TENSOR PRODUCTS OF FUNDAMENTAL REPRESENTATIONS

GEORGE KEMPF AND LINDA NESS

Let G be a reductive group over a field of characteristic zero. Fix a Borel subgroup B of G which contains a maximal torus T. For each dominant weight X we have an irreducible representation $V(X)$ of G with highest weight X. For two dominant representation X_{1} and X_{2} we have a decomposition

$$
V\left(X_{1}\right) \otimes V\left(X_{2}\right)=\oplus m_{\psi} V(\psi) .
$$

This decomposition is determined by the element

$$
r\left(X_{1}, X_{2}\right) \equiv \sum m_{\psi} \cdot \psi
$$

of the group ring of the group of characters of T.
The objective of this paper is to compute $r\left(X_{1}, X_{2}\right)$ for all pairs X_{1} and X_{2} of fundamental weights. This will be used to compute the equations for cones over homogeneous spaces. This problem immediately reduces to the case when G has simple type; $A_{n}, B_{n}, C_{n}, D_{n}, E_{6}, E_{7}, E_{8}, F_{4}$ and G_{2}. We will give complete details for the classical types. For the case A_{n} we will work with $G L_{n}$. Here the result may be easily deduced by the well known Hardy-Littlewood formula but the casual reader may get the general idea of our proof from this simplest case. We do not know when a generalization of Littlewood-Richardson to the other classical groups will be available, but my results show that the situation is much more complicated than the general linear case.

1. Statement of the results for classical groups. Let $\left(t_{1}, \ldots, t_{n}\right)$ be the diagonal $n \times n$ matrix with given coefficients. These elements form a maximal torus T of $G L(n)$. Let

$$
d_{i}=\prod_{1 \leqq j \leqq i} t_{j}
$$

be characters of T. Then d_{1}, \ldots, d_{n-1} are fundamental weights for $G L_{n}$. Let $r_{n}\left(d_{i}, d_{j}\right)$ be $r\left(d_{i}, d_{j}\right)$ for $G L(n)$. Then

[^0]Theorem $(G L(n))$. If $0 \leqq i \leqq j \leqq n$, then

$$
r_{n}\left(d_{i}, d_{j}\right)=\sum_{0 \leqq r \leqq i} d_{r} d_{j+i-r}
$$

where $d_{*} \equiv 0$, if $*>n$.
Let $\left(t_{1}, \ldots, t_{n}, t_{1}^{-1}, \ldots, t_{1}^{-1}\right)$ be the diagonal $2 n \times 2 n$ matrix with given coefficients. These elements form a maximal torus T of $S p(2 n)$. Let

$$
d_{i}=\prod_{1 \leqq j \leqq i} t_{j}
$$

be characters of T. Then d_{1}, \ldots, d_{n} are fundamental weights for $S p(2 n)$. Let $r_{n}\left(d_{i}, d_{j}\right)$ be $r\left(d_{i}, d_{j}\right)$ for $S p(2 n)$. Then

Theorem $(S p(2 n))$. If $0 \leqq i \leqq j \leqq n$, then

$$
r_{n}\left(d_{i}, d_{j}\right)=\sum_{0 \leqq s \leqq i} \sum_{0 \leqq r \leqq i-s} d_{r} d_{j+i-r-2 s}
$$

where $d_{*} \equiv 0$ if $*>n$.
Let $\left(t_{1}, \ldots, t_{n}, 1, t_{n}^{-1}, \ldots, t_{1}^{-1}\right)$ be the diagonal $(2 n+1) \times(2 n+1)$ matrix with given coefficients. These elements form a maximal torus \widetilde{T} of $\mathcal{O}(2 n+1)$. Let

$$
d_{i}=\prod_{1 \leqq j \leqq i} t_{j}
$$

be character of \widetilde{T}. Let T be the inverse image of \widetilde{T} in the universal covering group G of $\mathcal{O}(2 n+1)$. Let spin_{n} be the character $d_{n}^{1 / 2}$ of T. Then d_{1}, \ldots, d_{n-1} and spin_{n} are the fundamental weights of G. Let

$$
r_{n}\left(d_{i}, d_{j}\right)\left(r_{n}\left(d_{i}, \operatorname{spin}_{n}\right), r_{n}\left(\operatorname{spin}_{n}, \operatorname{spin}_{n}\right)\right)
$$

be

$$
r\left(d_{i}, d_{j}\right)\left(r\left(d_{i}, \operatorname{spin}_{n}\right), r\left(\operatorname{spin}_{n}, \operatorname{spin}_{n}\right)\right)
$$

for G.
Theorem $(0(2 n+1))$. (a) If $0 \leqq i \leqq j \leqq n$, then

$$
r_{n}\left(d_{i}, d_{j}\right)=\sum_{0 \leqq s \leqq i} \sum_{0 \leqq r \leqq i-s} d_{r} d_{\{j+i-r-2 s\}_{n}}
$$

where

$$
\{x\}_{n}=x \text { if } x \leqq n
$$

and

$$
\{x\}_{n}=2 n+1-x \text { if } x>n .
$$

(b) $\quad r_{n}\left(d_{i}, \operatorname{spin}_{n}\right)=\sum_{0 \leqq s \leqq i} d_{s} \operatorname{spin}_{n}$
(c) $\quad r_{n}\left(\operatorname{spin}_{n}, \operatorname{spin}_{n}\right)=\sum_{0 \leqq s \leqq n} d_{s}$.

Let $\left(t_{1}, \ldots, t_{n}, t_{n}^{-1}, \ldots, t_{1}^{-1}\right)$ be the diagonal $2 n \times 2 n$ matrix with given coefficients. These elements form a maximal torus \widetilde{T} of $\mathcal{O}(2 n)$. Let

$$
d_{i}=\prod_{1 \leqq j \leqq i} t_{j} \quad \text { if } 0 \leqq i \leqq n-1
$$

and let $d_{n}^{\epsilon}=d_{n-1} t_{n}^{\epsilon_{1}}$ where $\epsilon=+$ or - . Let T be the inverse image of \widetilde{T} in the universal covering group G of $\mathcal{O}(2 n)$. Let

$$
\operatorname{spin}_{n}^{\epsilon}=\left(d_{n}^{\epsilon}\right)^{1 / 2}
$$

be a character of T. Then d_{1}, \ldots, d_{n-2}, spin $_{n}^{+}, \operatorname{spin}_{n}^{-}$are the fundamental weights of G and

