ON HOMOGENEOQOUS SPACES, HOLONOMY,
AND NON-ASSOCIATIVE ALGEBRAS

ARTHUR A. SAGLE*

1. Introduction. Let G be a connected Lie group and H a closed
subgroup. The homogeneous space M= G/H is called reductive if in the
Lie algebra g of G there exists a subspace m such that g =m 4§ (subspace
direct sum) and [hm]c m where § is the Lie algebra of H, see [8. In
this case the pair (a,h) is called a reductive pair and the subspace m can be
made into an anti-commutative algebra as follows. For X, Ye m let [X Y]
= XY + n(X,Y) where XY =[X Y], (resp. A(X,Y) =[X Y]y is the projection
of [XY] in g into m (resp. §). The Lie algebra identities of g yield the
following identities for m and . For X,Y,Zem and he ),

(1) XY=-—YX (bilinear)

2) mX,Y)=-—n(,X) (bilinear)

3 [Z X, Y)]+[X Y, 21+1Y WZ,X)]=(XV)Z+ Y2)X + (ZX)Y
4) hXY,Z)+ h(YZ,X)+ h(ZX,Y)=0

5) [h kX, Y)]=h(k X),Y)+ h(X,[h Y]

6) [r XY]=[h XIY + X[k Y].

—

The above algebra will be denoted by (m,XY) and note that (6) says the
mappings D(h) =adwh: m—>m: X—[h X] are derivations of this algebra.
Also note G/H is a symmetric space if (m, XY) is the zero algebra.

The algebra (m, XY) and other non-associative algebras are related to
the differential geometry of G/H by using the following results of Nomizu
8, Th. 8.1l

TueOREM. Let G/H be a reductive homogeneous space with a fixed Lie algebra
decomposition g =wm + 8§ with [f m]l < m. Then there exists a one-to-one correspondence
between the set of all G-invariant connections on G|H and the set of all bilinear
Sunctions «: mXxm—m such that the mappings D(h) are derivations of the
resulting algebra.
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Thus if (m, ) denotes the above algebra we have [ «(X,Y)] = «([2 X],Y)
+ a(X,[h Y]). From [8, section 9] we have the following formulas for the
curvature endomorphism and torsion in terms of (m,a). Motivated by the
notation in [5], let a(X): m—m: Y—W(X,Y) and b(X): m—>m: Y—>aY, X), then

(7 R(X,Y) = [a(X), a(Y)] — a(XY) — D(h(X,Y)),
®) Tor (X,Y) =[a(X) — b(X) — L(X)Y

where L(X): m—o>m: Y > XY,
From [8, Th. 10. 1] the particular algebra (m,XY) is further related to
the geometry of G/H as follows.

THEOREM. On a reductive homogeneous space G[H, there exists one and only

one G-invariant connection which has zero torsion and such that a 1-parameter subgroup
x(t) in G generated by Xem projects by n: G—>G|H: x(t) — x*(t) into a geodesic
x*(t) wm G/H. In this case a(X, Y)=—§—XY and the connection 1is called the
(canomical) connection of the first kind on G/H.
Using identities (1)-(6) various results were proved in [10 ;11 ;12 ; 13] relating
the algebra (m, XY) to the geometry of G/H. In this paper we attempt to
extend some of these results to the general connection on G/H defined by
(m,a) by comparing it with the algebra (m, XY). A comparison theory
was developed by Kostant in [5].

Given a connection on M = G/H defined by the algebra (m,«), the
corresponding holonomy group, Hol(a), acts on M by G-translating its
action on the tangent space M, =m to all of M(p = He M). Thus since
Hol () is a Lie group, we shall cor;sider its Lie algebra, hol (a), called the
holonomy algebra as a Lie algebra of endomorphisms acting on m. From
[5;7;91 we see that hol(a) is the smallest Lie algebra %* such that all
R(X,Y)e ¥* and [a(X),5*1cBh*. Thus H* =hol(«) is generated by {a(X)
and D(h(X,Y)) :X,Y € m}. Geometrically, holonomy irreducible spaces G/H
are first considered and then extended by a ‘“de Rham decomposition
theorem” to holonomy “completely reducible” spaces [10, Th. 8]. Algebrai-
cally, this leads to new problems not only in simple algebras (m,a) but
also in algebras (m,«) which have no H*-invariant subspaces; i.e. no left
ideals which are invariant under the derivation algebra.

In section 2 we review some basic facts in terms of the above non-
associative algebras. We see that the algebras- (m,a) generalize Lie
admissible algebras to reductive Lie admissible algebras [11, section 1]
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Next we see that holonomy irreducibility implies (m,«) is a simple algebra,
but frequently this algebra need not have an identity or idempotent
elements e.g. G/H Riemannian. Following the lead in [5], we compare a
pseudo-Riemannian connection given by . (m,«) with a pseudo-Riemannian
connection of the first kind; we do this comparison by a one-to-one
correspondence between algebras (m,a) and elements in a neighborhood of
the identity in a certain Jordan algebra.

In section 3 we give some applications of algebras (m, «). For example,
we show that if (g,5) is a reductive pair with decomposition g = m + § such
that D(§) acts irreducible on m, then any algebra (m,a) must induce an
irreducible connection of the first kind [16]. We extend this using the
algebra (m,a) to prove Kostant’s results [5] about D(§) having inequivalent
representations in m implying G/H is metric irreducible. We also give an
example of a reductive pair (g,h) with g simple and compact which yields
reducible or irreducible connections. This example seems to indicate that
the problem of irreducibility in the general case is more numerical than
structural; compare with the results on the connection of the first kind in
[13].

