter—is assigned a unique number
and is classified into a broader functional feed-
ing group (Labandeira et al. 2007).

Traditionally, quantitative analyses of fossil
herbivory have focused on two topics: the rich-
ness of damage types in a fossil assemblage or
for a particular host plant (Wilf and Labandeira

measured by the percentage of leaf area
removed by herbivores (Beck and Labandeira
1998). Another layer of biological and analyt-
ical complexity can be added by linking
particular host plants to particular damage
types. On the one hand, quantitative methods
in paleontology and ecology have progressed
tremendously during the past two decades,
making it possible to conduct complex analyses
of fossil herbivory data with a single line of
code after loading a software package. On the
other hand, such analyses require more com-
plete datasets than are typically available in
studies of fossil herbivory. Many newly pos-
sible analyses also rely upon more assumptions
about biological processes and data structure or
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LINKING HOST PLANTS TO DAMAGE TYPES

estimate more parameters than do traditional
analyses. In such cases, the underlying assump-
tions and their effects can become more difficult
to identify and address.

Research Topics That Link Host Plants to
Damage Types

Three interrelated research topics link host
plants to damage types: host specificity, com-
ponent communities, and compound commu-
nities. Host specificity differentiates among
generalist and specialist feeding strategies. A
component community is the entire suite of
heterotrophs that rely, directly or indirectly,
on a plant taxon: its herbivores and their preda-
tors, parasitoids, and parasites (Root 1973). A
suite of coexisting component communities,
that is, those of the different plant species
within the same forest, is called a “compound
community” (Reice 1974; Whittaker and Levin
1977; Basset 1992; Novotny et al. 2002). All of
these topics present challenges when translated
to the fossil record.

The host specificity of each fossil insect
damage type is typically measured on a scale
of 1 to 3 (Labandeira et al. 2007). Generalized
damage types, occurring on a range of distantly
related plant hosts, have a score of 1. Damage
types of intermediate specificity have a score of
2. Specialized damage types, restricted to very
closely related plant hosts, have a score of
3. These scores are assigned to damage types
that occur on three or more specimens in a fossil
assemblage. The assignment of these scores at
various fossil assemblages is difficult to repli-
cate, because the boundaries between the
scores are not defined quantitatively—these
symbols are merely qualitative and contain no
quantitative information—but the many data-
sets that have become available since 1999 can
be used for sensitivity analyses to evaluate the
validity and reliability of this system.

For component communities, identification
of the secondary consumers associated with
the herbivores on a host plant is challenging
with fossils (Greenwood 1991; Martinez-
Delclos and Martinell 1993; Smith and Moe-
Hoffman 2007). Many of the iconic insect
Lagerstdtten also contain abundant plant fos-
sils (from oldest to youngest: Carpenter 1997;
Wittry 2006; Novokshonov 1997; Ponomareva
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et al. 1998; Cairncross and Anderson 1995;
Anderson 1999; Dobruskina 1995; Shcherbakov
2008; Huang et al. 2016; Ren et al. 2019; Huang
2016; Xiao et al. 2022; Ribeiro et al. 2021; Wap-
pler et al. 2009; MacGinitie 1969; Wilson 1978;
Grande 1984; Dayvault et al. 1995; Wappler
et al. 2012; Dunne et al. 2014; Douglas and
Stockey 1996; Labandeira 2002; Constenius
et al. 1989; Greenwalt and Labandeira 2013;
Wilde and Frankenhduser 1998; Lutz et al.
2010; Wappler et al. 2012; Wilson 1978; Meyer
2003; Allen et al. 2020). When the relevant
plants and insects do co-occur, it is nearly
impossible to link a particular insect taxon
(within a given feeding guild) to a particular
damage type (within a given functional feeding
group). Nonetheless, component communities
in the fossil record have been widely discussed
using damage types as proxies for herbivore
taxa (Labandeira 1998, 2002; D’Rozario et al.
2011; Slater et al. 2012, 2015; Labandeira and
Currano 2013; Labandeira et al. 2013, 2016,
2018; Ding et al. 2014, 2015; Schachat et al.
2014, 2015; Feng et al. 2017; Kustatscher et al.
2018; Xu et al. 2018; Correia et al. 2020; Liu
et al. 2020). However, here too, there is reason
for caution: even the fossil floras that have
been most thoroughly sampled for insect her-
bivory contain various damage types that
occur on only one specimen (Wilf et al. 2005,
2006; Prevec et al. 2009; Wappler 2010; Knor
et al. 2012; Wappler et al. 2012; Donovan et al.
2014; Adroit et al. 2018; Labandeira et al.
2018; Xu et al. 2018; Deng et al. 2020), indicating
that many damage types remain unobserved
due to incomplete preservation and sampling.
Because we cannot find every damage type
from a fossil assemblage, and because we can-
not link damage types to the insect taxa in a
one-to-one manner, the term “component com-
munity” as developed in the context of modern
ecology may be somewhat inapplicable. These
issues then scale up to consideration of com-
pound communities.

Whereas convincingly complete sampling is
hardly inevitable in the modern, it is at least
possible. This can be seen in a recent compari-
son of fossil and modern herbivory (Swain
et al. 2022). For one of the modern datasets con-
sidered, 1500 m? of leaf area was sampled for
each plant species (Novotny et al. 2012). For
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another modern dataset, between 1500 and
10,500 m* of leaf area was sampled for each
plant species (Novotny et al. 2005). In contrast,
between 0.000497 and 1.62 m* of leaf surface
area was sampled for each fossil plant taxon
included in the study. Relative to the four pale-
ontological studies, the amount of leaf area
examined in the two highlighted modern stud-
ies is at least 925 times greater, and can be more
than 20 million times greater.

Despite these issues, the general concepts
drawn from modern ecology that underlie dis-
cussions of component communities in the fossil
record are nevertheless valid. Ancient plants
surely had specialist and generalist herbivores
that formed component communities along
with their secondary consumers on each plant
host species. Thus, these concepts are worthy
of consideration, although we must be wary
of the fidelity with which those communities
might be documented in the fossil record. In
particular, bipartite network analysis has
recently been applied to fossil herbivory data-
sets to address questions about host specificity
and component communities (Currano et al.
2021; Swain et al. 2022). Bipartite networks
may be used to connect taxa at two trophic
levels, such as plants and their herbivores or
herbivores and their parasitoids. Alternatively,
beta diversity (Baselga 2010, 2017; Baselga
and Orme 2012) and rarefaction of interactions
(Dyer et al. 2010) can be used to examine herbi-
vore specialization and component communi-
ties based on the leaf damage record.
Calculating the beta diversity of damage types
on different host plants is a straightforward
way to compare component communities. Rar-
efying interactions is a straightforward way to
quantify the diversity of associations within a
compound community. Here, these alternatives
are evaluated through sensitivity analyses to
determine how much sampling is required for
stable results, with the aim of ascertaining
whether and how quantitative methods can be
used to evaluate host specificity, component
communities, and compound communities in
studies of fossil herbivory. Bipartite network
analysis requires special consideration because
of the assumptions it requires of the fossil record
and because of the risks associated with the
large number of metrics that are generated.

https://doi.org/10.1017/pab.2022.35 Published online by Cambridge University Press

Theoretical Issues with Bipartite Network
Analysis

Treating Damage Types as Analogues of Herbi-
vore Taxa—Methods that link particular host
plants to particular damage types often treat
damage types as analogues for herbivorous
insect taxa. For example, the two recent studies
that performed bipartite network analysis on
fossil herbivory data (Currano et al. 2021;
Swain et al. 2022) used a software package
(bipartite; Dormann et al. 2008) intended for
modern ecological networks that requires dir-
ect substitution of damage types for herbivore
taxa—constituting an explicit, specific assump-
tion that has not been substantiated and likely
never can be. Only one study has used neonto-
logical data to evaluate the correlation between
damage types and herbivores (Carvalho et al.
2014). In two tropical forests, the diversities of
damage types and insect herbivores were
found to be correlated, reaffirming the value
of the traditional paleontological metric of
damage type diversity. However, no claim
was made as to whether the apparent special-
ization of a damage type reliably indicates
whether the damage type was produced by a
specialist herbivore.