$$
\operatorname{spin}_{n}^{+} \operatorname{spin}_{n}^{-}=d_{n-1} .
$$

Let

$$
r_{n}\left(d_{i}, d_{j}\right)\left(r_{n}\left(d_{i}, \operatorname{spin}_{n}^{\epsilon}\right), r_{n}\left(\operatorname{spin}_{n}^{\epsilon_{1}}, \operatorname{spin}_{n}^{\epsilon_{2}}\right)\right)
$$

be $r\left(d_{i}, d_{j}\right)$ (etc.) for G.
Theorem $(\mathcal{O}(2 n))$. (a) If $0 \leqq i \leqq j \leqq n-1$, then

$$
r_{n}\left(d_{i}, d_{j}\right)=\sum_{0 \leqq s \leqq i} \sum_{0 \leqq r \leqq i-s}^{\prime} d_{r} d_{[i+j-r-2 s]_{n}}
$$

where $[x]_{n}=x$ if $x \leqq n$ and $[x]_{n}=2 n-x$ if $x>n$ and the prime means replace the term $d_{r} d_{n}$ by $\left(d_{r} d_{n}^{+}+d_{r} d_{n}^{-}\right)$.
(b) If $0 \leqq i \leqq n-1$, then

$$
r_{n}\left(d_{i}, d_{n}^{\epsilon}\right)=\sum_{0 \leqq s \leqq i} \sum_{0 \leqq r \leqq i-s}\left(\delta_{i+n-r-2 s}^{n}\right) d_{r} d_{i+n-r-2 s}
$$

where the ϵ means $d_{n} \equiv d_{n}^{\epsilon}$ and $\delta_{*}^{n}=1$ if $* \leqq n$ and 0 if $*>n$.
(c) $\quad r_{n}\left(d_{n}^{\epsilon}, d_{n}^{-\epsilon}\right)=\sum_{\substack{0 \leqq p \leqq q \leqq n-1 \\ p \equiv q \equiv n-1((2))}} d_{p} d_{q}$
(d) $\quad r_{n}\left(d_{n}^{\epsilon}, d_{n}^{\epsilon}\right)=\sum_{\substack{0 \leqq p \leqq q \leqq n \\ p \equiv q \equiv n(2))}} d_{p} d_{q}$
where $d_{n}=d_{n}^{\epsilon}$.
(e) If $0 \leqq i \leqq n-1$ then

$$
r_{n}\left(d_{i}, \operatorname{spin}_{n}^{\epsilon}\right)=\sum_{0 \leqq s \leqq i} d_{i-s} \operatorname{spin}_{n}^{\delta_{s}(\epsilon)}
$$

where $\delta_{s}(\epsilon)=\epsilon$ if s is even and $=-\epsilon$ if s is odd.
(f) $\quad r_{n}\left(\operatorname{spin}_{n}^{\epsilon}, \operatorname{spin}_{n}^{-\epsilon}\right)=d_{n-1}+\sum_{1 \leqq x \leqq((n-1) / 2)} d_{n-1-2 x}$.
(g) $\quad r_{n}\left(\operatorname{spin}_{n}^{\epsilon}, \operatorname{spin}_{n}^{\epsilon}\right)=d_{n}^{\epsilon}+\sum_{1 \leqq x \leqq(n / 2)} d_{n-2 x}$.
2. The proof for $G L_{n}$. We will proceed by induction on n. We embed $G L_{n-1}$ in the upper left-hand part of $G L_{n}$. We will use the notation of [1] except that $\chi(\psi)=\boldsymbol{\epsilon} \cdot \psi^{\prime}$ where the previous notation was $\chi(\psi)=\boldsymbol{\epsilon} \cdot V\left(\psi^{\prime}\right)$. By the main result of [1] we have

$$
r_{n}\left(\psi_{1}, \psi_{2}\right)=\chi \circ M \circ L\left(\psi_{1}(t) \cdot \psi_{2}(s)\right)
$$

where L is a definite linear operator from the group ring of two copies of the weights to itself and M is the linear operator such that

$$
M\left(\psi_{1}(t) \cdot \psi_{2}(s)\right)=\psi_{1} \cdot \psi_{2}
$$

Now let ' denote the analogous operations for $G L_{n-1}$. Then $\chi \cdot \chi^{\prime}=\chi$ and $L=L^{\prime} \circ H$ where H is the product

$$
L_{(n, n-1)} \circ \ldots \circ L_{(n, 1)}
$$

Thus

$$
r_{n}\left(\psi_{1}, \psi_{2}\right)=\chi \circ \chi^{\prime} \circ M \circ L^{\prime} \circ H\left(\psi_{1}(t) \psi_{2}(s)\right) .
$$

Hence
(A) $\quad r_{n}\left(\psi_{1}, \psi_{2}\right)=\sum c_{k} \chi\left(r_{n-1}\left(\epsilon_{k}, \eta_{k}\right)\right)$
where

$$
H\left(\psi_{1}(t) \psi_{2}(s)\right)=\sum c_{k} \epsilon_{k}(t) \psi_{k}(s)
$$

This formula may be derived directly from the fibering argument mentioned in [2]. We will use formula (A) for our induction on n.

The representations with weight d_{0} or $d_{n}=$ det are one dimensional. Therefore

$$
r_{n}\left(d_{*}, \psi\right)=\psi \cdot d_{*} \quad \text { if } *=0 \text { or } n
$$

As $d_{i}=0$ if $i>n$, our formulas are true when $i=0$ or n or $j=0$ or n. In particular the formulas are true for $G L_{1}$. Thus by induction we may assume $n>1$ and the formulas are true when $n=n-1$. For any $1 \leqq i \leqq n-1$ by the formula for H we have

$$
H\left(d_{i}(t) \psi(s)\right)=d_{i}(t) \psi(s)+d_{i-1}(t) \psi(s) s_{n}
$$

Now let $i \leqq j \leqq n-1$. Then by induction

$$
\begin{aligned}
& r_{n-1}\left(d_{i}, d_{j}\right)=\sum_{\substack{0 \leqq r \leqq i \\
i+j-r \leqq n-1}} d_{r} d_{i+j-r} \text { and } \\
& r_{n-1}\left(d_{i-1}, d_{j} t_{n}\right)=\sum_{\substack{0 \leqq r \leqq i-1 \\
i-1+j-r \leqq n-1}} d_{r} d_{i-1+j-r} t_{n} .
\end{aligned}
$$