In section 4 we introduce the Lie transformation algebra L(a) generated
by all the endomorphisms «(X), b5Y) for X, Y€ m. We show that if G/H
is a Hol (a)-irreducible pseudo-Riemannian manifold, then hol(a) is a
reductive subalgebra of L(e) and in this case it is easy to see that L(a)
is the Lie algebra of the Lie group generated by Hol(a) and the holonomy
group of the connection of the first kind. We also note L(a) = hol(a) if
and only if (m,a) induces a connection of the first kind. Finally when g
is semi-simple (with G/H irreducible as above), we show how to reduce the
study of a pseudo-Riemannian connection induced by (u,a) to the study of
a finite sequence of reductive pairs (L; H;) where L; is semi-simple and
(L, H;) is an irreducible symmetric pair or induces an irreducible connec-
tion of the first kind on the corresponding homogeneous space /57

2. Algebra (m,a). Let (3,5 be a reductive pair with fixed decom-
position g=m 49 and [h m]lcm Then as previously described a G-
invariant connection on G/H yields a non-associative algebra (m,a) so that
D(h) = adnh are derivations of this algebra. We shall assume that G/H is
simply connected then in this case [7;10], the holonomy group, Hol (),
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is irreducible in m if and only if its Lie algebra, hol(e), is irreducible in
m. We shall also assume G/H is not “flat” i.e. hol (a) # 0.

Next we note that if hol (a) is reducible, then there is a D(§)-invariant
subspace n of m which is a(m)-invariant; i.e. n is a D(h)-invariant left ideal
of the algebra (m,a). From this remark we obtain the following theorem.

TrEOREM 1. Let G/H be a simply connected reductive homogeneous space
with fixed decomposition § =m LY such that the algebra (m,a) determines a G-
tnvariant connection. If G/H ts a holonomy irreducible non-symmetric space with zero
torsion, then the algebra (m,e) is simple.

Proof. First (m,a) 1is not the zero algebra; for if «(X,Y)=0 for all
X,Yem, then 0=Tor(X,Y)=eaXY) —al,X)— XY =XY. Thus G/H
would be symmetric. Next if (m,«) has a proper ideal b (i.e. subspace b
with a(®,m)cb and a(m,b) cb), then (m,«) has a proper ideal n which is
D(p)-invariant [10 ;11 ;13]l. Thus hol (a)n € n so that G/H is not holonomy
irreducible, a contradiction.

Contrary to the situation of a connection of the first kind, the converse of
this theorem is false. In [5, section 3.2] Kostant constructs a simply
connected reductive non-symmetric homogeneous space G/H with G simple
and compact such that G/H has a reducible (G-invariant) metric connection
induced from the Killing form in g. Thus in the decomposition g =m + §
we obtain an algebra (m,«) which induces this reducible connection. This
algebra is simple; for if b is an ideal of this algebra, then since the
connection is metric we have for Xem, Yeb that XY = a(X,Y) — a(Y, X)
€b. Thus the algebra (m,XY) has a proper ideal so that G/H is not
irreducible relative to the connection of the first kind [10]. This contradicts
the fact that if G is simple and G/H is reductive Riemannian simply
connected homogeneous space, then G/H is irreducible relative to the
connection of the first kind [10].

The algebras (m,e) are not as general as might be expected. First as
explained in [11] the algebra (m,a) is reductive Lie admissible when
Tor (X,Y) =0 as follows. In general a non-associative algebra A with
multiplication XY vyields an algebra A~ which is the same vector space A
but with multiplication X*Y = XY —YX. The algebra A is reductive Lie
admissible if there is a Lie subalgebra, D(A”), of the derivation algebra of
A~ such that g = A~® D(A") is a Lie algebra and (g, D(A™)) is a reductive
pair relative to the above decomposition and [X Y],- = X*Y.  Note that
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if D(A™) can be taken to be 0, then A is Lie admissible; in general a
non-associative algebra A is Lie admissible if A~ is a Lie algebra; see
references in [11].  Also in [11;17] it is shown that alternative algebras
are reductive Lie admissible and therefore so are associative algebras. It
should be noted that Jordan algebras arise from symmetric pairs (g,5) and
are trivially Lie admissible.

Next we note that the reductive Lie admissible algebra (m,a) is a
subspace of a Lie admissible algebra as follows. Let A be the vector space
m + 5§ =g and define multiplication on A by:

@@ X,Yem, then X.¥ = (X, V) +~é«h(X,Y);
(b) Xem and k), then 2X.-4 =[X k] in the Lie algebra g ;
() hebh and h,< ¥, then 24k, =[h; k] in the Lie algebra g.

Then with this multiplication A is a Lie admissible algebra such that
A~ =g as Lie algebras. Note that for «(X,Y) =—;~XY i.e. canonical

connection of first kind with zero torsion, we have A=g. The role of
the algebra A in studying the connection determined by (m,a) is probably
analogous to the Lie algebra g and the connection of the first kind.
For example, analogous to the results concerning a simple Lie algebra g
implying G/H is irreducible relative to the connection of the first kind [10],
one can ask if A is simple, then when is G/H irreducible relative to the
connection induced by (m,a).

We now study the algebra (m,a) in more detail when it induces a
pseudo-Riemannian connection on G/H, Thus from [8;5] we see that
the reductive pair (g,§) with fixed decomposition g=m 4§ is such that
there is a nondegenerate symmetric bilinear form, C, defined on m which
satisfies

C(DX,Y) = — C(X,DY)
for D =ad,h with A€ § and
C(a(Zy X)9 },) = C(X’ “(Z, Y))

for X,Y,Zem.  Thus the mappings D and a(Z) are C-skew-symmetric.
Also from [8, section 13] the multiplication «(X,Y) can be written uniquely
as
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alX,Y) = %XY%— U(X,Y)

where U(X,Y) is a commutative multiplication on m and might be regarded

as a perturbation of the connection of the first kind <given by %— X Y> to
obtain the connection given by «(X,Y). Note that «(X,Y) —a(Y,X) = XY ;
this is because Tor (X,Y) = 0.

