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EXISTENCE THEOREMS FOR SOME NON-LINEAR 
EQUATIONS OF EVOLUTION 

JOHN C. CLEMENTS 

1. Introduction. In recent years considerable attention has been focused 
on non-linear hyperbolic differential equations with the object of establishing 
the existence of global solutions. It is our aim here to establish the existence 
of weak solutions of boundary value problems for non-linear equations of 
the form 

(1-1) utt(t) + A(t)u(t) +dut(t) = /(*), 

where d is a real constant called the damping coefficient, u(t) is a vector-
valued function defined on a subinterval of the real line into a space of 
complex-valued functions u(x) defined on a bounded domain £2 in the real 
Euclidean space EN of N dimensions, ut(t) = du(t)/dt, and A (t) is the family 
of partial differential operators of order 2m (m = 1, 2, . . .) on Œ given in 
generalized divergence form by 

n oN A(t)u(x) = X) DaAa(x, t,u(x),. . . ,Dmu(x)) 

with 

D, = - ^ - for 1 ^j UN 
3 l dXj J 

and for each iV-tuple a = (au . . . , aN), Da = Df1 . . . DN
ax, \a 

andDmw(x) = (Dau(x))la]=m. 
Particular interest has been given to the equation 

(1-3) utt(t) - ANu(t) + \u(t)\>u(t) = f(t) (p > 0), 

where A^ denotes the iV-dimensional Laplace operator 

A ^ ^ - ( D i 2 + . . . + DJ). 

Browder [1] has obtained the existence of strict solutions of the Cauchy 
problem for a class of operator differential equations of the form 

utt{t) + Au(t) + M(u(t)) = 0, 

where A is a positive, densely defined, self-adjoint linear operator on a Hilbert 
space and M is a non-linear function from the domain of Ain to that Hilbert 
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space satisfying certain growth, Lipschitzian and définiteness conditions. His 
results include the existence and uniqueness of strict solutions of equation (1-3) 
for f{i) = 0 with p depending on the space dimension N and they specialize 
to give results obtained previously by Jôrgens [12]. Sather [24] has employed 
a compactness argument to obtain the existence of weak and strict global 
solutions of an initial-boundary value problem for (1-3). Lions and Strauss [17] 
have established the existence of weak solutions of initial-boundary value 
problems involving non-linear evolution equations of the form 

utt(t) +A(t)u(t) + |8(/ ;«(0,«i(0) = / ( 0 , 

where each A (t) is an unbounded formally self-adjoint linear operator and the 
operator /3(/; u(t), ut(t)) is non-linear in u(t) and ut{t) and is, in some sense, 
close to a "dissipative" operator. Compactness arguments were used and 
monotonicity properties of the non-linearities exploited. Monotonicity argu­
ments had been used previously for equations involving bounded operators, 
particularly non-linear integral equations, by Minty [18; 19]. They were first 
applied to partial differential operators of elliptic and parabolic type by 
Browder [2; 3; 4]. 

As one might expect, fewer results have been obtained concerning the 
existence of periodic solutions of boundary value problems for non-linear 
hyperbolic equations. For some previous results concerning this problem the 
reader is referred to [21; 5]. For non-linear wave equations with a strong 
damping, as in the present paper, the reader should compare the parallel 
results of Rabinowitz [22; 23]. For periodic solutions of non-linear wave 
equations in E2 without damping hypotheses the reader is referred to [6; 7; 10]. 

This paper was developed to study physical systems whose defining equa­
tions possess non-linear expressions in the higher order space derivatives. 
Such is the case, for example, for a system governed by the equation 

« „ ( 0 - ( ^ ) , ^ + *am«(0-/(0 
in one space dimension. In § 3, sufficient conditions are imposed on the func­
t i o n / ^ ) , the functions Aai and the coefficient d to ensure in Theorem 1 (§ 6) 
the existence of very weak periodic solutions u(t) of the boundary value 
problem defined by (1-1) and given boundary conditions. In §4, sufficient 
conditions on these same quantities are formulated which guarantee in 
Theorem 2 (§ 7) the existence of weak solutions v(t) of the initial-boundary 
value problem defined by (1-1) and given boundary and initial conditions. 
In order to establish these existence results we consider a sequence of equations 
which are finite-dimensional approximations to (1-1) and the given boundary 
conditions. It then remains to pass to the limit, and this is accomplished by 
employing combined compactness and monotonicity arguments. Section 2 
consists of the mathematical preliminaries necessary to give a precise formula­
tion and treatment of the above problems. In § 5 we prove the preliminary 
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functional analytic results required to obtain the existence theorems in 
§§ 6, 7, and in § 8 specific examples of the families A (t) are considered. 

2. Notation, function spaces. 12 is a fixed, bounded domain (an open, 
connected set) in EN with boundary and closure written d!2 and £2, respectively. 
A point (#i, . . . , xN) of EN is denoted simply by x and the volume element 
dxi. . . dxN by dx. Integration over subsets of EN is taken with respect to the 
iV-dimensional Lebesgue measure. 

The Lebesgue spaces LP(Q) are, for 1 ^ p S ^, the collection of equi­
valence classes of (real or complex-valued) almost everywhere equal functions 
u(x) defined on 12 and such that 

\\u\\l,v = I \u(x)\p dx < oo i f l ^ j f r g o o , 

||w11o.oo = essup \u(x)\ < oo. 

L2(12) is a Hilbert space with respect to the inner product 

(u,v) = I u{x)v(x) dx. 