Here

$$
\begin{aligned}
& \chi\left(r_{n-1}\left(d_{i}, d_{j}\right)\right)=r_{n-1}\left(d_{i}, d_{j}\right) \quad \text { and } \\
& \chi\left(r_{n-1}\left(d_{i}, d_{j} t_{n}\right)\right)=d_{i+j-n} d_{n}
\end{aligned}
$$

if $i+j \geqq n$ and is zero otherwise as the terms of $r_{n-1}\left(d_{i-1}, d_{j} t_{n}\right)$ are singular except when $i-1+j-r=n-1$. Therefore by (A)

$$
r_{n}\left(d_{i}, d_{j}\right)=\sum_{\substack{0 \leqq r \leqq i \\ i+j-r \leqq n-1}} d_{r} d_{i+j-r}+\epsilon d_{r} d_{i+j-r}
$$

where $\epsilon=0$ if $i+j<n$ and 1 if $i+j-r=n$. Hence

$$
r_{n}\left(d_{i}, d_{j}\right)=\sum_{\substack{0 \leqq r \leqq i \\ i+j-r \leqq n}} d_{r} d_{i+j-r}
$$

and our theorem is true for $G L_{n}$.
3. The proof for $S p(2 n)$. Here we do the same type of calculation but the notations are from [2]. L, H and χ have different meanings. In fact

$$
H=L_{(1,2 n-1)} \circ \ldots \circ L_{(1,1)}
$$

and we regard $S p(2(n-1))$ are contained in the center square of $S p(2 n)$. Then we still have the inductive formula A with the new H and χ. We assume that $0 \leqq i \leqq j \leqq n$. Again the case $i=0$ is trivial. So assume $i>0$. If $n=1$, then $S p(2)=S L(2)$ and the formula follows from the $G L(2)$ case. Assume that $n>1$. If $i=1, H\left(d_{i}, \psi\right)$ is

$$
d_{i}(t) \psi(s)+d_{i-1}(t) \psi(s) s_{1}^{-1}+d_{i+1}(t) \psi(s) s_{1}^{-1}
$$

If $i>1$ it is

$$
d_{i}(t) \psi(s)+d_{i-1}(t) \psi(s) s_{1}^{-1}+d_{i+1}(t) \psi(s) s_{1}^{-1}+d_{i}(t) \psi(s) s_{1}^{-2}
$$

Now when we do the induction we will have to remember that d_{*} gives the character d_{*-1} on $\operatorname{Sp}(2(n-1))$. We will assume that $n>1$ and the formulas are true for $n=n-1$. Then formula A becomes
$\left(\mathrm{A}^{\prime}\right)$ if $i=1$ then

$$
\begin{aligned}
r_{n}\left(d_{i}, d_{j}\right) & =\chi\left(r_{n-1}\left(d_{i}, d_{j}\right)\right)+\chi\left(r_{n-1}\left(d_{i-1}, d_{j} t_{1}^{-1}\right)\right) \\
& +\chi\left(r_{n-1}\left(d_{i+1}, d_{j} t_{1}^{-1}\right)\right)
\end{aligned}
$$

and if $i>1$ we need to add $\chi\left(r_{n-1}\left(d_{i}, d_{j} t_{1}^{-2}\right)\right)$.
First we will need to compute some Euler characteristics. If $1 \leqq i \leqq$ $j \leqq n$ then

$$
\chi\left(d_{i} d_{j}\right)=d_{i} d_{j}
$$

Also $\chi\left(d_{i} d_{j} t_{1}^{-1}\right)=0$ unless $i=1$ in which case it equals $d_{0} d_{j}$. Next

$$
\chi\left(d_{i} d_{j} t_{1}^{-2}\right)=0
$$

unless $i=2$ in which case it equals $-d_{0} d_{j}$ or $i=j=1$ where it equals $d_{0} d_{0}$. Further

$$
\chi\left(d_{0} d_{j} t_{1}^{-1}\right)=0
$$

unless $j=1$ in which case it equals $d_{0} d_{0}$.
The main term in the formulas is $\chi\left(r_{n-1}\left(d_{i}, d_{j}\right)\right)$. It equals

$$
\chi\left(\sum_{0 \leqq s \leqq i-1} \sum_{0 \leqq r \leqq i-1-s} d_{r+1} d_{(i-1)+(j-1)+1-r-2 s}\right)
$$

by induction. Therefore

$$
\begin{equation*}
\chi\left(r_{n-1}\left(d_{i}, d_{j}\right)\right)=\sum_{0 \leqq s \leqq i-1} \sum_{1 \leqq r \leqq i-s} d_{r} d_{i+j-r-2 s} \tag{1}
\end{equation*}
$$

By the same reasoning and the χ formula

$$
\begin{equation*}
\chi\left(r_{n-1}\left(d_{i}, d_{j} t_{1}^{-2}\right)\right)=-\sum_{0 \leqq s \leqq i-2} d_{0} d_{i+j-2-2 s}+\epsilon d_{0} d_{0} \tag{2}
\end{equation*}
$$

where $\epsilon=0$ if $i<j$ and equals 1 otherwise.
If $i>1$ then

$$
\begin{align*}
& \chi\left(r_{n-1}\left(d_{i-1}, d_{j} t_{1}^{-1}\right)\right) \tag{3}\\
& =\chi\left(\sum_{0 \leqq s \leqq i-2} \sum_{0 \leqq r \leqq i-2-s} d_{r+1} d_{(i-2)+(j-1)+1-r-2 s} t_{1}^{-1}\right) \\
& =\sum_{0 \leqq s \leqq i-2} d_{0} d_{i+j-2-2 s} .
\end{align*}
$$

If $i=1$ then

$$
\chi\left(r_{n-1}\left(d_{i-1}, d_{j} t_{1}^{-1}\right)\right)=\chi\left(d_{0} d_{j} t_{1}^{-1}\right)=\epsilon d_{0} d_{0}
$$

If $i+1 \leqq j$ then

$$
\begin{aligned}
& \chi\left(r_{n-1}\left(d_{i+1}, d_{j} t_{1}^{-1}\right)\right) \\
& =\chi\left(\sum_{0 \leqq s \leqq i} \sum_{0 \leqq r \leqq i-s} d_{r+1} d_{i+(j-1)+1-r-2 s} t_{1}^{-1}\right) \\
& =\sum_{0 \leqq s \leqq i} d_{0} d_{i+j-2 s} .
\end{aligned}
$$