Also from [8] we have that U(X,Y) is uniquely determined by the form

C and this yields the unique determination of «(X,Y) by
9) 20(Z,a(X,Y)) = C(Z,XY)+ CZX,Y) + C(X, ZY).

We have seen that when (m,«) induces an irreducible connection, this
algebra is simple. However, contrary to the usual simple algebras, these
algebras need not have an identity or idempotent elements. Let (m,a)
induce an irreducible pseudo-Riemannian connection via the nondegenerate
form C and suppose e is the identity element for (m,a). Then X = a(e, X)
=a(X,e) +eX=X+eX; thus eX=0 for any Xem  Next using (9) we
have

2C(e, X) = 2C(e, ale, X))
= Cle,eX) + C(ee, X) + Cle, eX)

thus e =0, a contradiction. Next if the connection is Riemannian and if
¢ = ale,e) is an idempotent of (m,a), then using (9),

2C(e, e) = 2C(e, ale,e)) =0 ;
thus in this case (m,@) cannot have an idempotent.

ProrositioN 2. Let (8,9) be a reductive pair with fixed decomposition
g=m-+Y which induces an irreductble pseudo-Riemannian connection on the
corresponding G/H by means of the algebra (m,a). Then (m,a) is not an alternative
algebra (and therefore not associative).

Proof. We use the fact that a simple finite dimensional alternative
algebra over the reals has an identity. Thus although alternative algebras
yield connections, they are not irreducible. A

In [5] Kostant compares the general metric connection with the connec-
tion of the first kind when it is also a metric connection. Many of these
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results extend to pseudo-Riemannian connections and we shall do a similar
comparison of the connections and the holonomy algebras by means of the
algebras defined on m.

For a fixed decomposition g = m 4 § let the algebra m with multiplica-
tion XY =[X Y], be denoted by (m, XY). Let the canonical connection of
the first kind be induced by the pseudo-Riemannian metric B(X,Y); thus
the algebra (m,XY) is an anti-commutative algebra with an invariant form
{10] and the mappings D(k) and L(Z) : m—m: X—ZX are B-skew-symmetric.
As in [5] we have, since B and C are nondegenerate forms on m, that
there is S & GL(m) such that C(X,Y) = B(SX,Y) for X, Yem. Thus from
(9) we see the algebras (m,e) and (m, XY) are related by

(10) 2a(X,Y) = XY + ST[X(SY) — (SX)Y];
that is, U(X,¥) = — S7IX(SY) — (SX)Y1
Some immediate properties of S are

(@) [S,D1=0 for all D e ad,h and
by S*=8°=S$S

where b and ¢ denote adjoints relative to B and C.  Conversely if S°
=S e GL(m) satisfies (a), then we can define a pseudo-Riemannian metric
C and a corresponding connection by the above formulas. Next note that
the set of S’s in Hom (m,m) satisfying (a) and (b) form a Jordan algebra
(4, -) under the usual multiplication 2S,;-S, =S,S;+ S,S;. The S’s which
yield connections are the elements of M= AN GL(m), which is a submani-
fold of A and forms a reflexion space [6]. Thus for L(S): A—+A4: X—>S-X
and for Q(S) = 2L(S)2 — L(S?) we have that M is closed under the differenti-
able product

S,*S, = Q(Sl)SZI-
More details will appear in a later paper.
3. Some applications. For the applications of the algebras (m, «) and
(m, XY) we shall assume that the reductive pair (g,5) and the (fixed)
decomposition g=m4 ) is such that D(s) =0 implies % =0. First let

D(h) = adnh act irreducibly in m, then from [10, Th. 6] we have mm =0
or (m, XY) is simple; thus G/H is an irreducible symmetric space or G/H is
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irreducible non-symmetric space relative to the connection of the first kind.
Now assume the connection of the first kind is given by a pseudo-Riema-
nnian metric B. For example, if g is simple, then using [11, Th. 6] b is
semi-simple so that we may take m =§* relative to the Killing form of g
and let B equal the Killing form restricted to m x m, see [13]. Now let
(m,e) be any other algebra where « is given by (10) and induced by a
metric C.  Since S =S° and C is a metric, S has a real characteristic
value 1. Since [S,D(h)] =0 we have {x € m: Sz = Az} is a non-zero D(k)-
invariant subspace and must equal m. Thus S =2/ and «(X,Y) =%XY.
Thus any metric connection on G/H given by fixed decomposition g =m
+9% and ad,h irreducible on m must be an irreducible connection of the
first kind. For complete details in this case see [16].

The above result has been generalized in sections 4. 6 and 5.1 of [5].
For example, let G/H be a Riemannian reductive homogeneous space such
that g=m 49 is simple. If D(h) has inequivalent representations in m,
then G/H is irreducible in any metric connection. “D(§) has inequivalent
representations in m’> means every irreducible representation of D(§) has at
most multiplicity 1 on m ;see [51. We shall now use the algebra (m,a) to
prove a variation of this result and to show the hypothesis is necessary.

LemMA 3. Let G/H be a reductive homogeneous space with corresponding
reductive pair (8,9) and decomposition § = m + § satisfying

(@) g=m4h(m,m)  (=m+[m m]),
(b) D(h)y=0  implies h =0,
() GJ/H 1is completely reducible relative to some connection; ti.e. there is an

algebra (m,a) such that the corresponding holonomy algebra acts as a completely

reducible Lie algebra on m.
Then

(1) b is reductive in g ; i.e. adgh is completely reducible in g ;

(2) DY) is completely reducible in m.