The Sobolev spaces Wm'p(Q) are, for 1 ^ p < oo and m = 1, 2, . . ., the 
collection of functions in 1/(12) all derivatives in the distribution sense of 
order not exceeding m of which also belong to LP(Q). Wm'p(Q) is a Banach 
space with respect to the norm 

M i l I X A I I ~r\Ct I \v 

\\u\\m,v = L VP «Ho,* 

and is separable and reflexive for 1 < p < oo. C0°°(O) is the set of functions 
which are infinitely often continuously differentiable and have compact 
support in 12. Wom'p(Çl) is the closure of this linear manifold in the norm of 
Wm,p(£l) and, since it will be the framework for most of our discussions, shall 
be denoted simply by W. For brevity in notation, we shall always denote 
theL2(12) norm || • ||0,2 by || • ||. 

If X is a Banach space, then X* shall denote its dual or conjugate space, 
that is, the space of all bounded, conjugate linear functionals on X, and 
(w, u) the natural pairing of an element u Ç X and w G X*. Strong continuity 
and differentiability of vector-valued functions on a subinterval 5 of E1 into X 
are defined in the usual way (see, for example, [11]). 

Ck(r;X), k — 1, 2, . . ., is the collection containing every vector-valued 
function which, together with all its strong derivatives of order not exceeding 
k, is defined on E1 into X, is strongly continuous, and is periodic in / of period r. 
Ck(S; X), k = 1, 2, . . ., is defined analogously. 

Let || • ||x be the norm of X. We denote by Lp(r; X), for 1 ^ p ^ oo, the 
collection of equivalence classes of almost everywhere equal functions u{t) 

w 
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defined on E1 into X and periodic in t of period r such that 

|MUP(T;X) = j \\u(t)\\xdt <00 if 1 ^ £ < CO, 

lklUœ(r;x) = essup ||w(/)||x < oo, 

where the integration with respect to t is taken over any interval of periodicity. 
If X is separable and reflexive, LP(T; X) for 1 < p < co is a reflexive Banach 
space with conjugate space isomorphic to L ç ( r ;X*) , where 1/p + 1/g = 1. 
In addition, the dual space (Ll(r\X))* is linearly isomorphic to the Banach 
space L°°(r; X*). The spaces Lp(S; X) for 1 S P ^ °° are defined analogously. 

The linear spaces of complex-valued functions u (x, t) over ft X E1 are defined 
in the usual way. The Lebesgue measure shall always be denoted simply by 
the symbol /JL since it will be clear from the context which dimension is under 
consideration. 

Since it shall be necessary to consider the dependence of the functions Aa 

in (1-2) on their several variables without considering the latter variables 
to be functions, we adopt the notation 

Aa(x, t, z) = Aa(x, t, zu . . . , zM) 

for any fixed a, where the complex variables zk, k = 1, . . . , M, are indexed 
to correspond to D^u(x) for all fixed /3 = (£1, . . . , pN), |/3| ^ m. 

3. Problem I. It is our aim to prove the existence of at least one function 
u(t), periodic in t of period r, which satisfies 

uu{t) + A{t)u(t) +dut(t) = / ( / ) , * 6 E\ 

Dau(t)\dQ = 0, \a\ ^ m - l,t£ E\ 

where the family A(t), t € El, is given by (1-2). The above boundary-value 
problem together with the periodicity requirement shall be called Problem I. 
The following conditions are imposed on this problem. 

(1.1) Each Aa(x, t, 2i, . . . , zM) is a complex-valued function, measurable 
in x on 0 for fixed t, Zi, . . . , zM and jointly continuous in the real variable / 
and the complex variables zh . . . , zM for almost every fixed x in 0. Aa is 
once continuously differentiate in t on E1 and periodic in t of period r for 
almost every fixed x in 12 and fixed Zi, . . . , zM. There exist a real number 
p ^ 2 and a continuous function g (s) of the real variable 5 such that for all 
u(x) in W (W = W0

m>p(tt)), all a = (ah . . . , aN) with \a\ S m and almost 
all x in ft, 

\Aa(x,t,u(pc), . . . , !A*(x) ) | ^ g(||«|!„,„){ E | ^ ( x ) T 1 + I f 

for all t in E1. 
Before imposing the additional conditions on Problem I, we require the 

following definition. 
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Definition 3.1. B(t), t £ E1, is said to be a family of admissible lower order 
operators for Problem I if 

B(t)u(x) = £ £>%(*, t,u(pc),..., Dm~lu(x)) 
l /3 |^»»-l 

for all / in E1, each Bp(x, t, zi, . . . , zM>) satisfies the same measurability, 
continuity, differentiability and periodicity requirements as the functions Aa 

and there exists a continuous function gi(s) such that for all u{x) in W, all 
fi with |j8| ^ w — 1 and almost all # in £2, 

|^(x, *, «(*) zr-y*))| ^ ^ ( N U n £ i-DMaOr1 + i} 
for all / in E1. 

(1.2) The family of Dirichlet forms 

a(t\u,v)= L (- l ) , a |<i4«0M,tt , ...,Dmu),Dav) 

associated with the family A (t) satisfies the following: 
(i) There exist a continuous real-valued function c0(s) with limMooCoM = oo 

and a positive constant ko such that 

Re a(t; u, u) ^ CoflMU,*) + *o|MI2 

for all u{x) in W and all / in E1. 
(ii) There exists a family 5 ( 0 of admissible lower order operators such that 

Re{a(t; u, u — v) — a(t;v, u — v) + b(t; u, u — v) 
-b(t',v, u - v)\ ^ 0 

for all u(x) and v{x) in W and all / in E1, where 

&(*;«,») = E (-l)m(Bfi(pc,t,u, . . . . Z T ^ O . Z f y 
l /5 |^»»-l 

is the family of Dirichlet forms associated with B(t). 

(1.3) There exists a family r(£; •), / £ E1, of real-valued functions, periodic 
in t of period r, such that for all / in E 1 and all \p(t) £ C^E1 ; IF), r(J; $(t)) 
is once continuously differentiable in t, 

and r(£; •) satisfies the following: 
(i) There exists a continuous real-valued function Ci(s) with 

lim,_>00ci(5) = oo such that for all u(x) in W and all / in E1, 

r(t;u) è CiflML,*); 
(ii) There exist constants ki and fc2 such that for all u(x) in TÎ7 and all 

t in E1, 
r (/; ^) ^ &i Re a(/; w, ^) + &2. 
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(1.4) d is a positive real constant. 

