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Numerical Semigroups Having a
Toms Decomposition

J. C. Rosales and P. A. Garcı́a-Sánchez

Abstract. We show that the class of system proportionally modular numerical semigroups coincides

with the class of numerical semigroups having a Toms decomposition.

Let N be the set of nonnegative integers. A submonoid M of N is a subset of N

closed under addition and such that 0 ∈ M. A numerical semigroup S is a submonoid

of N such that N \ S is finite. This last condition is equivalent to gcd(S) = 1, where

gcd stands for greatest common divisor.

Let M be a submonoid of N and let d be a positive integer. Then

M

d
= {n ∈ N | dn ∈ M}

is again a submonoid of N, called the quotient of M by d.

Let S be a numerical semigroup. According to [3], we say that S has a Toms de-

composition if there exist q1, . . . , qn, m1, . . . , mn and L such that

(i) gcd({qi , mi}) = gcd({L, qi}) = gcd({L, mi}) = 1 for all i ∈ {1, . . . , n},

(ii) S =
1
L

⋂n
i=1〈qi, mi〉.

Let a, b and c be positive integers. We say that the monoid
〈a, b〉

c
is a Toms block

if gcd({a, b}) = gcd({a, c}) = gcd({b, c}) = 1. As we are imposing the condi-

tion gcd({a, b}) = 1, every Toms block is a numerical semigroup. Observe that
1
L

⋂n
i=1〈qi, mi〉 =

⋂n
i=1

〈qi ,mi〉
L

. So a numerical semigroup admits a Toms decomposi-

tion if and only if it can be expressed as an intersection of finitely many Toms blocks

with the same denominator.

We show that Toms blocks are tightly related to the class of numerical semigroups

studied in [1]. Let α and β be two positive real numbers such that α < β. Let T

be the (additive) submonoid of R
+
0 generated by [α, β]. Then T ∩ N is a numerical

semigroup. We denote this numerical semigroup by S ([α, β]). A numerical semi-

group is proportionally modular if it is of this form. Theorem 13 in [1] states that a

numerical semigroup S is proportionally modular if and only if there exist positive

integers a, b and c such that c < a < b and S = {x ∈ Z | ax mod b ≤ cx}, (where

by a mod b we mean the remainder of the division of a by b, with a an integer and b

a positive integer). Moreover, from [1, Corollary 9], one can deduce that in this case

S = S
([

b
a
, b

a−c

])

In this way we obtain the following result, already implicit in [1],

Received by the editors September 26, 2005; revised November 3, 2005.
This paper has been supported by the project MTM2004-01446 and FEDER funds.
AMS subject classification: Primary: 20M14; secondary: 11D75.
c©Canadian Mathematical Society 2008.

134

https://doi.org/10.4153/CMB-2008-015-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2008-015-6


Numerical Semigroups Having a Toms Decomposition 135

which allows us a particular choice of the endpoints of the intervals used to define a

proportionally modular numerical semigroup.

Lemma 1 Let S be a proportionally modular numerical semigroup other than N. Then

there exist two rational numbers α and β such that 1 < α < β and S = S ([α, β]).

A numerical semigroup is system proportionally modular if it is the intersection of

finitely many proportionally modular numerical semigroups. In view of the above

characterization of proportionally modular numerical semigroups, this means that

there exist a1, . . . , ar, b1, . . . , br, c1, . . . , cr positive integers such that S is the set of

integer solutions to the system of inequalities

a1x mod b1 ≤ c1x, . . . , arx mod br ≤ crx.

Proportionally modular numerical semigroups can be characterized as those nu-

merical semigroups that are quotients of numerical semigroups generated by two

elements [2, Theorem 5]. Hence every numerical semigroup having a Toms de-

composition is system proportionally modular. We consider the converse. Does

every system proportionally modular numerical semigroup S have a Toms decom-

position? In other words if, according to [2, Theorem 5], S can be expressed as

S = 〈n1, m1〉/d1 ∩ · · · ∩ 〈nr, mr〉/dr, then can we simultaneously have the dis equal

and each 〈ni, mi〉/di a Toms block? The answer to this question is affirmative, and it

is given in Theorem 10.

The idea of the proof of Theorem 10 relies on the following result, which follows

from the proof of [2, Theorem 5].

Lemma 2 Let a1, a2, b1 and b2 be positive integers such that 1 < a1

b1
< a2

b2
. If

gcd({a1, a2}) = 1, then

S
([ a1

b1
,

a2

b2

])

=

〈a1, a2〉

a2b1 − a1b2
.

In this result, a condition on the greatest common divisor of the numerators of

the fraction defining the interval is needed. This condition, as we see next, is not

relevant. Given a proportionally modular numerical semigroup defined by an in-

terval, we are going to show how to perturb the endpoints of this interval so that

the resulting numerical semigroup remains the same. By perturbing the left end-

point of the interval, we will be able to obtain intervals whose endpoints fulfill the

desired gcd condition. From this we prove that for every proportionally modular nu-

merical semigroup there are infinitely many Toms blocks equal to it. If we are given

a finite family of proportionally modular numerical semigroups, by perturbing the

right endpoint of the intervals defining them, we will show how the denominators in

the obtained Toms block can be chosen to be the same.