Simple arithmetic supports the idea that spe-
cialized herbivores are responsible for many
occurrences of “generalized” damage types:
with hundreds of thousands of herbivorous
insect species and only a few hundred damage
types, no one-to-one correspondence between
insect species and damage types is possible.
For example, DT012, the most common type
at both forests studied by Carvalho et al.
(2014), was found on all 12 host plant species
examined and was caused by 50 insect species
(46 of them specialists) in one locality and 37
insect species (23 of them specialists) in the
other. All that complexity is collapsed into a
single generalist when fossil damage types are
treated as substitutes for actual herbivores.

“Trophic species” are occasionally used as
substitutes for consumer taxa in studies of
ecological networks. Dunne and colleagues
explain that trophic species are generated “by
aggregating taxa with the exact same set of pre-
dators and prey” (Dunne et al. 2014). In other
words, trophic species are “functional groups
of all organisms in a web that appear to share
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the same set of consumer and resource species”
(Memmott et al. 2000). In the context of insect
herbivory, a trophic species would be a group
of herbivore taxa, however distantly related,
that feed on the same host plant taxon in a simi-
lar manner—and share the same predators and
parasitoids. As can be seen in the preceding dis-
cussion, the aggregation into a single unit (a
damage type) of specialist herbivore taxa that
cause morphologically similar damage on dis-
parate host plant taxa violates the trophic spe-
cies concept. Moreover, various workers
disagree with the use of trophic species (Pringle
and Hutchinson 2020).

Sampling Incompleteness.—All sampling of
the fossil record is incomplete, but methods
that link particular host plants to particular
damage types are far more biased by incom-
plete sampling than are the methods that
address the diversity and intensity of insect her-
bivory. For a tally of the number of insect dam-
age types on two host plant taxa, as an
example, the more completely sampled host
could be iteratively subsampled down to the
amount of surface area or sample coverage
available for the less completely sampled host
plant (Fig. 1A). Although the subsampling pro-
cedure might cause a failure to detect a
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significant difference that would become
apparent with additional sampling, any signifi-
cant differences observed among the sub-
sampled damage type diversities are likely,
although not guaranteed, to reflect true differ-
ences. Thus, estimating damage type diversity
by subsampling two incompletely sampled
host plants is a common and uncontroversial
endeavor. We do not know which specific dam-
age types evaded detection, but we do not need
to know this in order to estimate the damage
type diversities of these two host plants when
subsampled to the same surface area or sample
coverage.

When it comes to estimating host specificity
or comparing component communities, how-
ever, the unknowable identities of unobserved
damage types are of paramount importance.
According to the criteria that have traditionally
been used to assign host-specificity scores (Wilf
and Labandeira 1999), a damage type must
occur on only three specimens in order to
receive such a score. The data are taken at
face value, and the appearance of a damage
type on three leaves is deemed adequate to
designate a damage type as specialized,
regardless of the possibility that a fourth or
fifth observation might occur on a different

Damage types

Sampling completeness

A comparison of the sampling completeness that can be expected for studies of fossil herbivory (A) with the

sampling completeness needed for methods that link host plants to damage types to be unbiased by sampling complete-
ness (B). A, Rarefaction of damage types on the two dominant host plants at the Colwell Creek Pond assemblage. The solid
lines and corresponding 84% confidence intervals represent interpolated damage type diversity, and the dashed lines with
question marks represent extrapolated diversity. B, An illustration of the sampling completeness that is needed for bipartite
network analysis not to be biased by sampling: the rarefaction curve for each host plant should have sample coverage sensu
Chao and Jost (2012) above 0.99. All rarefaction curves shown in this panel have coverage between 0.995 and 0.997.
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host and thus change the host-specificity score.
The procedures used to compare component
communities are incapable of distinguishing a
true absence of a damage type on a host plant
from the failure to detect a damage type that
was present on the host. Differentiating true
absences from failures to detect is known to
pose tremendous difficulties in both neonto-
logical (Blasco-Moreno et al. 2019) and pale-
ontological (Smith et al. 2022) studies.

Attempts to compare host specificity and
component communities across different
assemblages complicate matters even further.
As an example drawn from Permian assem-
blages of Texas for which damage type data are
available for each specimen, the amount of
broadleaf area examined from Colwell Creek
Pond (Schachat et al. 2014) is approximately 4
times that of Williamson Drive (Xu et al. 2018)
and more than 15 times that of Mitchell Creek
Flats (Schachat et al. 2015) or South Ash Pasture
(Maccracken and Labandeira 2020). There is
just no good way to compare host specificity
and component communities across these
assemblages, because subsampling Williamson
Drive and Colwell Creek Pond down to the
amount of surface area examined at Mitchell
Creek Flats and South Ash Pasture will funda-
mentally change the relationships among host
plants and their damage types. At Colwell
Creek Pond, DT014 has been observed on 2
Auritifolia waggoneri Chaney, Mamay, DiMi-
chele & Kerp, 2009 specimens and on 20 Tae-
niopteris spp. Brongniart, 1828 specimens.
DT247 has been observed on 15 A. waggoneri
specimens and 2 Taeniopteris spp. specimens.
If the data from Colwell Creek Pond are sub-
sampled to one-fifteenth of the original amount
of surface area, the specificity coding of the
damage types that are still observed at this
lower level of sampling will fundamentally
change: various damage types will appear
more specialized than they are, and in many
dimensions, the component communities of
the two dominant host plants will appear
more distinct than they are.

In the words of Bliithgen et al. (2008: p. 3387),
“rarely observed species are inevitably regarded
as ‘specialists,” irrespective of their actual
associations, leading to biased estimates of spe-
cialization.” For rarefied damage type diversity
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and for the intensity of herbivory, the results
generated at lower levels of sampling complete-
ness are simply a less precise, underpowered
version of the results generated at higher levels
of sampling completeness (Schachat et al.
2018). For component communities, however,
the results generated with less sampling are
fundamentally changed. Indeed, misleading
results when sampling is not exhaustive are
exactly what biologists found when they sub-
sampled some of the canonical datasets that
have been used to construct bipartite networks
(Morris et al. 2014: fig. 3) as part of the large
body of work that has emerged to evaluate
how incomplete sampling biases bipartite net-
work metrics (Goldwasser and Roughgarden
1997; Vazquez and Aizen 2003; Bliithgen et al.
2006, 2008; Dormann et al. 2009; Dorado et al.
2011; Gibson et al. 2011; Costa et al. 2016;
Friind et al. 2016; Jordano 2016; Kuppler et al.
2017; Maia et al. 2018; Henriksen et al. 2019).
A related pitfall of bipartite network analysis
that looms large in the neontological literature
may well be insurmountable for studies of fos-
sil herbivory: sampling evenness. Before the
construction of bipartite networks, the sam-
pling of fossil leaves for insect damage types
should be not only complete at the level of the
assemblage but should be similarly complete
across all host plants within the assemblage—
that is, sampling of all host plants under con-
sideration should be even (Gibson et al. 2011;
Doré et al. 2021). In studies of modern commu-
nities, sampling evenness can be achieved in
various ways, for example, equal amounts of
time being dedicated to hand-collecting of
insects and equal numbers of beating samples
collected for each of 10 tree species (Basset
et al. 1996) and equal amounts of surface area
sampled for each plant species (Novotny et al.
2012). However, exhaustive sampling of all
host plant taxa under consideration is a near
impossibility for studies of fossil herbivory
(Fig. 2). Most species in a given community
are rare (Diserud and Engen 2000), and many
if not most studies of fossil herbivory have
examined fewer than 1000 leaves due to a com-
bination of small numbers of specimens pre-
served in the fossil record and limited time
that investigators can invest in each study.
Therefore, in studies of fossil herbivory, most
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FiGure 2. The sampling evenness for host plants in neontological (A, B) and paleontological (C, D) datasets that can be
used to link host plants to herbivores or damage types. A, Basset et al. (1996); this maximally even sampling is represen-
tative of various other neontological studies of plant-insect networks (Novotny et al. 2002, 2004, 2012; Lundgren and Ole-
sen 2005; Olesen et al. 2008; Pinheiro et al. 2008; Gibson et al. 2011; Grass et al. 2013; Trojelsgaard et al. 2015; Oleques et al.
2019; Zemenick et al. 2021). B, Lewis et al. (2002). C, Currano et al. (2008). D, Xu et al. (2018).

plant hosts are represented by a maximum of a
few hundred leaves.