(1.5) /( /) is a fixed element in L2(r; L2(tt)). 

We now state precisely what is meant by a weak solution of Problem I. 
This concept is defined relative to a certain class of test functions. Let $i be 
the set of functions %i = {$(0 | $ ( 0 G Lx(j\ W) and $>t(t) 6 Lx(r; L2(12))}, 
where differentiation is considered in the sense of distributions. 

Definition 3.2. By a weak (or generalized) solution of Problem I we mean 
a function u(t) with u(t) G Lœ(r; W) and ««(/) Ç Lœ(r;L2(n)) such that 

/ {- (w,(0, *,(/)) + <*(*; «(0, $(0) + d(ut(t), $(0)î * = /(/(*), $(0) * 
for all $(/) in gi. 

It shall be proved in § 6 that if Problem I satisfies conditions (I.l)-(1.5), 
then it has at least one weak solution in the sense of Definition 3.2. 

Remarks. The semi-boundedness requirement or growth restriction on the 
functions Aa in condition (1.1) can be weakened to 

\Aa(x,t,u(x),...,DMu(x))\ ^ g(\\u 

where the cap satisfy 

0£caf,£ (l/p - (m- \P\)/N)-i{(p - l)(m 

|P-l+ca + 1 

\P\)/N+ (m- \a\)/N} 

with equality only if l/p — (m — \fi\)/N ^ 0. The boundedness condition in 
Definition 3.1 can be weakened analogously. However, for brevity in notation 
we have restricted our attention to the simpler conditions indicated. 

For each fixed t in E1, conditions (1.1)—(1.2) closely parallel those used by 
Browder [2] to prove the existence of variational solutions for a class of 
non-linear elliptic boundary value problems. (1.2)-(ii) is called a generalized 
mono tonicity condition. 

Condition (1.3) is the most restrictive requirement on Problem I and 
suggests that the family of forms a(t; u, v) be close to multilinear. For example, 
if A (t) is given by 

A(t)u(x) = —A2u(x) + \u(x)\pu(x) 

then 
ll 
21 

\du 1 
\dxi\ 1 ^21 

\du 
\dX2\ 

(P è o), 

Mis£» 
P + 2 

for all t in E1 and u(x) in WV'2(&) and clearly satisfies (i) and (ii). We con­
sider as a second example one in which the functions are assumed to be 
real-valued. Let 
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Then 

r(t;u) = -
du 

1 dXi\ lo,4 41 
du 

\ dx2l 0,4 
k I cos u(x) dx 

for all / in E1 and all u(x) in W0
1A(Q). 

Finally, condition (1.4) can be weakened to d ^ 0 provided that the Aa 

and /( /) are even periodic functions of /. 

Related problems. The existence theory for Problem I also holds if we replace 
the Dirichlet boundary conditions (Dau(t)\dQ = 0, \a\ ^ m — 1, / G E1) by 
more general boundary conditions which correspond to a closed linear sub-
space V of Wm>p(ti) which contains C0

ra(S2). Then W is replaced by Wm>p(tt) 
in (1.1)—(1.3) and by F i n Definition 3.2 and in the definition of $i. However, 
for V 7e W, 12 must satisfy a strong cone condition (see, for example, [20]). 

4. Problem II. It is also our aim to prove the existence of at least one 
function v(t) which satisfies 

vtt(t) + A(t)v(t) + dvt(t) = /(*), t G [0, T), 

£>M0U = o, \<*\£m-i,te [o, T), 
v(0) = vo, vt(0) = vlt 

where A(t), t G [0, T), is the family given by (1-2). The above initial-
boundary value problem shall be called Problem II and the following con­
ditions are imposed upon it. 

(11.1) (This is just condition (1.1) with the restriction of t to [0, T) and 
without the periodicity requirement.) 

Families B{t),t G [0, T), of admissible lower order operators for Problem II 
are defined analogously to Definition 3.1 as are the associated families 
b(t;u, v), t G [0, T), of Dirichlet forms. 

(11.2) The family of forms a(t\u,v), /G [0, T), associated with A(t), 
t G [0, T), satisfies for all u(x) and v(x) in W and all / in [0, T), 

Re{a(t; u, u — v) — a(t; v, u — v) + b(t\ u, u — v) — b(t; vy u — v)\ ^ 0. 

(11.3) There exist two families of real-valued functions r(t; -), t G [0, T), 
and h(t) ',-•), t £ [0, T), such that for all t in [0, T) and all 

* (0 G C m T);W), 
r(t\ *K0) is once continuously differentiable in t, h(t; \//(t), ypt(t)) is continuous 
in /, and 

Rea(t; *(*), +t(t)) ^ | r ( * ; *(*)) - h(t; *(/) , *,(*)), 

where there exist constants ki and k2 and continuous real-valued functions 
g2(s) and c2(s) with l i m ^ ^ C O = oo such that 

(i) For all u(x) in PF and all t in [0, T), 

g2(\\u\\m,p) è r ( / ; w ) ^ c2(\\u\\m,p) 
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(ii) For all u{x) and v(x) in W and all t in [0, T), 

Ht;u,v) ^ Hc2{\\u\\m,v) + ll^ll2} +k2. 

(11.4) d is any real constant. 

( II .5)/( / ) G I 2 ( [ 0 , D ; L 2 W ) . 

(II.6) vo(x) e Wandv^x) £ L2(tt). 

Let ©i be the set 

®x EE {$(0 | $ ( 0 e LH[0, T); W), *,(*) 6 Li([0, r ) ; £HO) ) 
and $ ( 0 = 0 in a (variable) neighbourhood of t = T}. 