If $i=j$ then

$$
\begin{aligned}
& \chi\left(r_{n-1}\left(d_{i+1}, d_{j} t_{1}^{-1}\right)\right) \\
& =\chi\left(\sum_{0 \leqq s \leqq j-1} \sum_{0 \leqq r \leqq j-1-s} d_{r+1} d_{(j-1)+i+1-r-2 s} t_{1}^{-1}\right) \\
& =\sum_{0 \leqq s \leqq i-1} d_{0} d_{i+j-2 s} .
\end{aligned}
$$

Thus in any case

$$
\begin{equation*}
\chi\left(r_{n-1}\left(d_{i+1}, d_{j} t_{1}^{-1}\right)\right)=\sum_{0 \leqq s \leqq i} d_{0} d_{i+j-2 s}-\epsilon d_{0} d_{0} \tag{4}
\end{equation*}
$$

To prove our formula we have three cases; $i=1=j=1 ; i=1$ and $j>1 ; i>1$. In the first case we get the answer

$$
\begin{aligned}
& d_{1} d_{1}+d_{0} d_{0}+d_{0} d_{0}+d_{0} d_{2}-d_{0} d_{0} \\
& =\sum_{0 \leqq s \leqq 1} \sum_{0 \leqq r \leqq 1-s} d_{r} d_{2-r-2 s} .
\end{aligned}
$$

In the second case we get the answer

$$
\begin{aligned}
& d_{1} \cdot d_{1+j-1}+d_{0} d_{1+j}+d_{0} d_{1+j-2} \\
& =\sum_{0 \leqq s \leqq 1} \sum_{0 \leqq r \leqq 1-s} d_{r} d_{1+j-r-2 s} .
\end{aligned}
$$

In the last case we get the answer

$$
\begin{aligned}
& \sum_{0 \leqq s \leqq i-1} \sum_{1 \leqq r \leqq i-s} d_{r} d_{i+j-r-2 s}+\epsilon d_{0} d_{0} \\
- & \sum_{0 \leqq s \leqq i-2} d_{0} d_{i+j-2-2 s}+\sum_{0 \leqq s \leqq i-2} d_{0} d_{i+j-2-2 s} \\
+ & \sum_{0 \leqq s \leqq i} d_{0} d_{i+j-2 s}-\epsilon d_{0} d_{0} \\
= & \sum_{0 \leqq s \leqq i} \sum_{0 \leqq r \leqq i-s} d_{r} d_{i+j-r-2 s} .
\end{aligned}
$$

Thus the formula is true.
4. The proof for $\mathcal{O}(1+2 n)$. We proceed by induction on n. If $n=1$ then $\mathcal{O}(3)$ is the projective group $P G L(1)$ and its double cover is $S L(2)$. Then spin is the fundamental weight of $S L(2)$ and d_{1} is its square. The formulas are in this case

$$
\begin{aligned}
& \begin{aligned}
r_{1}\left(d_{1}, d_{1}\right) & =d_{0} d_{\{2\}_{1}}+d_{1} d_{\{1\}_{1}}+d_{0} d_{\{0\}_{1}} \\
& =d_{0} d_{1}+d_{1} d_{1}+d_{0} d_{0}, r_{n}\left(d_{1}, \text { spin }\right) \\
& =d_{0} \operatorname{spin}_{1}+d_{1} \operatorname{spin}_{1} \text { and }
\end{aligned} \\
& r_{1}\left(\operatorname{spin}_{1},\right. \\
& \left.\operatorname{spin}_{1}\right)=d_{0}+d_{1} .
\end{aligned}
$$

These formulas are easily proved by many methods including ours.
We will assume that $n>1$ and embed $\mathcal{O}(1+2(n-1))$ in the center square of $\mathcal{O}(1+2 n)$. When we do this d_{*} corresponds to d_{*-1} in $\mathcal{O}(1+2(n-1))$ and we use the identity $\{x\}_{n}=\{x-1\}_{n-1}+1$ repeatedly without mention. Also spin_{n} corresponds to $\operatorname{spin}_{n-1}$. The operator χ differs a little bit from the last example but it has the same form but. $L_{(n, 1)}$ now has a different meaning [see 2]. We will prove the formulas by induction on n.

First we will do the formulas involving spin_{n}. For any character ψ we have

$$
H\left(\operatorname{spin}_{n}(t) \psi(s)\right)=\operatorname{spin}_{n}(t) \cdot \psi(s)+\operatorname{spin}_{n}(t) \cdot \psi(s) s_{1}^{-1} .
$$

Therefore

$$
r_{n}\left(\operatorname{spin}_{n}, \psi\right)=\chi\left(r_{n-1}\left(\operatorname{spin}_{n}, \psi\right)\right)+\chi\left(r_{n-1}\left(\operatorname{spin}_{n}, t_{1}^{-1}\right)\right.
$$

In particular

$$
r_{n}\left(\operatorname{spin}_{n}, d_{i}\right)=r_{n-1}\left(\operatorname{spin}_{n}, d_{i}\right)+\chi\left(r_{n-1}\left(\operatorname{spin}_{n}, d_{i}\right) t_{1}^{-1}\right) .
$$

By induction

$$
r_{n-1}\left(\operatorname{spin}_{n}, d_{i}\right)=\sum_{0 \leqq s \leqq i-1} d_{s+1} \operatorname{spin}_{n} .
$$

Hence

$$
\chi\left(r_{n-1}\left(\operatorname{spin}_{n}, d_{i}\right) t_{1}^{-1}\right)=d_{0} \operatorname{spin}_{n}
$$

and hence the formula (b) is true. For (c) we have

$$
r_{n}\left(\operatorname{spin}_{n}, \operatorname{spin}_{n}\right)=r_{n-1}\left(\operatorname{spin}_{n}, \operatorname{spin}_{n}\right)+\chi\left(r_{n-1}\left(\operatorname{spin}_{n}, \operatorname{spin}_{n}\right) t_{1}^{-1}\right)
$$

where

$$
r_{n-1}\left(\operatorname{spin}_{n}, \operatorname{spin}_{n}\right)=\sum_{0 \leqq s \leqq n-1} d_{s+1} .
$$

As

$$
\chi\left(r_{n-1}\left(\operatorname{spin}_{n}, \operatorname{spin}_{n}\right) t_{1}^{-1}\right)=d_{0}
$$

the formula (c) is true.
It remains to prove (a). If $1 \leqq i \leqq j$ and $i<n$ then the same argument as in Section 3 applies. One simply replaces $d_{k} d_{l}$ by $d_{k} d_{\{l\}_{n}}$.