Combining the concepts of sampling com-
pleteness and evenness, Morris et al. (2014)
recommended constructing bipartite networks
for datasets in which all rarefaction curves—
in this case, damage type diversity curves for
all host plants—asymptote (Fig. 1B). Various
neontological food web studies have affirmed
and followed this recommendation (e.g.,
Smith-Ramirez et al. 2005; Burkle and Irwin
2009; Mokam et al. 2014; Kemp and Ellis
2017; Peguero et al. 2017; Arceo-Gémez et al.

https://doi.org/10.1017/pab.2022.35 Published online by Cambridge University Press

2018; Bennett et al. 2018; Maia et al. 2018).
However, this is not nearly as easily achieved
with paleontological data as with neontological
data. Whereas one might question whether it is
possible for a rarefaction curve to truly asymp-
tote, the concept of “sample coverage” sensu
Chao and Jost (2012) provides a measure of
the slope of a rarefaction curve: when the
curve has reached an asymptote, its slope
equals 0 and coverage equals 1. For our pur-
poses, sample coverage above 0.99 will be con-
sidered complete. If a paleontological dataset
with 10 or more host plants that have coverage
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above 0.99 eventually becomes available, it can
be used to evaluate whether slightly lower
amounts of coverage continue to yield reliable
results. The Appendix lists examples of host
plants that have been censused for fossil her-
bivory for which sample coverage of damage
types is above 0.99.

The requirement that all rarefaction curves
reach an asymptote is unrealistic for essentially
the entirety of the fossil record of insect herbiv-
ory as it is currently sampled. At the Willer-
shausen assemblage (Adroit et al. 2018), for
which more than 7000 angiosperm leaves
were examined, coverage for the 10 most abun-
dant host plants ranges from 0.90 to 0.99. How-
ever, at Castle Rock (Wilf et al. 2006), another of
the few assemblages with more than 2000
angiosperm leaves examined for which dam-
age type data are available for each specimen,
coverage of the top 10 host plants is much
lower, with some taxa preserving no damage
at all and the highest coverage only reaching
0.72. At the Bilina-DSH assemblage (Knor
et al. 2012), also with more than 2000 angio-
sperm leaves examined, coverage of the top
10 host plants ranges from 0.59 to 0.90. There-
fore, low sample coverage of damage types
for individual host plants is clearly not due to
lack of investigator effort; this is a characteristic
of some of the best-sampled assemblages.
Rather, low sample coverage of damage types
for individual host plants is a near-inevitability
given the vastly uneven frequencies of both
host plants and damage types in fossil assem-
blages. Even the less common host plants
must be represented by enough specimens for
their individual damage diversity rarefaction
curves to asymptote.

HARKing.—A “reproducibility crisis” in sci-
ence (O’Boyle etal. 2017; Fraser et al. 2018; Hut-
son 2018; Parker et al. 2019; Bissonette 2021;
Nelson et al. 2021; O’Dea et al. 2021) has rein-
forced the need for caution surrounding prac-
tices such as multiple comparisons and
hypothesizing after the results are known
(HARKing). When the popular R package
bipartite is used with its default settings to
study plant-herbivore interactions, the network-
level function calculates 47 bipartite network
metrics and the grouplevel function calculates
30 metrics: 15 for each host plant taxon and 15
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for each herbivore taxon (Dormann et al.
2008)—77 metrics despite few studies addres-
sing 77 distinct questions. Such a multitude of
metrics raises the risk of spurious correlations
whereby a small minority of metrics support
preconceived notions by chance.

For bipartite network studies, calculating a
single bipartite network metric per study has
been recommended to avoid “metric hacking,”
that is, the “nonmutually exclusive use of mul-
tiple network metrics that are correlated by
variables held in common (e.g., number of host
plant taxa or sampling completeness) and the
inflation of type I error rates as a result of indis-
criminate selection of network metrics, compar-
isons or hypotheses after analyses have been
conducted” (Webber et al. 2020: p. 110). This
warning echoes concerns raised more than a
decade earlier: “Network analyses of mutualis-
tic or antagonistic interactions between species
are very popular, but their biological interpre-
tations are often unclear and incautious”
(Bliitthgen 2010: p. 187). The unclear meanings
of bipartite network metrics raise the specter
of the “file drawer” problem, in which results
that are inconclusive, negative, or do not fit
with the authors’ agenda are not reported (Fra-
ser et al. 2018). The complexity of bipartite net-
works makes their analysis subject to these
risks in a way that traditional metrics of herbi-
vore damage diversity and intensity are not.
A priori decisions about which metrics are
most relevant to a given ecological question
may address this concern, but Webber et al.
(2020) note that the appropriate metric is
often unclear for any particular scenario.

Methods

Bipartite networks and several alternative
methods were evaluated using existing data,
with a focus on the Willershausen assemblage
(Adroit et al. 2018) as the angiosperm-
dominated assemblage with a complete, pub-
licly available dataset that has the highest num-
ber of leaves examined. Of the assemblages
previously examined in the context of bipartite
networks (Currano et al. 2021), Willershausen
is emphasized as a conservative test, because
it is among the few assemblages most likely to
have sufficient sampling completeness to
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quantify host specificity, component communi-
ties, and compound communities.

All analyses were performed with R v. 4.1.1
(R Development Core Team 2021). Color
schemes were generated with the packages col-
orbrewer (Neuwirth and Brewer 2014) and
scico (Pedersen and Crameri 2020). For all sub-
sampling routines, we first subsampled each
dataset to approximately half of its original
size and to progressively smaller sizes, using
round numbers when possible for the sake of
readability.

Evaluating Bipartite Network Analysis

Sensitivity of Bipartite Network Metrics to Sam-
pling Completeness—The 28 network-level
metrics previously used in fossil herbivory
studies (Currano et al. 2021: table S1; Swain
et al. 2021, 2022: table 1, appendix S4) that are
calculated with the networklevel function in the
bipartite package (Dormann et al. 2008) were
calculated for the Willershausen assemblage,
using subsampling and resampling procedures
as sensitivity analyses. Leaves that were not
identified to the genus level were removed
from the dataset. Each subsampling and resam-
pling routine was iterated 1000 times.

In the first set of routines (“complete”), the
entire cleaned Willershausen dataset was ana-
lyzed, resampled to the original number of
leaves in the cleaned dataset (7333), and sub-
sampled to 3500, 1000, 500, and 300 leaves. Fol-
lowing previous methods (Swain et al. 2022),
all host plant taxa represented by fewer than
five specimens were removed after the data
were resampled or subsampled but before
any analyses were performed.

To mirror neontological datasets (Basset et al.
1996; Lewis et al. 2002) that were recently com-
pared with fossil herbivory data (Swain et al.
2022), we employed a second set of routines
(“top 10”) that involved only the 10 host plant
taxa at Willershausen with the highest numbers
of leaves, ranging from the 948 leaves of Zelkova
ungeri Unger, 1843 (Kotlaba 1963) down to the
164 leaves of Betula maximowicziana Regel, 1868.
This top 10 dataset of 3602 leaves was resampled
to the original number of leaves and subsampled
to 1800, 1000, 500, and 300 leaves.