We establish in § 7 that if Problem II satisfies (II.1)-(II.6), then it has at 
least one weak solution in the following sense. 

Definition 4.1. By a weak solution of Problem II we mean a function v(t) 
with v(t) £ Lœ([0, T); W) and vt(t) 6 L°°([0, T);L*(Q)) such that 

(wi(0, * i (0) + <*(*; »(0. * (0 ) + <*(»«(*)> $(0)} * 
o 

= (»i, *(o)> + r (/(o, #(0) <** 
for all <£>(/) in @i and v(0) = z>0 for almost all x in 12. 

Remarks. Many of the statements in § 3 concerning Problem I apply to 
Problem II as well. However, both condition (II.2) and (II.3) are considerably 
weaker than the corresponding conditions on Problem I. In particular, (II.3) 
permits less multilinear structure in the form a(t; u, v). For example, let 
A(t), t G [0, T), be given by 

Then 

and 

A{t)u(x) = -A2u(x) - {(^~) + ( ^ 0 ) } + e-l\u{x)\2u(x). 

r(t;u) = - du 
dxi + 

du 
dx<i 

h(t\ u, v) = du 
dxi + 

du 
dxi 

+ le \W\\OA 

+ IH 
and condition (II.3) is satisfied. 

Clearly, the existence of a weak solution of Problem II on the interval 
[0, T) for every finite T implies the corresponding result on the half-line 
[0,oo). 

5. Some preliminary lemmas. 

LEMMA 5.1. Let B(t), t £ E1, be a family of admissible lower order operators 
for Problem I and let uv(t) {v an integer index) be a uniformly bounded sequence 
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of functions in L°°(r; W) such that Dyuv(t) —> Dyu(t) in the strong topology of 
LP(T; LP{Q,)) and of LP(Q X ST) and almost everywhere on 12 X ST as v -+co for 
all \y\ ^ m — 1, where ST denotes any interval of periodicity. Then 

Bp(x, t,uv(t), . . . , Dw-1w'(0) -» Bp(x, t,u(t), . . . , Dm-lu(t)) 

in the weak topology of LP/<*~»(T\ Lp/(p-»(Q)) and of Lp/<*-»(Q X ST) for all 
\(3\ ̂  m — 1 as v —>oo. 

Proof. Let 0 = (fil9 . . . , pN), |/5| ^ m - 1, be fixed. By Definition 3.1, 
Bp(x, t, Zi, . . . , zM') is jointly continuous in z\, . . . , zM* for almost every 
fixed (x, t) on 12 X »ST and measurable in (x, /) on 12 X <5T for fixed Zi, . . . , £M' 
(see [11, p. 69]). We delete those subsets of measure zero of 12 X ST for which 
B$ is not jointly continuous in Zi, . . . , s ^ for fixed (x, t) and for which each 
of the Dyuv(t), \y\ ^ m — 1, does not converge everywhere in 12 X ST. We 
denote by (12 X ST)', 12 X ST with these subsets removed. 

Let Ni S N2 ^ . . . ^ Nk S • • • be an increasing sequence of positive 
numbers tending to infinity. Let Ek be the set of all (x, t) in (12 X ST)f for 
which v ^ Nk implies that 

\Ba(x, t, uv{t), . . . , Dm-luv(t)) - Bfi(x, t, «(/), . . . , Z>w-%(/))| < e. 

Clearly Ek is contained in Ek+i. Let 7^ = (12 X ST)' — Ek. Suppose that 
(x0, to) is in C\k=iEk. Then there exists a subsequence vk of v with ^ ^ iV* and 

\Bp(xQt to, Wk(t0), . . . , Dm-luvk(to)) - Bp(xo, t0, u(t0), . . . , Dm-lu(to))\ ^ € 

for all ^ = 1 , 2 . . . . But this contradicts the continuity hypothesis on the 
functions B$. Hence, C\k=\Fk — 0 and it follows that 

lim sup \x(Fk) S M lîm sup Fk) = M Pi Fk) = 0. 

That is, 

Bp(x, t, uv(t), . . . , D^u'it)) -> ^ ( x , t, u(t), . . . , D^uit)) 

in measure on 12 X *ST as v —» oo. 

Now, since the ^"(/) are uniformly bounded in i°°(r; TV) and the function 
gi(s) in Definition 3.1 is continuous in s, gi(\\uv(t)\\m,P) S Kx and 
gi(llw(0IL,p) = Ki for some fixed constant Klt Let w(t) be any element of 
LP(T; £p(12)) Pi 1/(12 X 5 r) . Setting 

V(0 = **(*, *, «'(0,• • •, £m~V(/))/£"(/), 
and 

A,(/) = B0(x, t, u(t), . . . , rr"1u{f))/g{t)t 

we have by hypothesis that gv(t)-*g(t) strongly in Lp,{*~l)(j\Lp,®-v>($)) 
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and in Lp/ (p_1)(0 X ST) as v —>oo and by the Lebesgue Dominated Conver­
gence Theorem that hpv{t)w(t) —» hp(t)w(t) strongly in LP(T\LP(Q)) and in 
LP(Q, X Sr) as v ->oo. Hence 

J* <^(x, /, M'(0, • • • , £>m" V ( 0 ) , w(0> * = j(gv(t), hf(t)w{t)) dt 
-»J"<g(0» ^ ( 0 ^ ( 0 ) ^ = f(Be(x> *> wO» • • • » -Dm"1«(0)» w(0) <fc 

as ? -+oo for all w/(/) G Lp(r; £P(Œ)) H LP(Î2 X 5T). This proves the lemma. 