Thus we need only compute $r_{n}\left(d_{n}, d_{n}\right)$. First of all

$$
\begin{aligned}
H\left(d_{n}(t) d_{n}(s)\right) & =d_{n}(t) d_{n}(s)+d_{n}(t) d_{n}(s) s_{1}^{-1} \\
& +d_{n}(t) d_{n}(s) s_{1}^{-2}+d_{n-1}(t) d_{n}(s) s_{1}^{-1}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
r_{n}\left(d_{n}, d_{n}\right) & =\chi\left(r_{n-1}\left(d_{n}, d_{n}\right)\right)+\chi\left(r_{n-1}\left(d_{n}, d_{n}\right) t_{1}^{-1}\right) \\
& +\chi\left(r_{n-1}\left(d_{n}, d_{n}\right)\left(t_{1}^{-2}\right)+\chi\left(r_{n-1}\left(d_{n-1}, d_{n} t_{1}^{-1}\right)\right)\right.
\end{aligned}
$$

Now

$$
\begin{aligned}
\chi\left(r_{n-1}\left(d_{n}, d_{n}\right)\right) & =r_{n-1}\left(d_{n}, d_{n}\right) \\
& =\sum_{0 \leqq s \leqq n-1} \sum_{0 \leqq r \leqq n-1-s} d_{r+1} d_{\{2 n-1-r-2 s\}_{n}} \\
& =\sum_{0 \leqq s \leqq n-1} \sum_{1 \leqq r \leqq n-s} d_{r} d_{\{2 n-r-2 s\}_{n}} .
\end{aligned}
$$

Next

$$
\begin{aligned}
\chi\left(r_{n-1}\left(d_{n}, d_{n}\right) t_{1}^{-1}\right) & =\sum_{0 \leqq s \leqq n-1} d_{0} d_{\{2 n-1-2 s\}_{n}} \\
& =\sum_{0 \leqq s \leqq n-1} d_{0} d_{\{2 n-2 s\}_{n}} .
\end{aligned}
$$

The last equations follow from direct calculation of $\{*\}_{n}$. Also

$$
\chi\left(r_{n-1}\left(d_{n}, d_{n}\right) t_{1}^{-2}\right)=\sum_{0 \leqq s \leqq n-2} d_{0} d_{\{2 n-2-2 s\}_{n}}+d_{0} d_{0} .
$$

Lastly

$$
r_{n-1}\left(d_{n-1}, d_{n}\right)=\sum_{0 \leqq s \leqq n-2} \sum_{0 \leqq r \leqq n+2-s} d_{r+1} d_{\{2 n-2-r-2 s\}_{n}} .
$$

So

$$
\chi\left(r_{n-1}\left(d_{n-1}, d_{n}\right)\right)=\sum_{0 \leqq s \leqq n-2} d_{0} d_{\{2 n-2-2 s\}_{n}} .
$$

Therefore combining all equations

$$
\begin{aligned}
& r_{n}\left(d_{n}, d_{n}\right) \\
& =\sum_{0 \leqq s \leqq n-1} \sum_{1 \leqq r \leqq n-s} d_{r} d_{\{2 n-r-2 s\}_{n}} \\
& +\sum_{0 \leqq s \leqq n-1} d_{0} d_{\{2 n-2 s\}_{n}}+d_{0} d_{0}-\sum_{0 \leqq s \leqq n-2} d_{0} d_{\{2 n-2-2 s\}_{n}} \\
& +\sum_{0 \leqq s \leqq n-2} d_{0} d_{\{2 n-2-2 s\}_{n}}=\sum_{0 \leqq s \leqq n} \sum_{0 \leqq r \leqq n-s} d_{r} d_{\{2 n-r-2 s\}_{n}} ;
\end{aligned}
$$

i.e., (a) is true.
5. The proof for $\mathcal{O}(2 n)$. When $n=2$ the double covering of $\mathcal{O}(2 n)^{\circ}$ is $S L(2) \times S L(2)$. Then $\operatorname{spin}_{2}^{+}$and $\operatorname{spin}_{2}^{-}$are the fundamental representation corresponding to the two factors. Also

$$
d_{2}^{\epsilon}=\left(\operatorname{spin}_{2}^{\epsilon}\right)^{2} \quad \text { and } \quad d_{1}=\operatorname{spin}_{2}^{+} \cdot \operatorname{spin}_{2}^{-}
$$

For the sake of reality we will give the formulas in this case.

$$
\begin{aligned}
& r_{2}\left(d_{1}, d_{1}\right)=d_{0} d_{2}^{+}+d_{0} d_{2}^{-}+d_{1} d_{1}+d_{0} d_{0} \\
& r_{2}\left(d_{1}, d_{2}^{\epsilon}\right)=d_{0} d_{1}+d_{1} d_{2}^{\epsilon}, \\
& r_{2}\left(d_{2}^{+}, d_{2}^{-}\right)=d_{1} d_{1}, \\
& r_{2}\left(d_{2}^{\epsilon}, d_{2}^{\epsilon}\right)=d_{0} d_{0}+d_{0} d_{2}^{\epsilon}+d_{2} d_{2}^{\epsilon} \\
& r_{2}\left(d_{1}, \sin _{2}^{\epsilon}\right)=d_{1} \operatorname{spin}_{2}^{\epsilon}+d_{0} \sin _{2}^{-\epsilon} \\
& r_{2}\left(\operatorname{spin}_{2}^{+}, \operatorname{spin}_{2}^{-}\right)=d_{1} \text { and } \\
& r_{2}\left(\operatorname{spin}_{2}^{\epsilon}, \operatorname{spin}_{2}^{\epsilon}\right)=d_{2}^{\epsilon}+d_{0} .
\end{aligned}
$$

These formulas are elementary and an irreducible representation of the product $S L(2) \times S L(2)$ is a product of irreducible representations of the factors which are well-known.

We will assume that $n \geqq 3$ and proceed by induction of n. Embed $\mathcal{O}(2(n-1))$ as the central square in $\mathcal{O}(2 n)$. Then we have a slightly different operator χ and

$$
H=L_{(1,2 n-1)} \circ \ldots \circ L_{(1, n+2)} \circ L_{(1, n-1)} \circ \ldots \circ L_{(1,1)}
$$

where $L_{(1, n-1)}$ has a new meaning. We begin with the spin representations. Let ψ be a character. Then

$$
H\left(\operatorname{spin}_{n}^{\epsilon}(t) \psi(s)\right)=\operatorname{spin}_{n}^{\epsilon}(t) \psi(s)+\operatorname{spin}_{n}^{-\epsilon}(t) \psi(s) s_{1}^{-1}
$$

So

$$
r_{n}\left(\operatorname{spin}_{n}^{\epsilon}, \psi\right)=\chi\left(r_{n-1}\left(\operatorname{spin}_{n}^{+\epsilon}, \psi\right)\right)+\chi\left(r_{n-1}\left(\operatorname{spin}_{n}^{-\epsilon}, t_{1}^{-1}\right)\right)
$$

as usual $\operatorname{spin}_{n}^{\epsilon}$ corresponds to $\operatorname{spin}_{n-1}^{\epsilon}$ on $\mathcal{O}(2(n-1))$ and d_{*} corresponds to d_{*-1}.