For the sake of comparison, we calculated
damage type diversity with coverage-based
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rarefaction (Chao and Jost 2012) for each
resampled and subsampled dataset, using the
iNEXT function in the R package iNEXT
(Hsieh et al. 2016). We rarefied damage type
diversity to the three sample coverage thresh-
olds discussed by Schachat et al. (2022): 0.7,
0.8, and 0.9.

Bipartite Network Metrics and the Potential for
HARKing.—To evaluate the possibility of “mul-
tiple network metrics that are correlated by
variables held in common”—the collinearity
among metrics noted as a major pitfall of
bipartite network analysis (Webber et al. 2020:
p- 110)—the same 28 network-level metrics dis-
cussed earlier were calculated for a series of fos-
sil assemblages deposited shortly before,
during, and after the Paleocene/Eocene ther-
mal maximum (PETM) and the early Eocene
climatic optimum (EECO) in the Bighorn
Basin and Wind River Basin. Network metrics
were calculated after subsampling the data
from each assemblage to 300 leaves, following
the procedure of Currano et al. (2021). If a sub-
sample is larger than 50% of the original data-
set, the number of possible unique samples
decreases. Therefore, subsampling to 300 leaves
and generating accurate confidence intervals
requires a sample size of at least 600 leaves.
The 10 relevant assemblages with 600 or more
leaves are Skeleton Coast and Lur’d Leaves
from the Bighorn Basin (Wilf et al. 2006);
Dead Platypus, Daiye Spa, Hubble Bubble,
the South Fork of Elk Creek, PN, and Fifteen-
mile Creek from the Bighorn Basin (Currano
et al. 2008, 2010); and the Wind River Interior
and Wind River Edge assemblages from the
Wind River Basin (Currano et al. 2019).

Evaluating Alternatives to Bipartite Network
Analysis

Beta Diversity—We evaluated the validity
and reliability of measures of abundance gradi-
ents (analogous to nestedness: when the dam-
age types observed on one host plant are a
subset of the damage types observed on
another host plant) and balanced variation in
abundance (hereafter “balanced variation”;
analogous to turnover: when non-overlapping
suites of damage types are observed on differ-
ent host plants). These are the two components
of beta diversity that explicitly account for
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differences in abundance (Baselga 2017). Our
first analysis of beta diversity focuses on the
two host plants represented by the highest
numbers of leaves at Willershausen: Z. ungeri
and Fagus sylvatica Linnaeus, 1753. We used
each subsampled and resampled dataset gener-
ated from the complete Willershausen dataset.
Our second analysis of beta diversity focuses
on Auritifolin waggoneri and Taeniopteris spp.,
the two most abundant host plants at Colwell
Creek Pond (Schachat et al. 2014). These two
host plants were analyzed at five levels of sam-
pling. They were jointly resampled to the ori-
ginal amount of surface area they comprise in
the Colwell Creek Pond dataset (23,527.89
cm?) and were subsampled to a total of
11,750, 8000, 4000, and 2000 cm?. Our third ana-
lysis of beta diversity focuses on Macroneurop-
teris scheuchzeri (Hoffmann, 1827) Cleal, Shute
& Zodrow, 1990 and foliage assigned to Sigillar-
iophyllum Grand’Eury, 1877, the two most
abundant host plants at Williamson Drive (Xu
et al. 2018). These were jointly resampled to
the original number of leaves they comprise
in the Williamson Drive dataset (1524) and
were subsampled to a total of 750, 600, 450,
and 300 leaves. Although surface area measure-
ments were taken for Williamson Drive
(Xu et al. 2018), we subsampled these data by
number of leaves, because the surface area mea-
surements for individual specimens are not
available. Each subsampling routine was iter-
ated 1000 times.

Abundance gradients and balanced vari-
ation were calculated for each subsampled
and resampled dataset using the beta.pair.abund
function in the R package betapart (Baselga
and Orme 2012). We used the coverage function
in the R package entropart with the “Chao”

estimator (Marcon and Hérault 2015) to calcu-
late sample coverage for each of the two plant
hosts in each subsampling and resampling
routine.

Host  Specificity.—The  sensitivity — of
host-specificity scores to sampling complete-
ness was evaluated with the complete and top
10 resampling and subsampling routines for
the Willershausen dataset. For each set of sam-
pling routines, we recorded the number of host
plant taxa on which we observed a randomly
selected damage type within the 99, 74™,
and 49" percentiles of prevalence (Table 1).

We performed a separate sampling proced-
ure to address the impact of absolute and rela-
tive surface area on estimates of host specificity.
For this procedure we used the data from Col-
well Creek Pond (Schachat et al. 2014), because
this assemblage contains a large amount of sur-
face area examined, and because surface area
measurements are available for each individual
specimen along with damage type data. We
sampled specimens belonging to A. waggoneri,
Taeniopteris spp., Evolsonia texana Mamay,
1989, and Supaia thinnfeldioides White, 1929,
with replacement, to a series of 51 equally
spaced surface area thresholds from 500 cm?
to 25,500 cm?. The smallest of these is approxi-
mately 2% of the total surface area, and the lar-
gest of these is approximately 100% of the total
surface area. We resampled the data to each
threshold 10,000 times, for a total of 510,000
iterations. For each iteration, we noted whether
DT032 and DT120—which are distributed
across all four of these host plant taxa—were
restricted to only one host plant, thus falsely
appearing to be specialized. If so, we noted
the number of specimens on which the damage
type had been observed.

TaLe 1. The percentiles of leaves on which damage types were observed at the Willershausen assemblage.
Complete Top 10
9gth 74 49t 9gth 74th 49t
percentile percentile percentile percentile percentile percentile

Number of leaves 721 16 6 381 22 4
Damage types DT003 DTO033, DT010, DT021, DT052, DT003 DT004, DTO008, DT052,

DT145 DT081, DT142, DT190, DT020 DTO061, DT168

DT198
Randomly selected DT003 DT033 DT081 DT003 DT004 DT168
damage type
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Rarefaction of Interactions.—The method of
Dyer et al. (2010), which measures the diversity
of interactions at an assemblage, can be im-
plemented with any algorithm that performs
rarefaction. We discuss considerations for
coverage-based rarefaction of interactions in
the Appendix.

We performed coverage-based rarefaction of
interactions on data from Williamson Drive (Xu
et al. 2018) and Colwell Creek Pond (Schachat
et al. 2014). We conducted coverage-based rar-
efaction on the original dataset, and upon itera-
tively resampling each dataset to the original
amount of surface area, and upon subsampling
each dataset to 50% and 25% of the original sur-
face area. (Surface area data were collected for
each specimen at Williamson Drive but were
not published with the damage type data.
Therefore, the surface area assigned to each
specimen was the mean value for the taxon to
which it belongs.) We rarefied each vector of
interaction counts to a sample coverage of
0.771, which is the maximum amount of cover-
age reached by all subsampled datasets.

Because the importance of sampling com-
pleteness is a major theme of this contribution,
we wished to test the extent to which rarefac-
tion of interactions is robust to incomplete sam-
pling. To understand how rarefaction of
interactions might perform on an angiosperm-
dominated dataset with complete sampling,
we simulated a vector of counts of interactions
using the base-R function rlnorm with the set-
tings meanlog=0 and sdlog=1.5. We chose this
method because we found that it yielded a dis-
tribution of interaction frequencies that closely
mirrors that seen at Willershausen. This pro-
cedure generated 3000 values, which we had to
round to whole integers, because these values
represent simulated counts. Upon removing
the values that round down to 0, we had 2046
simulated unique interactions that were
observed a total of 9597 times. These numbers
are approximately double those seen in the
Willershausen dataset, so we attributed these
simulated interactions to 15,000 leaves, because
this is approximately double the number in the
Willershausen dataset.

We examined the validity and reliability of
rarefaction of interactions in this simulated
dataset by subsampling. We subsampled the
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interactions to one-half of the original count
(4798), attributing these to one-half of the ori-
ginal number of leaves (7500). We then sub-
sampled the interactions to one-quarter of the
original count (2399), attributing these to one-
half of the original number of leaves (3750).
We rarefied each vector of subsampled inter-
action counts to a sample coverage of 0.726,
which is the maximum amount of coverage
reached by all subsampled datasets.