LEMMA 5.2. Le£ -4(0» ^ € -E1, be the family of partial differential operators 
given by (1-2) and let the functions Aa satisfy (1.1). Let u(t) and w(t) be any 
two functions in V°{T\ W) withD^u{t) andDyw(t) inL?(j\ Lp(ti)) Pi LP(Û X ST) 
for every y with \y\ :g m. Let r be a bounded sequence of real numbers tending to 
zero. Then there exists a subsequence p of w such that for every fixed a with \a\ ^ m 
and every fixed ft with \fï\ ^ m — 1, we have: 

Aa(x, t, u{t) + pw(t), . . . , Dm(u(t) + pw(t))) ->Aa(x, t, u(t), . . . , Dmu(t)) 

and 

Bp(x, t, u(t) + pw(t), . . . , Dm~l(u(t) + pw{t))) 

->Bfi(x,t,u(t)9 . . . ,Dm~lu(t)) 

weakly in L*'<*-»(T; LPl{-p-V(Çl)) and in Lp«p-V(iï X ST) as p -> 0. 

Proof. By hypothesis, D*{u(t) + nu(t)) -» D^u(t) strongly in LP(T; Lp(ti)) 
and in Lp(0 X ST) as IT —> 0 for all y with |Y| ^ m. Hence, there exists a 
subsequence p, obtained after M refinements of T, such that each 

Dy(u(t) + pw(t)), \y\ g « , 

converges almost everywhere on 0 X ST to Dyu(t) as p —> 0. The proof follows 
as in Lemma 5.1. 

Clearly, lemmas analogous to Lemmas 5.1 and 5.2 for Problem I can be 
proved for Problem II. 

6. The existence theory for Problem I. It shall be assumed throughout 
this section that conditions (I.l)-(1.5) are satisfied. Since W is separable, 
we can choose a countable set of distinct basis elements {wj}, j = 1, 2, . . ., 
which generate this space. Let Pn be the projection in L2(fi) onto the subspace 
{wi, . . . , wn\ generated by the distinct basis elements Wi, . . . , wn. For each 
positive integer n, we denote by un(t) the solution of the system of non-linear 
ordinary differential equations 

(6-1) (utt
n(t), wj) + a(t; un(t), w3) + d(ut

n(t), Wj) = (/(/) , w,), 

t e E\ un(t) e PnL
2(tt) for all tmE\j= 1, . . . , n. 

Since the wh j — 1, . . . , n, are linearly independent for each fixed nt un(t), 
if it exists, must be of the form 

n 

Un(t) = X) Cn*(t)wk. 
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We consider the following system which depends on the parameter X in [0, 1], 

(utt
n(t, X), Wj) + \{a(t; un(t, X), Wj) - k(un(t, X), w,)} 

+ d(ut
n(t, X), vu,) + k(un(t, X), Wj) = ( /( /) , Wj), t£E\j=l,...,n, 

where un(t, X) = ^Jk=iCn1c(t, \)wk and % is a fixed constant satisfying 
0 < k < ko with ko as in condition (1.2) (i). For X = 0, this system is linear 
and has a unique periodic solution un(t, 0) periodic in / of period r. For X = 1, 
it becomes (6-1). Using the continuity and periodicity properties of the 
functions Aa together with the theory of Green's functions, the Leray-Schauder 
degree theory can be employed to prove for each fixed n the existence of at 
least one function un(t, 1) = un(t) with utt

n(t) 6 L2(T; W) which satisfies 
(6-1) almost everywhere on E1 and for which each cn1c(t) has period r and is 
once continuously differentiable on El. The required a priori estimates 
independent of X are obtained in the usual way with the application of (1.3) 
and (1.2) (i). 

It remains to prove that the solutions un(t) of (6-1) for n = 1, 2, . . ., or a 
subsequence uv(t) of un(t), satisfy 

J (ut'(t), $,(/)) dt - » / (ut(t), *,(*)) dt 
and 

j a(t; uv{t), $(*)) dt —>/ a(t; u(t), $(*)) dt 

for all $(/) in %i as v—*co and for some u(t) £ L°°(r; W) with 
ut(t) eL°°(r;L2(12)). 

Let G be defined by (Gu,v) = J a(t\ u(t), v(t)) dt. Then it follows from 
(1.1) that G is a unique, well-defined mapping from L°°(r; W) into Lœ(r; W*) 
for all *;(/) in L1^; W). Let JB(2), t £ E1, be a family of admissible lower 
order operators for Problem I and let b(t;u,v) be the associated family of 
forms. Then C defined by (Cu, v) = J b(t; u(t), v{t)) dt is also a unique, well-
defined mapping from Lœ(r; W) into U°(r\ W*) for all v(t) in Ll(r; W). In 
order to accomplish the above passage to the limit, we require the following 
lemma. 

LEMMA 6.1 Let un(t) be the sequence of solutions of (6-1) for n — 1, 2, . . ., 
and let ST denote any interval of periodicity. There exist a subsequence uv{t) of 
un{t) and elements u(t) and G0(t) with u(t) £ Lœ(r; W), ut{t) £ Lœ(r\ L2(tt)), 
Dyuit) £ L*(T; L*(V)) r\ L*(S2 X ST) for all y with \y\ ^ m and 

G0(t) £ Lœ(r; W*) 
such that, as v —>co, 

uv(t) —> u{t) in the weak* topology of ÇLl{r\ W*))*, 
ut

v{p) —* ut(t) in the weak* topology of (L1^; L2(12)))*, 

D^uv{t) -» Dnru(t) in the weak topology of Lp(r; Lp(12)) and of Lv(tt X ST) for 
all \y\ ^ m, in the strong topology of LP(T; LP(U)) and of 
Lp(£l X ST) for all \y\ ^ m — 1, and almost everywhere on 
12 X ST for all \y\ ^ m - 1, 
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and 
Guv{t) —» Go(t) in the weak* topology of {L1(T\ W))*. 