Take $\psi=d_{i}$ with $i \leqq n-1$. We have

$$
\begin{aligned}
& r_{n-1}\left(d_{i}, \operatorname{spin}_{n}^{\epsilon}\right)=\sum_{0 \leqq s \leqq i-1} d_{i-1-s+1} \operatorname{spin}_{n}^{\delta_{s}(\epsilon)} \\
&=\sum_{0 \leqq s \leqq i-1} d_{i-s} \operatorname{spin}_{n}^{\delta_{s}(\epsilon)} \\
&=\chi\left(r_{n-1}\left(d_{i}, \operatorname{spin}_{n}^{\epsilon}\right)\right. \text { and } \\
& \chi\left(r_{n-1}\left(d_{i}, \operatorname{spin}_{n}^{\epsilon \epsilon}\right) t_{1}^{-1}\right)=d_{0} \operatorname{spin}_{n}^{\delta_{i-1}(-\epsilon)}=d_{i-i} \operatorname{spin}_{n}^{\delta_{i}(\epsilon)} .
\end{aligned}
$$

Adding the two equations we get formula (e); i.e.,

$$
r_{n}\left(d_{i}, \operatorname{spin}_{n}^{\epsilon}\right)=\sum_{0 \leqq s \leqq i} d_{i-s} \operatorname{spin}_{n}^{\delta_{s}(\epsilon)}
$$

Take $\psi=\operatorname{spin}_{n}^{\epsilon}$. We have

$$
r_{n-1}\left(\operatorname{spin}_{n}^{\epsilon}, \operatorname{spin}_{n}^{\epsilon}\right)=d_{n-2+1}+\sum_{1 \leqq x \leqq((n-2) / 2)} d_{n-2-2 x+1}
$$

or

$$
\chi\left(r_{n-1}\left(\operatorname{spin}_{n}^{\epsilon}, \operatorname{spin}_{n}^{\epsilon}\right)\right)=d_{n-1}+\sum_{1 \leqq x \leqq((n-2) / 2)} d_{n-1-2 x}
$$

Also

$$
\begin{aligned}
& \chi\left(r_{n-1}\left(\operatorname{spin}_{n}^{\epsilon}, \operatorname{spin}_{n}^{-\epsilon}\right) t_{1}^{-1}\right) \\
& =\chi\left(\left(d_{n}^{\epsilon}+\sum_{1 \leqq x \leqq((n-1) / 2)} d_{n-2 x}\right) t_{1}^{-1}\right) \\
& \left\{\begin{array}{l}
=d_{0} \text { if } 1=n-2 x \text { for } 1 \leqq x \leqq \frac{n-1}{2} ; n \text { is odd } \\
=0 \text { if } n \text { is even. }
\end{array}\right.
\end{aligned}
$$

Summing the two χ 's we get

$$
r_{n}\left(\operatorname{spin}_{n}^{\epsilon}, \operatorname{spin}_{n}^{\epsilon}\right)=d_{n-1}+\sum_{1 \leqq x \leqq((n-1) / 2)} d_{n-1-2 x}
$$

which is (f).
Finally take $\psi=\operatorname{spin}_{n}^{-\epsilon}$. Then

$$
\begin{aligned}
& \chi\left(r_{n-1}\left(\operatorname{spin}_{n}^{\epsilon}, \operatorname{spin}_{n}^{-\epsilon}\right)\right)=d_{n}^{\epsilon}+\sum_{1 \leqq x \leqq((n-1) / 2)} d_{n-2 x} \text { and } \\
& \chi\left(r_{n-1}\left(\operatorname{spin}_{n}^{\epsilon}, \operatorname{spin}_{n}^{\epsilon}\right) t_{1}^{-1}\right)=d_{0}
\end{aligned}
$$

if n is even and 0 if n is odd. Hence

$$
r_{n}\left(\operatorname{spin}_{n}^{\epsilon}, \operatorname{spin}_{n}^{-\epsilon}\right)=d_{n}^{\epsilon}+\sum_{1 \leqq x \leqq(n / 2)} d_{n-2 x} .
$$

This settles the spin representations.
Next we will work on formula (a). If $i \leqq n-2$ then the same argument as in Section 3 applies with the only changes that $d_{k} d_{l}$ is replaced by $d_{k} d_{[l]_{n}}$ and $d_{k} d_{n}$ by $d_{k} d_{n}^{+}+d_{k} d_{n}^{-}$. Here one uses the identity $[x]_{n}=$ $[x-1]_{n-1}+1$ repeated. So we may assume that $i=j=n-1$. We find

$$
\begin{aligned}
H\left(d_{n-1}(t) d_{n-1}(s)\right) & =d_{n-1}(t) d_{n-1}(s)+d_{n}^{+}(t) d_{n-1}(s) s_{1}^{-1} \\
& +d_{n}^{-}(t) d_{n-1}(s) s_{1}^{-1}+d_{n-2}(t) d_{n-1}(s) s_{1}^{-1} \\
& +d_{n-1}(t) d_{n-1}(s) s_{1}^{-2} .
\end{aligned}
$$

So

$$
\begin{aligned}
r_{n}\left(d_{n-1}, d_{n-1}\right) & =\chi\left(r_{n-1}\left(d_{n-1}, d_{n-1}\right)\right)+\chi\left(r_{n-1}\left(d_{n-1}, d_{n-1}\right) t_{1}^{-1}\right) \\
& +\chi\left(r_{n-1}\left(d_{n-2}, d_{n-1}\right) t_{1}^{-1}\right)+\chi\left(r_{n-1}\left(d_{n-1}, d_{n}^{+}\right) t_{1}^{-1}\right) \\
& +\chi\left(r_{n-1}\left(d_{n-1}, d_{n}^{-}\right) t_{1}^{-1}\right)
\end{aligned}
$$