Proof. Let a(m) be the Lie algebra generated by the endomorphisms
aX): mom: Y>a(X,Y). Thus if M, ={a(X): Xe m} and M., = [M, M]
we have a(m)=M, + M,+---; see [14]. From this and the fact D(§)
consists of derivations of (m,a) we have [D,a(X)] = a(DX) and by induction
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conclude [D(9),a(m)] < a(m). Thus we see that a(m)+ D(h) is a Lie algebra
and since the holonomy algebra, hol (), is generated by a(m) and D(§) we
have hol (¢) = a(m) + D(§). Now by (¢) hol(a) is completely reducible and
just as in the proof of Theorem 9 of [4] we can conclude that D(§) is
completely reducible in m. Thus D) =c(D)® D’ where D’ is a semi-
simple ideal and the center of D(§) is ¢(D) which consists of semi-simple
endomorphisms.
Next we shall show that the map

¢ D(9) = adsh: D(h)—adgh

is an epimorphism of Lie algebras. First D(k) = D(k) implies D(h —Fk) =0
and therefore by (b), 2 =Fk; thus the map ¢ is well defined. Next any
adgh determines an k<€ § so that ¢ : D(h) —>adyh ; thus ¢ is surjective.
Finally using [D(k), D(k)]1 = D((h k]) we see that ¢ is an epimorphism of Lie
algebras; thus adgh = Im(g) = ¢(D(H)).

Next note that Kerg¢ =c¢(D). For 0= ¢(D(h)) = adyh vyields for any
k<Y, 0=(adpyh)(k)=[h k. Thus 0= D(k k]) =[D(k),D(k)] so that D(h)
e ¢(D). Conversely if D(h) € ¢(D), then for any k<9, 0=[D(h),Dk)]
=D(k k). Thus using (b), 0="[h k] = (adsh)(k) so that O = adsh = ¢(D(k)).
Using this we obtain

adyh) = ¢(D(B)) = ¢(c(D)) @ ¢(D’) = ¢(D'),

thus adgh is semi-simple.
Next from g =m 1§ we choose a basis of g from m and ¥ to obtain:

4% [D(f)) 0 } ¢(D) 0 :| @ D’ 0 J y y
a = = = 4
g 0 adf,f) { 0 0 [ 0 ad;,f) c(a gf)) @ (a gf))

¢(D) 0
C(adgf)) = I: 0 O:l

is the center of adjh and consists of semi-simple linear transformations and

D 0
wasr (7 0]
0 ad;,[)

https://doi.org/10.1017/50027763000026799 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000026799

382 ARTHUR A. SAGLE

is a semi-simple ideal. Thus by [2, p. 81] adgh is completely reducible in
a.

Remark. If G is simple and G/H is a Riemannian reductive non-
symmetric homogeneous space, then (a), (b), and (c) are satisfied: (a) since
m J h(m,m) is a non-zero ideal of g; (c) using results in [5;10] on the
connection of the first kind; and (b) as follows. Suppose D(k) =0, then
th (X, Y)=h(h X,Y)+ h(X,[k Y]))=0. Thus since § = r(m,m) we have
adyh = 0. Therefore adsh =0 so that [ ¢g]=0. But this means Rk is a
one dimensional ideal in g, a contradiction unless % = 0.

Let g=m {5 be (fixed) decomposition which induces a metric connec-
tion of the first kind with metric B. Let C(X,Y) = B(SX,Y) be another
metric which determines another connection viz the algebra (m,a) as
previously discussed and let hol(B) and hol (C)=hol(«) be the correspon-
ding holonomy algebras, then we have the following result [5, Lemma
4, 4 Al

LemMA 4.  Let n be a subspace of m such that Sncn and hol (Cn C n.
Then hol (Bn C n.

The proof can be given by means of the algebras (m, XY) and (m,a)
but we omit it.

THEOREM 5. Let G/H be a reductive homogeneous space with corresponding
reductive pair (3,9) and decomposition g =m LY satisfying

(@) g=m4ph(m,m),

(b) D(h) =0 implies h =0,

() G|H 1is irreducible non-symmetric relative to a metric connection of the first
kind (relative to above (fixed) decomposition),

(d) D(B) has inequivalent representations in m.

Then G/H is irreducible relative to any metric connection.

Proof. Suppose not, then there exists a metric C and a corresponding
algebra (m,a) which has a D(§)-invariant left ideal u; i.e. hol (Cnc .
Now let C(X,Y)= B(SX,Y) where B induces the irreducible connection of
the first kind, then [S, D(§)] =0, i.e. S € centralizer D(}). Since D(Hlncn
and D(b) is completely reducible, we may write — using (d) —n =m, 4+« « J m, _
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where the m; are D(f)-irreducible and non-isomorphic D(h)-modules. These
my’s are actually homogeneous components of D(§) in m and since S
€ centralizer D(§) we have Sm; cm;. Thus Sncn and by Lemma 4 G/H
is not irreducible relative to the connection of the first kind, a contradic-
tion.  (Perhaps see [3, p.126] for homogeneous components using the

associative enveloping algebra D¥).

CororLARY 6. Let G/H be a non-symmetric Riemannian reductive homo-
geneous space with G simple and ¢ =m 1§ the corresponding decomposition. If
D(Y) has inequivalent representations in wm, then G/H ts irreducible relative to any
metric.

The proof uses Theorem 5, the remarks following Theorem 4, and
results in [10] which show that G/H is irreducible relative to the connection
of the first kind.

The converse of this corollary appears to be an open problem. However,
we now give an example to show the hypothesis on D(f) is necessary. Let
g be the simple compact Lie algebra of 5 x 5 skew-symmetric matrices. Let
§ be the simple Lie subalgebra of 3 x 3 skew-symmetric matrices imbedded
in g by:

A 0
p= { o : A is 3 x 3 skew-symmetric;.
0

Let m = §L relative to the Killing form B on g, then m is given by:

I’ 0 X . .
m = :Y is 2 x 2 skew-symmetric ;.
l-x v
Thus (g,9) is a reductive pair with g =m +9 and — B|m X m is positive
definite and induces an irreducible metric connection of the first kind on
the corresponding G/H.
Let e;; denote the usual matrix basis, then a basis for m is