All rarefaction of interactions was carried out
with the estimateD function in the R package
iNEXT. All resampling and subsampling proce-
dures were iterated 1000 times.

Results and Discussion

Sensitivity of Bipartite Network Metrics to
Sampling Completeness

None of the 28 network-level metrics men-
tioned in previous studies of fossil herbivory
(Currano et al. 2021; Swain et al. 2021, 2022)
perform as unbiased estimators for the com-
plete Willershausen dataset (Fig. 3). (An
unbiased estimator is an estimator whose aver-
age value does not change in response to sam-
pling completeness.) Two simple criteria for
robustness to sampling completeness are that
the 95% confidence intervals for all subsamp-
ling routines contain the mean estimate for
the resampling routine and that the 95% confi-
dence interval for the resampling routine con-
tains the mean estimates for all subsampling
routines. Coverage-based rarefaction of dam-
age type diversity fulfills these two criteria
(Fig. 4), but not a single network metric exam-
ined here does.

When the Willershausen data are restricted
to only the 10 host plants with the highest num-
ber of leaves in the dataset (Fig. 5), 4/28 net-
work metrics fulfill these criteria and thus
perform comparably well to coverage-based
rarefaction: togetherness for damage types,
niche overlap for damage types, C score for
damage types, and nestedness.

Only one network metric, C score for dam-
age types, is among the best-performing
metrics in both the complete and top 10 ana-
lyses of the Willershausen dataset. If the C
score for damage types were found to be robust
for the majority of available fossil herbivory
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FIGUurRe3. Mean values and 95% confidence intervals for bipartite network metrics generated by resampling and subsamp-
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forms as a consistent estimator, in that estimates converge on the true value as sample size increases. No results are
presented for 300 subsampled leaves from the complete dataset at sample coverage of 0.9, because some iterations of
this sampling routine yielded an observed sample coverage below 0.9.

datasets, which are far less complete than Will-
ershausen, a key question would still need to be
answered: What does the C score tell us (Emer
et al. 2016)? The C score has been described in
the fossil herbivory literature as “the checker-
board (mutual presence/absence) nature of
the interactions” (Swain et al. 2022: p. 243)
and as “the randomness of species distribution
across an ecosystem” (Currano et al. 2021: p. 8),
but no outstanding paleontological questions
that can be addressed with such a metric have
been identified.

Apparent Robustness at Lower Sample Sizes.—
For many metrics in both the complete and
top 10 datasets, the mean estimate and the lim-
its of the confidence intervals change little for
the subsampling routines at 1000, 500, and
300 leaves. However, when the resampling rou-
tine and the subsampling routines with more
than 1000 leaves are taken into account, it is
clear that these metrics are biased by sampling
incompleteness. The misleading appearance of
a lack of bias in certain network metrics seen at
lower levels of sampling makes intuitive sense.
When a relatively large proportion of realized
interactions are unobserved because only 1000
leaves have been sampled, the additional pro-
portion of realized interactions that go unob-
served at 500 or 300 leaves will make little
difference for various metrics. These findings
and this reasoning highlight the danger of
evaluating the bias of network metrics by
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performing sensitivity analyses on smaller
datasets. Therefore, any metrics that appear
robust to subsampling routines performed on
datasets smaller than that of Willershausen
should be treated with extreme caution. For
these same reasons, methods that quantify the
extent to which bipartite network metrics are
biased by sampling incompleteness (Swain
et al. 2021) may well be unreliable, especially
when applied to incomplete datasets.
Implications for Other Assemblages.—At any
amount of sampling that is realistic for studies
of fossil herbivory, the results of bipartite net-
work analysis are biased by sampling com-
pleteness. The finding that certain metrics are
“relatively robust” (Swain et al. 2021) is an inev-
itability by chance alone given presentation of
dozens of metrics (Currano et al. 2021; Swain
et al. 2022). Even when we limit our analysis
to the 10 most abundant host plants at Willer-
shausen, the mean estimates at 300 and 500
leaves for the best-performing metrics (Swain
et al. 2021) either lie beyond (NODEF, Hy', con-
nectance, and niche overlap PH) or just barely
fall within (niche overlap DT) the 95% confi-
dence interval generated with the resampled
dataset. Estimates of these metrics at different
sampling intensities are even more discordant
for the complete Willershausen dataset.
Paleoecologists have only recently begun to
implement Bayesian methods to distinguish
true absences of interactions from failures to
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detect those interactions. In a recent contribu-
tion, the authors used a Bayesian framework
to estimate the presence or absence of drilling
predation on different molluscan species
(Smith et al. 2022). This allowed the authors
to estimate the number of zeros—that is, speci-
mens on which predation was not detected—
for which predation was truly absent. Whereas
Smith and colleagues were interested in the
true prevalence of only one type of feeding
trace (drilling predation), fossil herbivory stud-
ies often encompass a wide array of traces, as
denoted by different damage types. Thus, in
fossil herbivory studies, the implementation
of a Bayesian frame such as that used by
Smith and colleagues would require estimation
of the prevalence of a quantity of damage types
exceeding the number of specimens from
which many plant taxa are known in a given
assemblage. For example, at Willershausen, 85
damage types have been observed, and more
than 100 host plant taxa are known from only
5-85 specimens. The promise of Bayesian meth-
ods is undoubtedly great, and it is not possible
to predict the advances that will be seen over
the next few decades, but the high ratio of pos-
sible damage types to number of specimens per
host plant taxon constitutes a major challenge.

Alternatives to Bipartite Networks

Beta Diversity.—Our calculations of balanced
turnover and abundance gradients for the two
dominant host plants at Willershausen show
that these metrics are valid and reliable under
the resampling routine and under the routine
in which the dataset was subsampled to 3500
leaves (Fig. 6A). At lower levels of sampling,
the abundance gradient metric yields a similar
mean value, but with much wider confidence
intervals. The balanced variation metric becomes
less valid and reliable at lower levels of sam-
pling. Unsurprisingly, estimates of balanced
turnover and abundance gradients are most
valid and reliable when coverage is high.

Among the datasets generated by iteratively
resampling the Willershausen data and by sub-
sampling the data to 3500 leaves, coverage esti-
mates do not overlap, but estimates of balanced
turnover and abundance gradients overlap
almost perfectly (Fig. 6A). However, estimates
become much less reliable when the
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Willershausen dataset is subsampled to only
1000 leaves, and the levels of coverage for Zelk-
ova ungeri and Fagus. sylvatica fall to 0.91 and
0.86, respectively.

The Colwell Creek Pond data yield much
more valid and reliable results (Fig. 6B). This
is perhaps unsurprising, because coverage of
the second most-abundant host plant is higher
at Colwell Creek Pond than at Willershausen.
Whereas it is very rare for two host plants
within a single assemblage to have such high
sample coverage—0.990 for Auritifolin waggo-
neri and 0.989 for Taeniopteris spp.—our find-
ings suggest that valid and reliable estimates
of balanced turnover and abundance gradients
are achievable for those rare assemblages with
two host plants that are nearly completely
sampled.

The Williamson Drive data yield results that
are even more valid and reliable than those for
Colwell Creek Pond (Fig. 6C). This is a bit sur-
prising: although the most dominant host plant
at Williamson Drive, Macroneuropteris scheuch-
zeri, has sample coverage of 0.991, the second
most-dominant host plant, Sigillariophyllum
foliage, has sample coverage of only 0.948.
This is quite a bit less than that of Taeniopteris
spp. at Colwell Creek Pond, and we do not
yet have enough paleontological data to evalu-
ate the consequences of this reduced sample
coverage. For Williamson Drive, balanced vari-
ation and abundance gradients essentially per-
form as unbiased and consistent estimators to
nearly the same extent as does coverage-based
rarefaction (Fig. 4). Further analyses are needed
to determine exactly why these two metrics
perform somewhat better for the Paleozoic
data than for Willershausen—richness of dam-
age types may be a key determinant—and par-
ticularly why these metrics perform better for
Williamson Drive than for Colwell Creek Pond.