Remark 3 For the sake of simplicity, we will allow fractions with a positive integer

x as a numerator and denominator zero. We make the convention that y < x
0

for any

integer y.
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Membership in a proportionally modular numerical semigroup is easily charac-

terized once one has an interval defining the semigroup. This is made explicit in the

following result, which is easy to prove and can be understood as a reformulation

of [1, Lemma 1].

Lemma 4 Let α and β be two positive real numbers, and let x be a positive integer.

Then x ∈ S ([α, β]) if and only there exist a positive integer kx such that x/kx ∈ [α, β].

Thus, x ∈ N \ S ([α, β]) if and only if there exists a nonnegative integer nx such that
x

nx+1
< α < β < x

nx
.

The next lemma shows how we can modify the left endpoint of the interval defin-

ing a proportionally modular numerical semigroup, in a way that the resulting semi-

group stays the same.

Lemma 5 Let a1, a2, b1 and b2 be positive integers such that 1 < a1

b1
< a2

b2
. Then there

exist positive integers a0 and b0 such that 1 ≤ b0 < a0 and for all x, y positive integers

such that a0

b0
≤ x

y
≤ a1

b1
, one gets that S

([

a1

b1
, a2

b2

])

= S
([

x
y
, a2

b2

])

.

Proof Let S = S
([

a1

b1
, a2

b2

])

. From Lemma 4, we know that if h ∈ N \ S, then there

exists nh ∈ N such that h
nh+1

< a1

b1
< a2

b2
< h

nh
. Set α = max{ h

nh+1
| h ∈ N \ S} (this

maximum exists, since the complement of S in N is finite). Let a0 and b0 be positive

integers such that α < a0

b0
< a1

b1
. Now take any positive integers x, y such that a0

b0
≤

x
y
≤ a1

b1
. From the choice of α and Lemma 4, it follows easily that S = S

([

x
y
, a2

b2

])

.

With this idea we can achieve endpoints of the interval fulfilling the gcd condition

of Lemma 2. For a rational number x, we use ⌊x⌋ to denote the largest integer less

than or equal to x.

Lemma 6 Let a1, a2, b1 and b2 be positive integers such that 1 < a1

b1
< a2

b2
. Then there

exist positive integers a0, b0 and N such that b0 < a0 and for every integer x ≥ N with

gcd({x, a2}) = 1, one has that

S
([ a1

b1

,
a2

b2

])

=

〈x, a2〉

a2⌊
b0x
a0
⌋ − b2x

.

Proof Let S = S
([

a1

b1
, a2

b2

])

. By Lemma 5, we know that there are positive integers

a0 and b0, such that b0 < a0, a0

b0
< a1

b1
and if a0

b0
≤ x

y
≤ a1

b1
for some positive integers

x and y, then we have that S = S
([

x
y
, a2

b2

])

. Note that a0

b0
≤ x

y
≤ a1

b1
if and only if

b1

a1
x ≤ y ≤ b0

a0
x. As b1

a1
< b0

a0
, there exists a positive integer N such that if x ≥ N , then

x
(

b0

a0
− b1

a1

)

> 1. Hence if x ≥ N , we obtain that b1

a1
x ≤ ⌊ b0x

a0
⌋ ≤ b0

a0
x, and thus

a0

b0

≤
x

⌊ b0x
a0
⌋
≤

a1

b1

.
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By Lemma 5,

S = S
([ x

⌊ b0x
a0
⌋
,

a2

b2

])

.

By taking x such that gcd({x, a2}) = 1 we have, in view of Lemma 2, that

S =

〈x, a2〉

a2⌊
b0x
a0
⌋ − b2x

.

From this result, we show next that there are infinitely many Toms blocks repre-

senting the same proportionally modular numerical semigroup.

Lemma 7 Let a1, a2, b1 and b2 be positive integers such that 1 < a1

b1
< a2

b2
and

gcd({a2, b2}) = 1. Then there exist positive integers a0, b0 and N such that b0 < a0

and for every integer k ≥ N, one has that

S
([ a1

b1

,
a2

b2

])

=

〈ka0b0a2 + 1, a2〉

kb0a2(b0a2 − b2a0) − b2

.

Moreover, this is a Toms block.

Proof Let S = S
([

a1

b1
, a2

b2

])

. By Lemma 6, we know that there exist positive integers

b0 < a0 and N such that for all x ≥ N with gcd({x, a2}) = 1, one has that S =

〈x, a2〉

a2⌊
b0x

a0
⌋−b2x

. Let k ≥ N−1
a0b0a2

. Then x = ka0b0a2 + 1 is greater than or equal to N ,

gcd({x, a2}) = 1, and since b0 < a0,

⌊ b0x

a0

⌋

=

⌊ ka0b2
0a2

a0

+
b0

a0

⌋

= ka2b2
0.