Ji=ey— ey, fo=ey— ey, [fi3=€y—¢€;;
fl=es—es, fh=es5—e5, fi=e;—e;; and
Ji = e — eg
Let m, (resp. m,) be the subspace spanned by the f£’s (resp. f/’s) and let

m; = Rf,. These subspaces are D()-submodules and m, - m,: f; = f/ yields
a D(h)-module isomorphism; also D(h)m, = 0.
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Next we note that the algebra (m, XY) is given by:

m? =0 1=1,2,3;

fifi=—fi, fufi= T, fif5=—20.f4s

Let 7 denote the 3 x 3 identity matrix and let

ol 0
S = ql
0 r

be the endomorphism on m = m, § m, + m; which defines the metric C(X,Y)
= — B(SX,Y); we assume

p+qg—7r=0 and det(S)>0.
We next have that the algebra (m, a) which induces the C-metric connection
is given by:

a(m;,m) =0 {=1,23;

2a(fi £1) = 3ulr + 4= D)fi

a(fu fi) = a(f, f1) =0.

Let w be the 4-dimensional subspace spanned by f, and f;+ f; with
i=1,2,3. Then since m, =m, as above and D(4)f, =0, we see that n is
D(p)-invariant. Also using the above multiplication and «(X,Y)=XY
+ a(Y,X) we have a(mu)cm,cun.  Thus the algebra (m,a) vyields a
reducible connection on the corresponding G/H.

We now change S slightly and obtain a new algebra (m,«) which
gives an irreducible metric connection. Assume that

a=p+q—r+0, b=p—qg—r+0, and det(S)>0.
Then we obtain an algebra (m,a) with multiplication
(@) a(m,m)=0 i=1,23;

b) alfo f1) = —by-2 5

©  2a(fy, fi) = —qa o 2a(fy, fi)=—f.

_a
D
Now if @, €m; are such that a=a +a,+a€n which is a D(H)-

invariant left ideal of (m,«), then using the D(§)-invariance, we easily obtain
that elements of the form «,f, + v.f; (with u,,v; € R) are in u for i =1,2,3.
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Using this and (b) we see that f,eun. With f,en we next use (c) and
a(X,Y)=aY,X)+ XY and a,b+ 0 to obtain f,, f; < n; thus v =mnt.

Next we give a less computational example of a reductive pair (g,b)
with g and § simple but g not compact and the corresponding G/H is
reducible in a naturally defined connection. Let g =g|(#) be the Lie
algebra of all % xx matrices under commutation and let § be the
subalgebra of g X ¢ matrices of trace 0 imbedded as follows:

|

Let m be the subspace of g spanned by

A B
[ } and I,
C 0

then g =m 1+ 9 with [m,jJcm. Next for

A B P Q
X= + al, Y=[ +plem
C 0 R 0

we define

AP+ BR AQ 1
a(X,Y) = [ J + (— tr CQ)I.
cp 0 n

Then (m,e) is an algebra such that

a(X,Y)—aY,X) = XY

[4,P1+ BR~QC  AQ—PB]
2[ J+7tr<CQ—RB)1

CP— RA 0
and
Da(X,Y) = a(DX,Y) + a(X, DY)
using
0 — BU
Dr)X = [
Uuc 0

where D = D(k) with h € ) as above. Thus (m,a) defined a connection on
the corresponding G/H with zero torsion.
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This connection is reducible since we can construct left ideals of (m, )
analogous to those in the associative matrix algebra. For let P and R be
matrices with 0’s in the first column, then the set of elements n given by:

P 0
= {[ }:P,R as above}
R 0

is D(§)-invariant left ideal of (m,a).

Next since the ideal f= RI of the Lie algebra g is B-invariant, the
Lie algebra homomorphism g-—>g =g/t yields a reductive pair (g,5) with
g=m+9H where § is isomorphic to § and [mh] =[mhlc m; thus we have
the reductive pair (g,)) with g and § simple and g not compact. Also
(m, XY) is a homomorphic image of the algebra (m, XY) with X¥ = XY and

Dn)X=T1h,X]. Now on m define the multiplication a by

aX,Y) = aXY).

By the construction of « we see that @ is well defined and satisfies the
following: a(X,Y)— a(X,Y) = XY in m; D(k) is a derivation of (m,a); and
m = 1§ relative to the Killing form B of g. Furthermore B|m x m induces
a non-degenerate invariant form C on the algebra (m, ) ; thus (m, @) induces
a reducible pseudo-Riemannian connection on the corresponding G/H.

As a final application of the algebra (m,a) we use the results in [10,
section 4] which relate affine transformation of G/H and algebra automor-
phisms of (m, a).

THEOREM. Let G/H be a reductive homogeneous space with corresponding
reductive pair (a,9) and fixed decomposition g =m 3+ 9. Let (m,a) be an algebra
which induces a connection on G/H. Let ¢ : GIH—>G/H be an analytic diffeomor-
phism which locally commutes with G and ¢(H) = H. Then ¢ is an affine
transformation on G/H if and only if ¢’ is an automorphism of the algebra (m,e)
where ¢ is the differential of ¢ at the point H < G/H.

To apply this let 3} be an analytic automorphism of a semi-simple Lie
group G. Let ¢ be the corresponding automorphism of g and let § (resp.
m) be the Fitting zero (resp. one) component of g relative to o—1I; see
[2, p. 371 Thus h={zg:(6— D)2 =0, some k} is a subalgebra of g
and ¢—1I is non-singular on m and g=m 1% (analogous to [2, p. 54, ex.
5.  Using ¢ is an automorphism and B(¢P,0Q) = B(P,Q) where B is the
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Killing form of g, we obtain m =}HL relative to B and [m jlcm. Thus
(8,9) is a reductive pair and if H is the subgroup of G corresponding to §,
we see G/H 1is a reductive space such that B|m xm induces a pseudo-
Riemannian connection of the first kind on G/H ; note [13, section 4].