Nevertheless, it is clear that these two com-
ponents of beta diversity are a preferable alter-
native to bipartite network metrics. They are
more valid and reliable than nearly any bipart-
ite network metric that has been examined for
fossil herbivory (Currano et al. 2021; Swain
et al. 2022). Their meanings are clear, as is the
difference between them. They can be calcu-
lated for pairwise comparisons among host
plants, or can be used to generate a single
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value for an entire assemblage (Baselga and
Orme 2012; Baselga 2017), and can thus be
used whether an assemblage contains 2 or 20
host plants with nearly complete sampling.

Host Specificity.—The results of our resam-
pling and subsampling procedures demonstrate
that the traditional method for assigning
host-specificity scores is strongly biased by sam-
pling completeness: at lower levels of sampling,
the host breadth of a damage type inevitably
decreases (Fig. 7). For example, in the Colwell
Creek Pond resampling routines, we treated
each iteration in which the generalist DT032 or
DT120 damage type was restricted to only one
host plant taxon as a false positive finding of
specialization. DT032 appeared on only one
host plant taxon in 2.72% of iterations; DT120,
in 3.78%. When a finding of specialization
requires a damage type to appear on three or
more specimens, following the convention
established by Wilf and Labandeira (1999), the
false positive rate falls to 0.93% for DT032 but
remains at 3.34% for DT120.

The inadequacy of the three-specimen
threshold for designation of a damage type as
“specialized” is shown by the frequencies of
false positive results (Fig. 8). These frequencies
appear to follow lognormal distributions. For
DT032, which was observed on fewer leaves
than DT120, 6 > 1 such that the greatest propor-
tion of false positive results occur when this
damage type is observed on only one specimen.
However, for DT120, ¢ < 1 such that 4.7% of
false positive results occur when this damage
type is observed on only one specimen, 8.7%
occur when this damage type is observed on
four specimens, and 4.9% occur when this
damage type is observed on nine specimens.
Thus, the three-specimen threshold protects
against only a small fraction of false positives.

Rarefaction of Interactions.—Coverage-based
rarefaction of interactions performs as an
unbiased and consistent estimator: as sampling
completeness decreases, the mean estimate
changes negligibly while confidence intervals
widen (Fig. 9). Resampled estimates and confi-
dence intervals are often invalid for rarefaction
of interactions, because the number of single-
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tons in a resampled dataset tends not to exceed
the number of singletons in the original dataset.
The number of singletons is one of the main
determinants of estimated sample coverage;
thus, resampled datasets tend to have higher
estimated coverage than the original datasets.
This means that coverage-based rarefaction
will generate lower estimates for resampled

data than for subsampled data. This is abun-
dantly clear for rarefaction of interactions in
the simulated dataset and is also quite notable
for Williamson Drive. The estimation of confi-
dence limits from iteratively sampled data
should therefore be performed with sub-
sampled, rather than resampled, data when-
ever the mean estimate generated with
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FiGuRe 8. False positive results of “specialized” damage generated by iteratively resampling data from Colwell Creek
Pond. We treated each iteration in which DT032 or DT120 was observed on only one host plant taxon as a false positive.
The heat maps show the percentage of iterations for each amount of subsampled surface area in which a false positive result
was recovered, arranged by the number of specimens on which the damage type was observed. The histograms show the
summed percentages, by number of specimens.

https://doi.org/10.1017/pab.2022.35 Published online by Cambridge University Press


https://doi.org/10.1017/pab.2022.35

248
1000 4
] B -
2 750{ =
O 301 B Subsampled to
© 1/4 original area
o 500
QD 204 g Subsampled to
£ 1/2 original area
IS) 10 2501 B Resampled to
2 original area
14
[0} T T T — Raw data
2 Colwell  William- Simulated
[a] Creek son angiosperm
Pond Drive data
Dataset

FIGURE 9. Mean values and 95% confidence intervals for
coverage-based rarefaction of interactions. The datasets pre-
sented here are Williamson Drive and Colwell Creek Pond,
both from the Permian of Texas (rarefied to a sample cover-
age of 0.771) and a simulated dataset that mimics the pat-
terns seen among angiosperms at Willershausen (rarefied
to a sample coverage of 0.726).

resampled data is clearly invalid. The method-
ology of coverage-based rarefaction of interac-
tions is illustrated in Figure 10.

An Example of Bipartite Network Metrics and
the Potential for Metric Hacking

While it has been argued that bipartite net-
work metrics allow a more finely resolved,
“in-depth” understanding of the relationships
between host plants and damage types
(Swain et al. 2021), others argue that the mul-
tiple comparisons presented in many network

SANDRA R. SCHACHAT ET AL.

studies often contain spurious results (Webber
et al. 2020). To evaluate which of these two
views of multiple comparisons in network
studies is applicable to fossil herbivory data-
sets, we calculated bipartite network metrics
for one of the most iconic and intensely studied
series of assemblages in this discipline: Paleo-
cene and Eocene floras of the western interior
of North America (Wilf and Labandeira 1999;
Currano et al. 2008, 2010). The finding of
increased insect herbivory at the PETM is sup-
ported by quantitative measures of herbivor-
ized leaf area (Currano et al. 2016) and by
damage type diversity, whether rarefied by
number of leaves (Currano et al. 2010)—an
older practice shown to be biased by differ-
ences in leaf surface area among host plant
taxa (Schachat et al. 2018)—or rarefied by sam-
ple coverage (Schachat et al. 2022). Changes in
herbivory at the EECO have not been examined
as thoroughly (Currano et al. 2019), but the
logic about climate, nutrient availability, and
herbivory used to describe the PETM (Currano
et al. 2008, 2010) ought to apply to the EECO as
well.

When the 28 bipartite network metrics con-
sidered here are calculated for the Paleocene—
Eocene assemblages of the Bighorn Basin and
Wind River Basin (Fig. 11), none of these
metrics yield extreme values for the PETM

Colwell Creek Pond
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Ficure 10. Comparison of the raw and rarefied interaction data from Colwell Creek Pond and Williamson Drive. Each
column of each graph represents a damage type. The heat maps show the prevalence of each interaction, and the asterisks
denote interactions that remain after rarefying data from each assemblage to a sample coverage of 0.771.
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Bipartite network metrics: Paleocene-Eocene of the Bighorn & Wind River Basins
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FiGure 11.  Mean values and 95% confidence intervals for bipartite network metrics, generated by subsampling each data-
set to 300 leaves. DT, damage type; PH, plant host.
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Hubble Bubble assemblage (Currano et al.
2008) or the EECO Wind River Interior assem-
blage (Currano et al. 2019). If these metrics
are taken at face value, rather than being dis-
missed due to their susceptibility to sampling
bias, they suggest that extreme climate change
does not have a perceptible impact on plant—
insect interactions. For a variety of metrics
(interaction strength asymmetry, the C score
for host plants, connectance, togetherness,
partner diversity for damage types, generality
for damage types), it is not the assemblage
deposited during the PETM, but the assem-
blage deposited just afterward, that yields the
most extreme values. This assemblage, South
Fork of Elk Creek, was immediately noted for
having only two host plants preserved in mean-
ingful quantities (Currano et al. 2008; Currano,
2009): a peculiarity that has not been ascribed
with ecological significance (Currano et al.
2008, 2010; Currano 2009). However, this long-
known peculiarity appears to be driving tem-
poral patterns in approximately one-quarter
of bipartite network metrics. (For all other
assemblages shown in Fig. 11, the mean num-
ber of host plant taxa in each subsampling iter-
ation ranges from 4.7 to 11.9.)