Hence

S =

〈ka0b0a2 + 1, a2〉

ka2
2b2

0 − b2(ka0b0a2 + 1)
=

〈ka0b0a2 + 1, a2〉

ka2b0(a2b0 − a0b2) − b2

.

Next we show that this representation is a Toms block.

• gcd({ka0b0a2 + 1, a2}) = 1,
• gcd({ka2b0(a2b0 − a0b2) − b2, a2}) = gcd({b2, a2}) = 1,
• gcd({ka0b0a2 + 1, ka2

2b2
0 − b2(ka0b0a2 + 1)}) = gcd({ka0b0a2 + 1, ka2

2b2
0}) = 1.

We show how to perturb the right endpoint of the interval.

Lemma 8 Let a1, a2, b1 and b2 be positive integers such that 1 < a1

b1
< a2

b2
. Then there

exists a nonnegative integer N such that for every integer k greater than or equal to N,

one has that

S
([ a1

b1

,
a2

b2

])

= S
([ a1

b1

,
ka2 + 1

kb2

])

.
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Proof Let S = S
([

a1

b1
, a2

b2

])

. In view of Lemma 4, for every h ∈ N \ S, there exists

nh ∈ N with h
nh+1

< a1

b1
< a2

b2
< h

nh
. Let α = min{ h

nh
| h ∈ N \ S} (as we are

allowing to divide by zero, this coud be infinite). The sequence { ka2+1
kb2

}k∈N\{0} is

strictly decreasing and converges to a2

b2
. Thus, there exists N ∈ N such that if k ≥ N ,

we have that a2

b2
< ka2+1

kb2
< α and arguing as in Lemma 5, we conclude that S =

S
([

a1

b1
, ka2+1

kb2

])

.

With this result, we can show that for a finite family of proportionally modular

numerical semigroups, the right endpoint of the interval can be chosen to be reduced

fractions with the same denominator.

Lemma 9 Let Si = S
([ ai,1

bi,1
,

ai,2

bi,2

])

with ai,1, ai,2, bi,1 and bi,2 positive integers with

1 <
ai,1

bi,1
<

ai,2

bi,2
, and i ∈ {1, . . . , r}. Then there exist positive integers c1, . . . , cr and d

such that for all i ∈ {1, . . . , r},

• Si = S
([ ai,1

bi,1
, ci

d

])

and

• gcd({ci , d}) = 1.

Proof From Lemma 8, we know that for every i ∈ {1, . . . , r}, there exists Ni ∈ N

so that if ki is a positive integer greater than Ni , one has that Si = S
([ ai,1

bi,1
,

ki ai,2+1

ki bi,2

])

.

For every i ∈ {1, . . . , r}, set ki = t
b2

1,2···b
2
r,2

bi,2
, with t a positive integer large enough to

ensure that ki ≥ Ni for all i. Then

Si = S









ai,1

bi,1
,

t
b2

1,2···b
2
r,2

bi,2
ai,2 + 1

tb2
1,2 · · · b2

r,2







 .

Clearly, gcd({t
b2

1,2···b
2
r,2

bi,2
ai,2 + 1, tb2

1,2 · · · b2
r,2}) = 1 for all i ∈ {1, . . . , r}.

We are now ready to prove the main result.

Theorem 10 Every system proportionally modular numerical semigroup admits a

Toms decomposition.

Proof Let S be a system proportionally modular numerical semigroup. If S = N,

then N =

〈2, 3〉
5

suits our needs. Otherwise, S = S1 ∩ · · · ∩ Sr for some S1, . . . , Sr

proportionally modular numerical semigroups different from N. In view of Lemmas

1 and 9, there exist some positive integers a1, . . . , ar, b1, . . . , br , c1, . . . , cr and d such

that Si = S
([

ai

bi
, ci

d

])

with gcd({ci , d}) = 1 for all i ∈ {1, . . . , r}. From Lemma

7, we know that there exist positive integers bi0
< ai0

and Ni ∈ N such that for all

ki ≥ Ni one obtains that
〈kiai0

bi0
ci + 1, ci〉

kicibi0
(cibi0

− ai0
d) − d
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is a Toms block equal to Si . Let mi = cibi0
(cibi0

− ai0
d). Let t = max{N1, . . . , Nr}.

Then setting ki = t m1···mr

mi
one concludes that

S =

r
⋂

i=1

〈kiai0
bi0

ci + 1, ci〉

tm1 · · ·mr − d

is a Toms representation for S.

Toms wondered [3] if every numerical semigroup could be expressed in this way.

Since every numerical semigroup having a Toms decomposition is system propor-

tionally modular, one can use [1, Algorithm 27] to decide whether or not a given

numerical semigroup has Toms decomposition, and one can also find in that paper

numerical semigroups not having such a decomposition.

In view of Toms result [3], we obtain the following corollary of Theorem 10.

Corollary 11 Every ordered group of the form (Z, S), where S is a system proportion-

ally modular numerical semigroup, occurs as the ordered K0-group of a simple, separa-

ble, and nuclear C∗-algebra.
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