Proof. Multiplying (6-1) by 

summing over j = 1, . . . , ny taking the real part of both sides, and integrating 
over any interval of periodicity gives by the Schwarz inequality 

j Rea(t;un(t),ut
n(t))dt + dj \\ut

n(t)\\2dt 

S (J||/(0IN01/2(Jlk^(0IN01/2 

and since/ Re a(t\ un{t), ut
n(t)) dt ^ 0 by (1.3) and d > 0 by (1.4), 

(6-2) j \\ut
n(t)\\2dt ^K2, 

where K2 is a constant independent of n. Multiplying (6-1) by cnj(t), summing 
over j = 1, . . . , n, taking the real part of both sides, integrating over any 
interval of periodicity and integrating the first term by parts yields 

-j \\ut
n(t)\\2dt+fRea(t]un(t),un(t))dt S (J \\f(t)\\2 dt)1/2(j \\un(t)\\2 dt)1/2 

and, by (1.2) (i) and (6-2), 

(6-3) f \\un{t)\\2dt S Kz 

and 

(6-4) J Re a{t\ un(t), un(t)) dt ^ KA, 

where Kz and K± are independent of n. Finally, multiplying (6-1) by cn/(t), 
summing over j = 1, . . . , n, taking the real part of both sides, and integrating 
over [to, h], t0 < h, yields by (1.3) and (6-2) 

i||««n(*i)ll2 + r(h;un(h)) ^K5+ i\\ut*(to)\\* + r(t0)u
n(t0)), 

where K5 is independent of n. Integrating this expression with respect to t0 

over the interval of periodicity [h — r, h] yields by (1.3), (6-2), and (6-4), 

(6-5) Ik "(011 + ll«w(0ll«.p ^ ^ e 
independent of n. It follows that 

(6-6) f \Dyun(f)\pdxdt£K1 

for every y with \y\ ^ m and 

(6-7) |\Gun\ \L<°iT;w) = sup \(Gun, v)\ ^ Ks 

for constants K7 and Ks independent of n. 
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The desired subsequence is obtained after several refinements of the original 
sequence un{t). However, for brevity in notation all subsequences shall be 
denoted by uv(t). By (6-5), (6-6), and (6-7) there exist a subsequence uv(i) 
of un(t) and elements u(t) 6 Lœ(T; W), u(t) 6 L™(T\U(SI)), 

uy(t) e Lp(r; LP(Q)) H LP(SL X ST) 

with | 7 | g m and G0(0 G L°°(T; W*) such that 

«"(0 -> u{t) in the weak* topology of (L1(T\ W*))*, 
u/{t) -> u{t) in the weak* topology of (Lx(r; L2(12)))*, 

D^uv{t) -+uy(t) in the weak topology of Lp(r; Lp(ti)) and of Lv(tt X 5T) 
for all \y\ ^ w, 

and 

Gw'(0 -> G0(0 in the weak* topology of ( L 1 ^ ; W))* 

as v—>oo. It follows easily that w(2) = «*(0 and uy(t) = Dyu(t) for each 
|Y| :g w, where the derivatives are considered in the sense of distributions. 
In addition, since uv(t)—>u(t) and ut

v(t)—> ut(t) in the indicated weak* 
topologies as v-^oo, there exists (see [16, p. 60]) a further subsequence 
uv(t) such that 

(6-8) uv(t) -> u(t) in the strong topology of L2(r; L2(fi)) and of L2(tt X ST) 

as v —>co. Since the embedding of W = Wom'p(Çl) into Wom~1,p(ti) is compact, 
given e > 0 there exists (again see [16, p. 59]) a constant c€ such that 

IMU-i.p ^ «IklU.p + ce\\u\\ 

for all w(x) in W provided p è 2. Thus, for every e > 0, there exists ce such 
that 

j \\uv(t) - u(t)\\m-i,/dt ^ K9e
pj \\uv(t) - w ( 0 I U . / ^ 

+ K9ctj \\uv(t) - u(t)\\pdt, 

where K2 depends only on p. Let e0 > 0 be given. Then by (6-5) and (6-6) 
we can choose e > 0 so small that 

j \\u*(t) - u{t)\\m^v
pdt < ho + K10ceJ \\uv(t) - «(OH 2*, 

where Ki0 depends only on p and KQ. This implies by (6-8) that 
Dyuv(t) -> Dyu{t) strongly in LP(T\ Lp(tt)) and Lp(0 X ST) for all | 7 | ^ m - 1 
as v —>oo. The convergence almost everywhere on 12 X ST is obtained after M' 
refinements of this uv(t). This proves the lemma. 

We now set n = v in (6-1) and pass to the limit. 

THEOREM 1. There exists at least one weak solution of Problem I in the sense 
of Definition 3.2. 
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Proof. Setting n = v in (6-1) we have: 

(««IF(0, Wj) + <^ « ' (0 , Wy) + d(ut'(t), Wj) = (/(*), W,) 

is valid for every j = 1, . . . , v and for almost all t in E1. Thus 

(6-9) - J (tt | ' (0, ^i(O) ̂  + / <t\ «'(0» iKO) ̂  + <* J («*F(0, <K0) * 

= / ( / ( ' ) • * ( * ) ) < * * 
for all 

where each rik(t), k = 1, . . . , /, has period r and is once continuously differen-
tiable on E1 and I S- z>. Since these \f/(t) are dense in gi for I arbitrary, taking 
the limit in (6-9) yields by Lemma 6.1, 

-j («,(*), *,(*)) dt + (Go, $> + d J (ut(t), $ (0 ) dt = J (/(*), $ (0 ) * 

for all $(/) in f$fi. Hence, to show that u(t) is a weak solution of Problem I, 
it is sufficient to show that Go(0 = Gu(t). 