Since H is Yl-invariant, Y induces a diffeomorphism ¢ : G/H— G/H:
aH — 3} aH which locally commutes with G (because 3} is an automorphism).
Thus the algebra (m, XY) has ¢’ as an automorphism using ¢" = s|m. Other
algebras (m,e) such that ¢’ is an automorphism (and consequently ¢ is an
affine transformation) are as follows. Let S =S°< Hom (m,m) satisfy [S,¢’]
=0 e.g. S is a suitable polynomial in ¢’, and define «(X,Y) by formula
(10). We use ¢’ is an automorphism of (m,XY) to obtain ¢'L(X)¢'™*
= L(¢’X) and use this with [¢/,S]1=0 in (10) to obtain ¢’a(X)¢’™! = a(¢’X).
Thus ¢’ is an automorphism of (m, «).

Note that in general if we let C(X,Y) = B(SX,Y) where B, ¢/, m and %
are as above and require C(¢'X,4’Y)=C(X,Y), then using B(¢'X,s'Y)
= B(X,Y) we obtain [¢’,S]1=0. Thus ¢’ is an automorphism of the
corresponding algebra (m,«); i.e. ¢ is a C-isometry implies ¢ is a C-affine
transformation.

4. Holonomy algebra. Let (g,5) be a reductive pair with g =m +
a fixed decomposition. Let a(X):m—>m:Y —>ea(X,Y) and let b(X):m—m:
Y > a(Y, X) be the right and left multiplications for the algebra (m, «) which
defines a connection on the corresponding G/H. Let L(e) be the Lie
algebra generated by the a(X)’s and 5(Y)’s for all X,Y & m ; see [14;10]

TuroreEM 7. Let (a,9) be a non-symmetric reductive pair such that the above
algebra (m,a) defines an irreducible connection with zero torsion on the corresponding
G/H. Then hol(e) and L(a) are trreducible Lie algebras. If the connection is
pseudo-Riemannian, then hol (a) € L(e) ; in this case hol(e) = L(a) if and only if
(m, a) induces a connection of the first kind.

Proof. Since G/H is irreducible we have hol(e) is irreducible and
from Theorem 1 (m,a) is simple so that L(e) is also irreducible; (noting
that an ideal of (m,a) is just an L(a)-invariant subspace).

Next assume (m,e) induces a pseudo-Riemannian connection on G/H
via the nondegenerate form C(X,Y) defined on m. Since hol(a)=a(m)+D(h)
it suffices to show D(§) < L(a) to prove hol («) € L(«) ; see [10] when the
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connection is of the first kind. Let L* be associative enveloping algebra
of L(a); see [2]. Since L(e) is irreducible, L* is semi-simple and since
any D e D(§) is a derivation of (m,a), [D,L(a)]C L(e) and therefore [D, L¥]
cL* Thus D induces a derivation D: L*—>L*:Q —»[D,Q]. Since L* is a
semi-simple associative algebra, its derivations are inner [14].  Thus there
exists U e L* such that DQ =[U,Q] for all Q € L*. Next since L(a) is
irreducible, L(a) = ¢(L)@® L’ where L’ is semi-simple and ¢(L) is the center
of L(a); see [2, p. 81]. Also since D':L'—L':P—[D,P] is a derivation
of the semi-simple Lie algebra, there exists V € L' with D'P = adVP =[V,P]
for all PeL’. Next we note that for all Ce¢(L)c L* [D,C]l=DC
=[U,C]=0, since [C,L*]=0. Thus for any R=C+ Pe L(e) we have
{D,Rl1=[D,Pl]=[V,P]=[V,R]l. Thus [D—V,R]=0 for all Re L(e) and
consequently D—V =T e I'm,a) ={S € Hom (m,m) : [S,a(X)] =[S, 6(X)] =0
all X e m} which is the centroid of the algebra (m,«). Since (m, ) is simple,
I'm,e) is a field [2,p. 291] and for any S e I'(m,a) it is easy to see Sa(X)
= a(SX) ; Sb(X) = (SX) and using this SL{a) < L(e) and SL’' c L'. Thus
trace SP=0 for all S I'lm,e) and P L',

Next since C(X,Y) is nondegenerate form which induces a pseudo-
Riemannian connection we have all the D(k) and a(X) are C-skew-symmetric.
We shall now show every S & I'(m, ) is C-symmetric.

C(Sa(X,Y),Z) = C(Sa(X)Y, Z)

= Cla(SX)Y, Z)

= — C(Y,alSX)Z)
— C(Y, Sa(X)Z)
= — C(Y,a(X)SZ)
= C(a(X,Y),SZ)

I

and since (m,a) is simple, m = a(m,m) thus C(SU,Z) = C(U,SZ) for any
Uem.

Using D=V +T with Ve L, TeI'(ma) we have for any S & I'(m, a)
that [D,S]1=0 (remembering I'(m, «) is commutative).

Thus C(DSU,Z) = — C(SU,DZ)
= — C(U,SDZ)
=—C(U,DSZ)

so that tr DS = 0.
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Now from above equation D=V +T we see that if 7+ 0, then T-!
€ I'm,e) and therefore I =TT =7T"'D— TV, Thus using the results of
previous paragraphs with S = 7-! we obtain the contradiction tr / = 0. Thus
D=Vel.

To prove the last part we note that if the connection is of the first
kind, then 2«(X,Y) = XY so that 5 X)= —a(X) and L(a)cC hol(e). Thus
L(a) = hol (). Conversely we see that if #X) e hol (a) = a(m) + D(§), then
b(X) = AX) + D with A(X) € a(m). Since torsion is zero, b(X) = a(X) — L(X)
where L(X):m—>m:Y—>XY. Thus L(X) € hol (a) and is C-skew-symmetric.
This yields C(XY,Z)=C(X,YZ) and from (9) we obtain 2e(X,Y) = XY.

CororLarRY 8. Let G/H be a reductive homogeneous space such that G[H is
an irreducible pseudo-Riemannian space as in Theorem 7. Then hol (@) is a reductive
subalgebra of L(a) which is contained in L’.