Different combinations of these metrics sup-
port different narratives. Of the 28 bipartite net-
work metrics, approximately one-third suggest
that the PETM and EECO had dissimilar
impacts on the relationship between host plants
and damage types, approximately one-third
suggest that the PETM and EECO had similar
impacts, and approximately one-third yield
inconclusive results (Fig. 11, Table 2). The
PETM itself yields a variety of possible conclu-
sions. More than two-thirds of these metrics
suggest that the relationship between host
plants and damage types did not drastically
change from the very late Paleocene to the
PETM, and less than one-quarter are inconclu-
sive (Fig. 11, Table 2). The only two metrics
that suggest a drastic change in the relationship
between host plants and damage types at the
PETM—functional complementarity for host
plants and for damage types—are the two
metrics that show the greatest amount of
spread overall (Figs. 3, 5, 11). Moving from
the PETM into the Eocene, more than one-
quarter of these metrics suggest that the
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The variety of narratives about the PETM supported by different combinations of bipartite network metrics.

TABLE 2.

Metrics with inconclusive results

Metrics that suggest a drastic difference

Metrics that suggest little or no difference

Intervals being compared

togetherness DT, H2, niche overlap DT, C
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relationship between host plants and damage
types did not change from the PETM to its
immediate aftermath, more than one-third sug-
gest that this relationship did indeed change,
and more than one-quarter are inconclusive
(Fig. 11, Table 2).

The only metric that returns a more extreme
value for the PETM than for the two assem-
blages that immediately predate and postdate
it—that is, the mean value for the PETM lies
beyond the 95% confidence intervals for any
of these four other assemblages—is “number
of species, DT.” We have presented this metric
here as if it were a bipartite network metric,
because it was previously reported as such
(Currano et al. 2021; Swain et al. 2022), and
because it is calculated with the networklevel
function in the bipartite package in R (Dor-
mann et al. 2008). However, this is not truly a
bipartite network property, in that it does not
respond to the distribution of damage types
among the host plants.

Bipartite network properties fail to identify the
PETM as an anomaly. This finding necessitates a
reckoning as to whether bipartite network ana-
lysis provides additional nuance and context to
traditional metrics such as the herbivory index
and rarefied damage type diversity, or alterna-
tively, whether these metrics are too biased at
realistic sample sizes to provide results that war-
rant interpretation. If the canonical notion of
uniquely intense and diverse insect herbivory
at the PETM is erroneous, that notion should of
course be challenged. But, for the many reasons
detailed earlier, the various narratives that
emerge from bipartite network analysis that
contradict the accepted influence of the PETM
on insect herbivory are quite likely artifacts of
sampling incompleteness and unevenness.

Conclusions

The challenge of linking host plants to dam-
age types through bipartite network analysis
is threefold. First, sampling incompleteness
does not simply cause increased uncertainty,
as is the case for consistent and unbiased esti-
mators such as the herbivory index or coverage-
based rarefaction of damage type diversity;
instead, sampling incompleteness typically
leads to inaccurate, misleading results. Second,
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the wide variety of bipartite network metrics
creates many opportunities for HARKing.
Those opportunities are exacerbated by the
unclear meanings of these metrics. And third,
many damage types violate both the taxonomic
species concept and the trophic species con-
cept, depriving specialization of its ecological
meaning in this context.

No amount of sampling completeness can
remove the potential for HARKing presented
by bipartite network analysis, but our results
show that alternative methods that are insus-
ceptible to HARKing can be used to evaluate
host specificity, to compare component com-
munities, and to measure the diversity of inter-
actions at an assemblage. Rarefied interaction
richness and the components of beta diversity
are much more likely than bipartite network
metrics to perform as unbiased and consistent
estimators and do not require complete sam-
pling of damage types across all host plants at
an assemblage. Much essential information is
still lacking: the exact sample coverage required
for valid measurement of abundance gradients,
balanced variation, and the diversity of interac-
tions; as well as the surface area data required
for evaluation of host specificity, which are
unavailable for most published assemblages.
However, the first step is understanding which
analyses are meaningful and which measure-
ments are needed for those analyses to be valid.

At present, there are a number of large gaps in
our knowledge of fossil herbivory. First is the
nearly complete lack of Pennsylvanian or Juras-
sic assemblages examined for herbivory and the
lack of early to mid-Cretaceous assemblages.
Second is the general lack of assemblages exam-
ined from tropical latitudes. Third is the wide-
spread lack of surface area measurements,
which are necessary for evaluating the intensity
of herbivory (Schachat et al. 2018). Fourth is the
widespread lack of counts of the number of
times that each damage type appears on each
leaf, termed “feeding event occurrences.” These
data can be used to evaluate various hypotheses
about the causes of increased herbivory (Scha-
chat et al. 2022). In light of the limited amount
of time that paleontologists are able to spend col-
lecting fossil herbivory data, we believe that
addressing these four gaps is the most important
use of investigator effort.
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Appendix
Calculating p-Values for Host Specificity

The absolute amount of surface area exam-
ined should be taken into account when deter-
mining host specificity, because if the total
amount of surface area is very small, the appar-
ent restriction of a damage type to a particular
clade of host plants will very possibly be an arti-
fact of insufficient sampling. The relative
amount of surface area should be taken into
account, because this determines the probability
that a damage type would falsely appear to be
restricted to a particular clade of host plants.

Consider a hypothetical assemblage in which
100,000 cm? of surface area has been examined.
If DTO01 is restricted to a clade of host plants
represented by a mere 500 cm? of surface area,
and if DT001 is found on all 15 specimens
belonging to the clade at this assemblage, then
DT001 indeed appears to be specialized. This
finding is supported by the large amount of sur-
face area examined, by the moderately high
number of specimens on which DT001 has
been found, and by the small amount of relative
surface area belonging to the plant clade in ques-
tion, which confers a low probability that all
detected incidents of DT001 would be restricted
to this clade due to chance alone.

However, at Colwell Creek Pond, the host
plant Auritifolia waggoneri accounts for greater
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than 60% of the broadleaf surface area exam-
ined. Therefore, especially if the total amount
of surface area examined is low, a generalized
damage type may appear to be restricted to A.
waggoneri due to chance alone—particularly if
the damage type is observed on only a few spe-
cimens. To test the frequency with which this
sort of false positive finding of specialized her-
bivory may occur, we resampled the data from
Colwell Creek Pond for the four host plant taxa
from this assemblage that unambiguously meet
the criteria for inclusion outlined by Swain et al.
(2021): A. waggoneri (63% of total broadleaf sur-
face area), Taeniopteris spp. (28%), Evolsonia tex-
ana (9%), and Supaia thinnfeldioides (1%). Our
analysis focuses on two damage types, DT032
and DT120. Both of these damage types occur
on all four of these host plants, with distribu-
tions that approximate the amount of surface
area examined for each host plant: the majority
of incidences of each damage type are on A.
waggoneri (63%—-89%), followed by Taeniopteris
spp. (10%-25%), E. texana (1%-10%), and,
finally, S. thinnfeldioides (1%—3%).

When a damage type is observed only on one
clade of host plants at an assemblage, the sur-
face area of those host plants can be used to
test the null hypothesis that the damage type
is restricted to a certain plant clade simply by
chance. The proportion of all surface area
examined at the assemblage that belongs to
the clade in question—whether it is a genus
or species, implying specialized host specifi-
city, or a higher clade, implying intermediate
specificity—can be raised to the number of spe-
cimens on which the damage type was
observed. This process generates a p-value
that can be used to test the null hypothesis of
generalized host specificity. Consider an
example in which a damage type appears to
have an intermediate host specificity because
it occurs only on plants belonging to the same
order. If this order accounts for 40% of all sur-
face area examined at the assemblage, and if
the damage type has been observed on five spe-
cimens, the p-value for its host specificity is 0.4
=0.01024. This value is below 0.05, and thus the
damage type has been observed on enough
specimens to reject the null hypothesis of gen-
eralized host specificity. However, a correction
for multiple comparisons, such as the
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Bonferroni correction or the Benjamini-Hoch-
berg correction, should be used if this procedure
is carried out for more than one damage type.