Now

$$
\begin{aligned}
\chi\left(r_{n-1}\left(d_{n-1}, d_{n-1}\right)\right) & =r_{n-1}\left(d_{n-1}, d_{n-1}\right) \\
& =\sum_{0 \leqq s \leqq n-2} \sum_{0 \leqq r \leqq n-2-s}^{\prime} d_{r+1} d_{[2 n-3-r-2 s]_{n}} \\
& =\sum_{0 \leqq s \leqq n-2} \sum_{1 \leqq r \leqq n-1-s}^{\prime} d_{r} d_{[2 n-2-r-2 s]_{n}} .
\end{aligned}
$$

Hence

$$
\chi\left(r_{n-1}\left(d_{n-1}, d_{n-1}\right) t_{1}^{-2}\right)=\underset{0 \leqq s \leqq n-3}{-\sum_{0}^{\prime}} d_{0} d_{[2 n-4-2 s]_{n}}+d_{0} d_{0} .
$$

Next

$$
r_{n-1}\left(d_{n-2}, d_{n-1}\right)=\sum_{0 \leqq s \leqq n-3} \sum_{0 \leqq r \leqq n-3-s}^{\prime} d_{r+1} d_{[2 n-4-r-2 s]_{n}} .
$$

So

$$
\chi\left(r_{n-1}\left(d_{n-2}, d_{n-1}\right) t_{1}^{-1}\right)=\sum_{0 \leqq s \leqq n-3}^{\prime} d_{0} d_{[2 n-4-2 s]_{n}} .
$$

Now

$$
r_{n-1}\left(d_{n-1}, d_{n}^{\epsilon}\right)=\sum_{0 \leqq s \leqq n-2} \sum_{0 \leqq r \leqq n-2 s} \delta_{2 n-2-r-2 s}^{n} d_{r+1} d_{2 n-r-2 s} .
$$

Hence

$$
\chi\left(r_{n-1}\left(d_{n-1}, d_{n}^{\epsilon}\right) t_{1}^{-1}\right)=\sum_{0 \leqq s \leqq n-2} \delta_{2 n-2-2 s}^{n} d_{0} d_{2 n-2-2 s}
$$

Therefore after cancellation our formula gives

$$
\begin{aligned}
r_{n}\left(d_{n-1}, d_{n-1}\right) & =\sum_{0 \leqq s \leqq n-2} \sum_{1 \leqq r \leqq n-1-s}^{\prime} d_{r} d_{[2 n-2-r-2 s]_{n}}+d_{0} d_{0} \\
& +\sum_{0 \leqq s \leqq n-2}^{+} \delta_{2 n-2-2 s}^{n} d_{0} d_{2 n-2-2 s} \\
& +\sum_{0 \leqq s \leqq n-2}^{-} \delta_{2 n-2-2 s}^{n} d_{0} d_{2 n-2-2 s}
\end{aligned}
$$

Thus to prove the formula we need to show that the sum of the last three terms is

$$
\sum_{0 \leqq s \leqq n-1}^{\prime} d_{0} d_{[2 n-2-2 s]_{n}}
$$

If n is odd both expressions equal

$$
d_{0} d_{0}+\sum_{1 \leqq i \leqq((n-1) / 2)} d_{0} d_{2 i}+\sum_{1 \leqq i \leqq((n-1) / 2)} d_{0} d_{2 i}
$$

If n is even both equal

$$
d_{0} d_{0}+\sum_{1 \leqq i \leqq(n / 2)} d_{0} d_{2 i}+d_{0} d_{n}^{+}+\sum_{1 \leqq i \leqq(n / 2)} d_{0} d_{2 i}+d_{0} d_{n}^{-}
$$

This proves (a).
To prove the rest of the formulas let ψ be a character. Then

$$
H\left(d_{n}^{\epsilon}(t) \psi(s)\right)=d_{n}^{\epsilon}(t) \psi(s)+d_{n-1}(t) \psi(s) s_{1}^{-1}+d_{n}^{-\epsilon}(t) \psi(s) s_{1}^{-2}
$$

Thus

$$
\begin{aligned}
r_{n}\left(\psi, d_{n}^{\epsilon}\right) & =\chi\left(r_{n-1}\left(\chi, d_{n}^{\epsilon}\right)\right)+\chi\left(r_{n-1}\left(\chi, d_{n-1}\right) t_{1}^{-1}\right) \\
& +\chi\left(r_{n-1}\left(\psi, d_{n}^{-\epsilon}\right) t_{1}^{-2}\right)
\end{aligned}
$$

Let $\psi=d_{i}$ where $i<n$. Then

$$
\begin{aligned}
& \chi\left(r_{n-1}\left(d_{i}, d_{n}^{\epsilon}\right)\right)=r_{n-1}\left(d_{i}, d_{n}^{\epsilon}\right) \\
& =\sum_{0 \leqq s \leqq i-1}^{\epsilon} \sum_{0 \leqq r \leqq i-1-s} \delta_{i-1+n-1-r-2 s}^{n-1} d_{r+1} d_{i-1+n-1-r-2 s+1} \\
& =\sum_{0 \leqq s \leqq i-1}^{\epsilon} \sum_{1 \leqq r \leqq i-s} \delta_{i+n-r-2 s}^{n} d_{r} d_{i+n-r-2 s} .
\end{aligned}
$$

Next

$$
r_{n-1}\left(d_{i}, d_{n-1}\right)=\sum_{0 \leqq s \leqq i-1} \sum_{0 \leqq r \leqq i-s-1}^{\prime} d_{r+1} d_{[i+n-2-r-2 s]_{n}} .
$$

So

$$
\chi\left(r_{n-1}\left(d_{i}, d_{n-1}\right) t_{1}^{-1}\right)=\sum_{0 \leqq s \leqq i-1}^{\prime} d_{0} d_{[i+n-2-2 s]_{n}}
$$

Now

$$
\chi\left(r_{n-1}\left(d_{i}, d_{n}^{-\epsilon}\right) t_{1}^{-2}\right)=-\sum_{0 \leqq s \leqq i-2}^{-\epsilon} \delta_{i+n-2-2 s}^{n} d_{0} d_{i+n-2-2 s}
$$

Therefore

$$
\begin{aligned}
r_{n}\left(d_{i}, d_{n}^{-\epsilon}\right) & =\sum_{0 \leqq s \leqq i-1}^{\epsilon} \sum_{1 \leqq r \leqq i-s} \delta_{i+n-r-2 s}^{n} d_{r} d_{i+n-r-2 s} \\
& +\sum_{1 \leqq s \leqq i}^{\prime} d_{0} d_{[i+n-2 s]_{n}} \\
& -\sum_{1 \leqq s \leqq i-1}^{-\epsilon} \sigma_{i+n-2 s}^{n} d_{0} d_{i+n-2 s} .
\end{aligned}
$$