Proof. Let L(a) =c¢(L)® L’ D hol (a) and let V = C+ V' € hol () where
Cec¢ll), VVeL. Thus Celmya) and if C+0, let S=C"'e (m,a)
Then SV =1+ SV’ and from the preceding proof, tr SV’ =0. Also since
S is C-symmetric and V € hol(a) is C-skew-symmetric, we have tr SV = 0.
Thus the contradiction trI =0 shows C =0 and hol (a) € L".

Next we shall show ad, hol(a) is completely reducible in L = L(a) by
using [2, p. 81]. Since H*=hol(a) is a subalgebra of L(a), the map
B* > ad b*: A—adA is a representation which is faithful. For if ad, 4 =0,
then [A,P]1=0 for all Pe L’. But since A j*c L’ we see that A is in
the radical of L’ which is zero.

From the holonomy irreducibility we have the usual decomposition
P =cH*) DY and consequently ad H* = ad c(H*) + ad H*. Since ad|L’
is a faithful representation, this sum is direct; ad H* is semi-simple; and
ad c(9*) 1is the center of ad *. Thus to show ad h* completely reducible,
we shall show that the elements in ad ¢(§*) are semi-simple linear transforma-
tions.

Now let 0% A € ¢(y*), then since §* is irreducible c¢(h*) is contained in
a division ring which is at worst isomorphic to the quaternions. In
particular A satisfies a quadratic equation A?+aA+ bl =0 with abe R.
Since Ae h*, A is C-skew and tr A =0; thus a=0. Next >0, otherwise
A? 4 bI =0 factors so that we may conclude A = 2/ and therefore, by traces,
A=0. Thus b=p8>0 and for J = A/ € c(h*) we have j2°+ I =0. Using
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this a straight forward computation shows that ad./ satisfies a polynomial
x(x? + 4) € R[x]; thus the minimum polynomial of aed,J is a product of
distinct irreducible polynomials so that the linear transformations in ad c(§*)
are semi-simple.

Note that in general hol(a) is not an ideal of L(a); e.g. L(a) semi-
simple but hol (a) =§* such that c¢(h*) + 0.

We have somewhat determined the location of $* =hol(ae) in L(a)
and we next consider the semi-simplicity of these algebras.

TueoreM 9.  Let (a,9) be a non-symmetric reductive pair with g =m 15
such that the algebra (m,a) induces an irreducible pseudo-Riemannian connection on
the corresponding G/H.  Then

(1) If g is semi-simple, then L(a) is semi-simple.

2)  If c(§%+0, then c(9*) = R] where J*+ 1 =0 and ] induces a G-invariant
pseudo-Kaehlerian structure on G/H.  Conversely if G/H has a G-invariant pseudo-
Kacehlerian structure § and if c(§%)5=0, then J = I(p) € c(h*) where p = He G/H.

() If dim. m s odd, then hol(a) is semi-simple.

(4) If G/H is Riemannian and c¢(L) =0, then c¢(L) = RI.

6) If ¢(LY*0 and c(9*) %0, then ¢(L) = RI and c(8*) =R]J with J*+1
= Q.

(6) If G/H has a G-invariant quaternionic structure, then the connection is not
of the first kind.

Proof. (1) Choosing a basis for g from m and ) we obtain for Xem
that

Lx) *
ad, X = [ ]

* 0
where L(X):m—->m:Y—>XY. Thus since g is semi-simple, 0= tradX
=tr L(X). Next since the connection is pseudo-Riemannian we also have
tra(X) =0. But aX)=5X)— L(X) vyields trb(X)=0 and since L(a) is
generated by a(m)+ b(m) we see trT =0 all T € L(a).

Since the connection is irreducible (m,a) is simple and L(a) = cLy®@ L
is irreducible where ¢(L)c I'(m,a) is a field. If 0% A= ¢(L), then A

eI'mya) and I = A'Ae I'm,a)L(a) C L(a) must have trace zero, a contradic-
tion. Thus ¢(L) =0 so that L(a) is semi-simple.
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(2) Assume c(*)+=0 and let A,Be c(§*) be linearly independent.
Now since ¢(9*) c centralizer (9*) which is a division algebra over R ; see
[2], we have that the subdivision algebra K = R(A, B) generated by A and
B is actually a field, using [4,B]=0. Thus K is a field which is a
proper finite extension of R and is isomorphic to the complex numbers;
thus dim. K=2 and K=RA+ RBc c¢()*). But A'e K and I=A4A"'A€ K
C c(h*) so that tr7=0. This contradiction shows dim. ¢(§*) = 1.

Let RA = c(§*) c centralizer (§*) which is at worst isomorphic to the
quaternions so that A is quadratic: A*+aA+ 8l =0. But tr A=0 yields
a=0; also >0, otherwise A= 4+ b2, Thus for J=05"124 we have
J2+TI=0 and c(*) =RJ. Now since / commutes with §* = hol () and
J is C-skew where C(X,Y) induces the pseudo-Riemannian structure, we
have C(JX,JY)=CX,Y). Thus analogous to [1, Prop 4.2, p. 3021, J
induces a pseudo-Kaehlerian & on G/H.  Conversely using the results of
[18, p. 87] we see that the pseudo-Kaehlerian structure § on G/H vyields
X(p) = A € centralizer (%*) such that A is C-skew and therefore trA =0.
But c¢(h*) = RJ so that [4, J1=0 and as above K= R(4,]) is a 2-dimensional
field if A and J are linearly independent. But this leads to trJ =0; thus
A = a] € c(h*).

(3) If dim.m is odd, then ¢(b*) =0; otherwise (det )= det(J?
=det(—1I)=—1.

(4) If ¢(L)# 0 and c(L) + RI, then the above proofs show ¢(L) = I'(m, &)
=RI+ RJ where J2+41=0. Now as in the proof of Theorem 7, [ is
C-symmetric and since C is positive definite (and therefore / has a symmet-

ric matrix), J has real characteristic roots. This contradiction shows
¢(L) = RI.