Substituting u(t) for $(t) in the above equation and taking the real part 
of both sides yields 

(6-10) -J \\ut(t)\\
2 dt + Re(G0, u) = Re j (/(*), u{t)) dt, 

where Re j {ut(t), u(t)) dt = 0 since u{t) is equal almost everywhere to a 
continuous function from E1 to L2(12) (see [25]) so that, in particular, the inte­
gration by parts formula 

f 1 { ( « i ( / ) , « ( 0 ) + (u{t),ut(t))}dt= | K * i ) | | 2 - |K*o)| |2 

«J to 

is valid. Now if we multiply (6-1) by cnj(t), sum over j = 1, . . . , n, take the 
real part of both sides, integrate over any interval of periodicity, integrate 
the first term by parts, set n = v, and take the limit inferior of both sides as 
v —» oo, we have 

(6-11) - j | \ut(t) 112 dt + lim inf Re (Gu\ u) ^ Re j (f(t), «(/)) dt. 

Comparing (6-10) and (6-11), we can conclude that 

(6-12) Re (Go, u) ^ lim inf Re (Gu\ u). 

Hence, if 6(t) is an arbitrary element in L°°(r; W) with 

Dad(t) 6 U>(T\ ZP(Û) ) H Z?(0 X Sr) 

for every fixed a with |a| g m, then by (6-12), Lemma 5.1, and (1.2) (ii), 

Re{(G0 - GO, u - 6) + (Cu - C6,u- 0}} 
^ lim inf Re{(Guv - Gd, uv - 6) + (Cuv - CO, uv - 0)} ^ 0, 
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where C is the mapping associated with that B(t) in (1.2) (ii). Finally, we 
set 0(0 = u(t) - TT0I(O where w € (0,1]. Then 

Re{(G0 - G(u - TT0I), 0i) + (Cu - C(u - TT0I), 0I)} ^ 0. 

Let 7T tend to zero and let p be the subsequence of IT in Lemma 5.2. Then 

Re(G0 - Gu, 0i) ^ 0 

and since 0(0 was arbitrary, so is 0i(O and Go(0 = Gu(t) almost everywhere 
on E1. This proves the theorem. 

7. The existence theory for Problem II. Let conditions (II.1)-(II.6) be 
satisfied. Let {wj},j = 1, 2, . . ., be a basis of W and let Pn be the projection 
in L2(12) onto the subspace generated by the distinct basis elements Wi, . . . , wn. 
Denoting by vn(t) the solution of the system 

(7-1) (!>„"(/), wj) + a(t; vn(t), Wj) + d(vt
n(t), Wj) = ( / ( 0 , w,), 

te [0, T)J= l , . . . f « , 
vn(t) £ PnL

2(Çl) for all / in [0, T) and vn(0) = Pnv0, vt
n(0) = Pn»lf 

wehavez>w(0 = X)*-i^n* ( 0 ^ , 2 ^ 2 - 1 ^ ( 0 ) ^ = Pnv0, and 22*-iCn*'(0)wjfc = P»»i. 
It is well known from the theory of ordinary differential equations that for 

each positive integer n there exist, provided (II.1) is satisfied, functions 
Cnk(t), k = 1, . . . , n, with cnk(0) and cnJc'(0) equal to arbitrary preassigned 
constants such that vn(t) = 2^*=icn*(0w* satisfies (7-1) almost everywhere 
on [0, Tn) for some Tn with 0 < Tn ^ P. As the following a priori estimates 
show, each interval of existence [0, Tn) can be taken to be [0, T). 

Multiplying (7-1) by cnj'(t), summing over j — 1, . . . , n, taking the real 
part of both sides, and integrating from 0 to t yields 

( l / 2 ) { | | ^ « | | 2 - ||»,"(0)||*} + ('Rea(s;vn(s),v;(s))ds 

+ d f |K K ( s ) | | 2 d5= Re (' (f(s),vs
n(s))ds. 

This becomes by (11.3) and the Schwarz inequality 

(i/2)||,/^ll2 + c2(F(0iU,)^ (i/2)||^n(0)||2 + g2(IK(0)IU) 

-d ('\\vs
n(s)\\2 ds + h f,{ci(\\f(s)\\m„)+\\v.n(s)\\i}ds 

+ tkt+ ('\\f(s)\\2ds + f ||»,"(s)||*<&. 

By construction, ||flw(0)||TO>p ^ ||^o|U,P and ||*>«n(0)|| ^ ||z>i|| for every n. In 
addition, since g2 is continuous a n d / ( 0 is a fixed element in £2([0, T) ; L2(0)), 

II» "Oi l" + 2c,(||*"(0IU.p) ^ -Kn + JSTi. ('{\K(s)\\i + 2c2(\\vn(s)\\m,p)\ ds, 
Jo 
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where Kn and Kï2 are constants independent of n and t. Thus, since c2 is 
continuous with l i m ^ ^ C ? ) = 0 0 , there exists a constant Ku independent 
of n and of t Ç [0, T) such that 

(7-2) \\v?{t)\\ + \\vn(t)\\m,P<LKlz 

and it follows that each Tn can be taken to be T. 
In order to establish the existence of a weak solution of Problem II in the 

sense of Definition 4.1, it is sufficient to show that a subsequence vv(t) of 
vn(t) satisfies 

r WW, $t(t)) it -> r (vt(t), $t(t)) a 
and 

a(t; vv(t), $ (0 ) it -> a(t; v(t), $(/)) d/ 
o */o 

for all <£>(/) in ©i as v —>oo and that v(0) = ZJ0 almost everywhere on Œ. 
G and C defined by 

a(t;v(t),w(t))dt and {Cv, w) = b(t;v(t),w(t)) 
o «/o 

(ft 

are unique, well-defined mappings from L°°([0, T); W) into L°°([0, T)\ W*) 
for all w(t) e Lx([0, r ) , W) where b(t;u,v),t G [0, T), is the family of forms 
associated with a family $(0> * € [0> ^)> of admissible lower order operators 
for Problem II. Just as in Lemma 6.1, we have by (7-2) that there exists a 
subsequence vv(t) such that as v —*oo, 

vv(t) -> z/(0 in the weak* topology of (I^QO, T) ; IF*))*, 
M O -> «>«(*) in the weak* topology of (L^fO, T); L2(fi)))*, 

D**vv(t) -+D-*v(t) weakly in L*(Û X [0, T)) for all \y\ £ m, strongly in 
LP(Q X [0, r ) ) for all \y\ S m — 1, and almost everywhere 
on 0 X [0, T) for all |Y| ^ w - 1, 

and 

Gv'(t) -> G0(0 in the weak* topology of (^([O, T); IF))*. 