For the formulas (b) to hold the difference of the last two terms should be

$$
\sum_{0 \leqq s \leqq i}^{\epsilon} \delta_{i+n-2 s}^{n} d_{0} d_{i+n-2 s} d_{0} d_{i+n-2 s},
$$

which equals

$$
\sum_{(i / 2) \leqq s \leqq i}^{\epsilon} d_{0} d_{i+n-2 s} .
$$

The difference equals

$$
\begin{aligned}
d_{0} d_{n-i}+\sum_{\substack{1 \leqq \leqq \leqq i \\
i+n-2 s \leqq n}}^{\epsilon} d_{0} d_{[i+n-2 s]_{n}} & =\sum_{1 \leqq s \leqq(i / 2)}^{\epsilon} d_{0} d_{[i+n-2 s]_{n}}+d_{0} d_{n-1} \\
& =\sum_{0 \leqq s \leqq(i / 2)}^{\epsilon} d_{0} d_{-i+n+2 s} .
\end{aligned}
$$

As the two expressions are equal, formula (b) is proven.
For formula (c) take $\psi=d_{n}^{-\epsilon}$. Then

$$
\begin{aligned}
r_{n}\left(d_{n}^{\epsilon}, d_{n}^{-\epsilon}\right) & =\chi\left(r_{n-1}\left(d_{n}^{\epsilon}, d_{n}^{-\epsilon}\right)\right) \\
& +\chi\left(r_{n-1}\left(d_{n-1}, d_{n}^{-\epsilon}\right) t_{1}^{-1}\right)+\chi\left(r_{n-1}\left(d_{n}^{-\epsilon}, d_{n}^{-\epsilon}\right) t_{1}^{-2}\right)
\end{aligned}
$$

By induction

$$
\begin{aligned}
\chi\left(r_{n-1}\left(d_{n}^{\epsilon}, d_{n}^{-\epsilon}\right)\right) & =r_{n-1}\left(d_{n}^{\epsilon}, d_{n}^{\epsilon}\right) \\
& =\sum_{\substack{0 \leqq p \leqq q \leqq n-1 \\
p \equiv q \equiv n-2((2))}} d_{p+1} d_{q+1}=\sum_{\substack{1 \leqq p \leqq q \leqq n \\
p \equiv q \equiv n-1(2)}} d_{p} d_{q} .
\end{aligned}
$$

Next

$$
\chi\left(r_{n-1}\left(d_{n}^{-\epsilon}, d_{n}^{-\epsilon}\right) t_{1}^{-2}\right)=\chi\left(t_{1}^{-2}\left(\sum_{\substack{0 \leqq p \leqq q \leqq n-1 \\ p \equiv q \equiv n-1((2))}} d_{p+1} d_{q+1}\right)\right) .
$$

If n is even it equals

$$
\underset{\substack{1 \leqq \subseteq \subseteq \leq n-1 \\ q \equiv n-1((2))}}{ } d_{0} d_{q+1}=\sum_{\substack{0<q \leqq n \\ q \equiv n((2))}} d_{0} d_{q}
$$

where $d_{n}=d_{n}^{-\epsilon}$. If n is odd it equals $d_{0} d_{0}$. Now

$$
\begin{aligned}
& r_{n-1}\left(d_{n-1}, d_{n}^{-\epsilon}\right) \\
& =\sum_{0 \leqq i \leqq n-2}^{\sum_{0 \leqq r \leqq n-2-i}^{-\epsilon}} \sum_{2 n-2-r-2 s} d_{r+1} d_{2 n-2-r-2 s}
\end{aligned}
$$

So

$$
\begin{aligned}
\chi\left(r_{n-1}\left(d_{n-1}, d_{n}^{-\epsilon}\right) t_{1}^{-1}\right) & =\sum_{0 \leqq s \leqq \leqq n-2}^{-\epsilon} \delta_{2 n-2-2 s}^{n} d_{0} d_{2 n-2-2 s} \\
& =\sum_{\substack{k \equiv 0((2)) \\
1 \leqq k \leqq(n / 2)}} d_{0} d_{2 k}
\end{aligned}
$$

where $d_{n}=d_{n}^{-\epsilon}$.
Lastly we want to use the triple sum to show that

$$
r_{n}\left(d_{n}^{\epsilon}, d_{n}^{-\epsilon}\right)=\sum_{\substack{0 \leqq p \leqq q \leqq n \\ p \equiv q=n-1(2))}} d_{p} d_{q} .
$$

If n is even this equals the first summand. Hence we want

$$
\chi\left(r_{n-1}\left(d_{n}^{-\epsilon}, d_{n}^{-\epsilon}\right) t_{1}^{-2}\right)=-\chi\left(r_{n-1}\left(d_{n-1}, d_{n}^{-\epsilon}\right) t_{1}^{-1}\right)
$$

which is true. If n is odd we want

$$
\begin{aligned}
& d_{0} d_{0}+\sum_{\substack{0 \leqq q \leqq n \\
q \equiv n-1(2))}} d_{0} d_{q} \\
& =\chi\left(r_{n-1}\left(d_{n}^{-\epsilon}, d_{n}^{-\epsilon}\right) t_{2}^{-2}\right)+\chi\left(r_{n-1}\left(d_{n-1}, d_{n}^{-\epsilon}\right) t_{1}^{-1}\right)
\end{aligned}
$$

which is true. Thus formula (c) is true.
The proof of (d) is analogous so we will skip the details. Just use the formula

$$
\begin{aligned}
r_{n}\left(d_{n}^{\epsilon}, d_{n}^{\epsilon}\right) & =\chi\left(r_{n-1}\left(d_{n}^{\epsilon}, d_{n}^{\epsilon}\right)\right)+\chi\left(r_{n-1}\left(d_{n-1}, d_{n}^{\epsilon}\right) t_{1}^{-1}\right) \\
& +\chi\left(r_{n-1}\left(d_{n}^{\epsilon}, d_{n}^{-\epsilon}\right) t_{1}^{-2}\right) .
\end{aligned}
$$

References

1. Tensor products of representations of the general linear group, Amer. J. of Math. 109 (1987), 395-400.
2. Tensor products of representations, Amer. J. of Math. 109 (1987), 401-415.

The Johns Hopkins University, Baltimore, Maryland

[^0]: Received March 26, 1987.