These findings presented in our “Results and
Discussion” section suggest that the more con-
servative Bonferroni correction should be
used instead of the Benjamini-Hochberg cor-
rection when host-specificity p-values are cal-
culated for multiple damage types. Surface
area data from additional assemblages, with
as much area as Colwell Creek Pond or more,
are needed to determine whether the Benja-
mini-Hochberg correction will suffice.

Another fundamental, unresolved issue per-
taining to the assignment of host-specificity
scores is the definition of “specialized” and
“intermediate” host specialization. If a damage
type occurs on multiple genera within the same
family, is it a specialized damage type, because
it is restricted to one family, or is it an inter-
mediate damage type, because it occurs on
multiple genera? To our knowledge, this ques-
tion has never been answered, leaving each
team of authors to draw the boundaries
between specialized, intermediate, and gener-
alized host specificity wherever they please.
To our knowledge, the locations of these
boundaries are not typically articulated in pub-
lications, leading to a lack of reproducibility.
Because the majority of herbivorous insects
feed on plants belonging to a single family (For-
ister et al. 2015), we recommend that a damage
type that occurs on a single family be consid-
ered “specialized” and that a damage type
that occurs on multiple families within a single
order be considered “intermediate.”

We do not advocate assigning host-specifi-
city scores to damage types. For reasons out-
lined in the “Introduction,” specialist herbivores
can be largely or entirely responsible for a
“generalized” damage type. For reasons outlined
in the “Results and Discussion,” a “generalized”
damage type can appear to be “specialized”
due to sampling incompleteness. However,
should any research teams continue to assign
host-specificity scores, our method for generating
p-values protects against false positive findings
of specialized herbivory, and our recommended
boundaries between specialized, intermediate,
and generalized host specificity provide an
objective, reproducible, working definition.
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TasLe Al. A toy example of the input used for bipartite
network analysis. For rarefaction of interactions (Dyer et al.
2010), the input would be a vectorized version of this
matrix, which could take any of the following forms:[1502
2006001001010301],0r[1522611131],0r[6532
2111110000000000],0or[6532211111].

DT001 DT002 DT003 DT004
Plant sp. 1 1 5 0 2
Plant sp. 2 2 0 0 6
Plant sp. 3 0 0 1 0
Plant sp. 4 0 1 0 1
Plant sp. 5 0 3 0 1

Considerations for Coverage-based
Rarefaction of Interactions

The input used for bipartite network analysis
and for rarefaction of interactions is essentially
the same (Table A1). Bipartite network analysis
uses a matrix in which each row represents a
host plant, each column represents a herbivore
(or, for fossil herbivory, a damage type), and
each cell represents the number of times that a
given interaction was observed. In the example
shown in Table A1, DT001 was observed on one
specimen belonging to plant sp. 1 and DT002
was observed on five specimens belonging to
plant sp. 1. For rarefaction of interactions, the
matrix is vectorized, or transformed into a sin-
gle row. The information about particular host
plants and damage types is removed, only the
numbers of observations remain, the ordering
of these observations does not matter, and it
does not matter whether unobserved interac-
tions with a value of 0 are retained in the vector.

This vector is then used for a subsampling
procedure and can be subsampled to a thresh-
old of sample coverage, as Schachat et al.
(2022) have advocated. Whereas bipartite net-
work analysis produces misleading results
with incomplete sampling by treating rare,
undetected interactions as true absences, rar-
efaction of interactions subsamples the
observed interactions such that the rare,
undetected interactions are removed from the
dataset and thus cannot bias the results. Once
the dataset for an assemblage reaches the cover-
age threshold to which all assemblages are sub-
sampled, additional sampling completeness—
revisiting an assemblage that already reaches a
sample coverage of 0.9 and collecting additional
data until sample coverage reaches 0.95—will
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not change the results on average, in contrast to
bipartite network analysis. This is because the
progression of an unbiased sampling routine
will lead to additional observations of common
interactions while allowing the observation of
new, rare interactions.

In a typical rarefaction analysis in the context
of fossil herbivory, the input is a vector that con-
tains the number of specimens upon which each
damage type has been observed. For example, if
DTO001 and DT002 have each been observed on
three specimens and DT003 has been observed
on one specimen, the input vector would take
the form of [3 3 1]. To rarefy the interactions
rather than the damage type incidences in this
toy example, if DT001 was observed on three
specimens belonging to the same plant host
and DT002 was observed on two different
plant hosts, the input vector would take the
form of [3 2 1 1]: the second “3” in the original
vector, corresponding to DT002, has been split
into a “2”, representing two incidences of this
damage type on one plant host, and a “1”, repre-
senting an incidence of this same damage type
on a different plant host.

There is a computational issue with increasing
thenumber of values in an input vector that equal
1: this reduces sample coverage (Good 1953).
Because scaling rarefaction curves by the number
of leaves examined is an inadequate substitute
for scaling by the amount of surface area exam-
ined (Schachat et al. 2018), coverage-based rar-
efaction is the only appropriate method for
comparing assemblages that lack measurements
of surface area. But the sampling completeness
that is needed to rarefy damage type diversity
(Schachat etal. 2022) will far fall short of the sam-
pling completeness needed to rarefy the diversity
of interactions. For example, when we iteratively
subsampled the Willershausen dataset to 1000
leaves, sample coverage was as low as 0.599—a
level at which comparisons will be grossly under-
powered, as discussed by Schachat et al. (2022).
Therefore, we evaluated rarefaction of interac-
tions with a simulated dataset.

Host Plants with Sample Coverage above 0.99

The following is a nonexhaustive list of host
plants censused for fossil herbivory, for which
sample coverage is above 0.99. Zelkova ungeri
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from Willershausen (Adroit et al. 2018); Macgini-
tiea gracilis Lesquereux, 1872 (Wolfe and Wehr
1987) from PN (Currano etal. 2010); Heidiphyllum
elongatum Morris, 1845 (Retallack 1981) from
Aasvoélberg 311 (Labandeira etal. 2018); Spheno-
baiera schenckii Feistmantel, 1886 (Florin 1936)
from Birds River 111 (Labandeira et al. 2018); Pla-
tanus raynoldsii Newberry, 1868 from Mexican
Hat (Wilf et al. 2006; Donovan et al. 2014); Macro-
neuropteris scheuchzeri from Williamson Drive
(Xu et al. 2018); A. waggoneri from Colwell
Creek Pond (Schachat et al. 2014); Quercus sp.
Linnaeus, 1753 from Longmen (Su et al. 2015).

When coverage equals 1, this is typically mis-
leading, as it most likely signifies that either no
damage has been found on the host plant taxon
in question (the coverage function in the entro-
part package calculates coverage of 1 when
there is no damage) or that the sample size is
much too small, which can spuriously lead to
no singleton damage types. For example, Faba-
ceae sp. WWO042 at the PN assemblage (Currano
et al. 2010) is represented by 16 leaves. Three
damage types are observed: DT002 is on two
leaves, DT012 is on six leaves, and DT032 is on
two leaves. Coverage equals 1. However, if the
number of leaves with DT002 is experimentally
reduced from two to one, coverage falls from 1
to 0.9111. The only host plant we are aware of
for which coverage of 1 is not a spurious artifact
is Quercus sp. from Longmen (Su et al. 2015).
Twelve damage types were found on the 1027
leaves examined. All damage types were
found on at least five leaves. If the number of
leaf specimens with DT045 is experimentally
reduced from five to four, coverage remains at
1. This suggests a rule of thumb for determining
whether a high coverage estimate is an artifact: if
coverage remains above 0.99 after one leaf speci-
men with the rarest non-singleton damage type
is experimentally removed from the dataset, the
coverage estimate is indeed robust. Notably,
when we subsampled the Willershausen dataset
to at least 1000 leaves and iterated this procedure
10,000 times, coverage never exceeded 0.9972. It
therefore appears that all coverage estimates that
equal 1 would become slightly lower—if not far
lower—with additional sampling. Thus, a cover-
age estimate of 0.995 is a stronger indicator of
complete sampling than is a coverage estimate
of 1.
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