We are now in a position to pass to the limit in (7-1). Setting n = v we have: 

(*>^(0, w,) + a(t; V(t), wj) + i{vt
v(t), Wj) = (/(*), w,) 

is valid for every j = 1, . . . , v and for almost all t G [0, T). Since 
»*F(0) —> Wi(0) weakly in L2(Œ) while «^'(O) —> »i strongly in L2(12) as ^ —>oo, 
we have: 

- f M 0 , *,(*)) * + (Go, *) + d( (*,(*), *(/)•) dt 
«/o «Jo 

= (plt *«») + f (/(*), *(*)) * 
«Jo 
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for all <£(/) Ç ®i and setting $(t) = v(t) and taking the real part of both 
sides yields 

(7-3) - f \\vt(t)\\
2dt+Re(G0iv)+U\\v(T)\\2+\\vt(T)\\2 

= ^|M| 2 + |h||2 + Re f (f(t),v(t))dt, 

where the various integration by parts are justified as in Theorem 1. Now if 
we multiply (7-1) by cnj(t), sum over j = 1, . . . , n, take the real part of 
both sides, integrate over [0, T), integrate the first term by parts, set n = vy 

and take the limit inferior of both sides as v —>oo, we have, recalling that 
vt

v(0) —> vi and vv(0) -> v0 strongly in L2(12), 

(7-4) - r | | » < ( 0 | | ï * + l î m i n f R e < ^ O + ^ I K n i | 1 + \\vt(T)\\* 
«^ 0 V-±as 

£ hdW>°\\ + Ml + 

Comparing (7-3) and (7-4) we can conclude that 

Re(G0, v) ^ lim inf Re(Gv", vv) 

Re f (f(t),v(t))dt. 

and just as in § 6 we can show using lemmas analogous to Lemmas 5.1 and 5.2 
that Go(0 = Gv(t). Thus we have proved the following theorem. 

THEOREM 2. There exists at least one weak solution of Problem II in the sense 
of Definition 4.1. 

8. Some examples. Problem I. Several specific examples of families A(t), 
t G E1, in Problem I have already been mentioned in § 3. These are 

A{t)u{x) = — A2u(x) + \u(x)\^u(x) (y ^ 0) 
and 

A (*)«(*) = - ^ ( ^ ) " -^jc^j + * ^n «(*) («(*) real-valued) 

on 0, where 12 is a bounded domain in E2, (for simplicity, most of the examples 
mentioned are restricted to one and two space dimensions). A very simple 
example is the family 

A{t)u(x) = - ^0^- + ku(pc) + eu\x) 

for the non-linear, one-dimensional wave equation 

un(t) - —^p- + ku(t) + eu\t) + dut(t) = f(t) 

considered by Ficken and Fleishman [9]. Here e is a small parameter and k is 
a positive constant. 
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The verification that (1.1)—(1.3) (or these conditions with W replaced by 
Wm'p(to) in the case of more general boundary conditions) are satisfied for 
the above examples is relatively easy with the aid of the following lemma. 

LEMMA. The function B(z) = |s|p_12, p ^ 1, satisfies 
(i) Re{6(z)z} ^ cx\z\^+\ 

(ii) |0(*)| £c2\z\», 
(in) Re{0/(f)f} ^ CslsMrl2 , 

Ov) |̂ /(r)| gc^i^in, 
where C\, c2, c%, and c4 are positive constants and d/(Ç) denotes the derivative of B 
at the point z in the direction f. 

Proof. The proof of the above lemma can be found in [17, p. 54]. 

Problem II. Since (1.1)—(1.3) restricted to t 6 [0, T) for all finite T are 
far stronger than the corresponding conditions on Problem II, the examples 
of A (t) for Problem I restricted to t in [0, T) are also valid examples of A (t) 
in Problem II. Some additional examples of A(t) in Problem II are 

1/2 

and 
^>«-^>-4(^y+fer)'}' 

on 12, where again 12 is a bounded domain in E2 and k is some constant. 
The equation 

vtt(t) - A2v(t) + ev^ = 0, t^ 0, 

describes the vibrations of a uniformly charged plasma, such as an ionized 
gas or an electron gas in a vacuum tube [13], and equations of the form 

...«-0+(^)>^-* * ^ 0, 

arise in the study of the propagation of high intensity sound waves in a fluid 
(macrosonics) [15]. Corresponding to these equations are the families 

A(t)u(x) = -A2u(x) + eu^ 
and 

"«"«--O+teS?)^-
respectively for Problem II. 

The verification that (II.l)—(II.3) are satisfied for these examples of A(t) 
is left to the reader. 

An initial-boundary value problem associated with Problem II involves 
the general non-linear Euler-Poisson-Darboux equation 

vtt(t) +A(t)v(t) + (d/t)vt(t) = /(*), 
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where A(t) is, as usual, given by (1-2). With only slight modification, the 
existence results for Problem II in § 7 are valid for initial-boundary value 
problems for the above mildly singular equation. For work done on the linear 
and semi-linear Euler-Poisson-Darboux equation, the reader is referred to 
[8; 14]. 
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