(5) If c(9*) 0, then c(§®) =RJ. If ¢(L)+ RI, then c¢(L)=RIDRP
with P24+ 7=0. From Corollary 8, c(y*) c L’ and therefore [P, J]=0.
Thus since the independent elements I, J, P K = R(J,P) we see that K is
a 3-dimensional subfield of centralizer (§*) which is isomorphic to the
quaternions; this is impossible.

6) Let G/H be a pseudo-Riemannian space with a quaternionic
structure [7, 15] which is compatible with the connection of the first kind.
The compatibility yields (analogous to [18]) a set @ ={/,J,K,L} of endo-
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morphisms which relative to the usual endomorphism multiplication is
isomorphic to the quaternions and such that [Q,5*]=0. Thus @ c
centralizer (§*). But since we are assuming the connection to be of the
first kind, L(a) =%* =hol(a) so that the centralizer (§*) =I'(m,XY) is a
field containing @ which is impossible.

We now use preceding results to reduce the study of an irreducible
pseudo-Riemannian connection on G/H induced by the algebra (m,«) to
the study of a finite family of anti-commutative algebras M; which yield
reductive spaces &/ which are irreducible symmetric or irreducible with
connection of the first kind.

THEOREM 10. Let (8,9) be a non-symmeiric reductive pair with fixed
decomposition g =m + 9 such that g is semi-simple and the algebra (m,«a) induces
an irreducible pseudo-Riemannian connection on the corresponding G/H.  Then the Lie
algebra L = L(a) and the reductive subalgebra B* = hol (¢) are such that

(@) (L,9*) is a reductive pair with L semi-simple and has decomposition
L=M41Y9* where M=3Y*L relative to the Killing form, K, of L.

b) L=L,®---DL, where each L, is a semi-simple ideal of L.  Each
L, contains a reductive subalgebra B¥ which is an ideal of Y* such that (L, B%) is
a reductive pair with decomposition L, = M, + 9% where M, = Y%L relative to
K, = K|L, X L,. Furthermore with the usual anti-commutative multiplication induced
Jrom L, the M, is a zero algebra or a simple algebra. Examples show that in
general the case L, semi-simple can not be reduced to L, simple.

Proof. The proofs are analogous to those in [11, section 2 ; 13, section
3] and are outlined below. We first show the Killing form K of L restricted
to B* X h* is nondegenerate. The representation §* —>ad h*:U —ad, U is
injective since L is semi-simple; thus if §* is semi-simple the trace form
trad,Uad,V = K(U,V) is non-degenerate. Next if §*=RJPH* it suffices
to show tr(ad,J)?+0. But a straight forward computation shows (ad.J])?
has minimum polynomial x?+ 4z € R[x] and therefore has non-zero trace.
Thus in both cases §* N H*L =0 so we can decompose L =M+ §Hh* with
M=%t Also KIMXx M is a nondegenerate invariant form relative to the
multiplication P-Q =[P,Qly in M.

If M-M+0 and M is not simple, then M has a proper minimal adf*-
invariant ideal N. Since K is a nondegenerate invariant form on M we
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have that N* c M is an ad h*invariant ideal. Thus NN Nt is an ad h*-
invariant ideal in M so that NN Nt =N or NN N+ =0. In case M-M=0
use a proper minimal ad §*-invariant subspace N C M.

Case NN N!t =N is analogous to the same situation in [13, section 3].
Thus since adb* is completely reducible on M we can find an ad §*-
invariant complement N’ and write M =N+ N. Since K(N,N)=0 it
suffices to show K(N,N’) =0 to show N=0. .

To use the methods in [11 ;13] it suffices by [13, section 4] to show
tr adgh* = 0, which is clear, and tradyb* =0 for any ad h*-invariant subspace
N.  This is also clear from what have proved: if §* = RJ®H* then ad.]
minimum polynomial 2*+ 42 on N so that tr(ady]) = try(ad.J) =0; also
since §* is semi-simple and §* —adyh* is a representation, tr(adyHh*) = 0.
Thus as in [13], we obtain for Pe N, @ € N’ that

K(P,Q) =2 tryo(P, Q)

where for Re M, o(P,Q)R =[h(R,Q),P] with &(R,Q) =[R,Qly < b* But
computations show trye(P,Q) = tradyh(P,Q) =0 so that K(N,N')=0. In
case M-M =0, then just choose N to be a minimal YH*-invariant subspace
of M and the formulas in [13] simplify because the mappings L(P): M
—M:Q—>P-Q are zero. Thus any minimal H*-invariant subspace of M is
non-isotropic which is just the other case.

Case NN Nt =0 where N is any minimal ad §*-invariant ideal of M
(Gf M-M+0). Using Killing form arguments as in Lemma 3 of [13] we
have [N,N+] =0 and computing as in Lemma 2 of [13] we see that L, = N
+ A(N,N) is an ideal in L where A(N,N)=1Y%% is the subalgebra of p*
generated by all #(R,S) for R,SeN. Next note that K|L, x L, is
nondegenerate so we can decompose L =L, ®L,*. Now if L,* cp* then
M=N. If M is not a zero algebra, then it is a simple algebra relative
to the multiplication P-Q =[P,Q]y; otherwise if M has a proper ideal it
has a proper ad h*-invariant ideal, contrary to the choice of N. Now if
Lt 9% then L1 satisfies the same conditions as L and we continue by
induction to obtain part (b). If M-M =0, then replace the “minimal
ideal N by a ‘“minimal ad §*-invariant subspace N of M”. 1In both cases
the H¥ is reductive in §* since it is an ideal and therefore radical §* = §* n
radical $* which is at worst RJ. The example in [13, section 4] shows
the case L; semi-simple cannot be reduced to the case L, simple.
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